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Problem

Want to evaluate (estimate), for some discrete random variableX

θ = E[h(X)] =

N
∑

j=0

h(j)πj

The parameter θ may for instance be an approximation to some

high dimensional integral

θ0 =

∫

· · ·

∫

h(x1, . . . , xm)f(x1, . . . , xm)dx1 · · · dxm

and N may be a very large number.

We assume, however, that the probabilities πj are known.
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Idea: MCMC

MCMC = Markov chain Monte Carlo

Construct irreducible and ergodic Markov chain X0, X1, X2, . . .

with stationary distribution limn→∞ P(Xn = j) = πj .

Estimate θ by

θ̂ =
1

n

n
∑

i=1

h(Xi)

It is advisable to run the chain an initial number of times

(burnin-period) so that the process is close to the stationary

distribution before start taking the average θ̂.

How could such a Markov chain be constructed?
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(one good) Solution: Hasting-Metropolis algorithm

Let Yn+1 be a candidate for the new state Xn+1 chosen from a

"proposal" distribution

qij = P (Yn+1 = j|Xn = i).

Given Xn = i and Yn+1 = j we accept the candidate value and

let Xn+1 = j with probability

αij = min(1,
πjqji
πiqij

)

and otherwise reject the candidate, thus Xn+1 = Xn = i.

Then Xn has stationary distribution πj = limn→∞ P(Xn = j) if

the qij are transition probabilities for an irreducible MC.

Note: This implies that the chain is aperiodic and recurrent

since .
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Why does this work? With this construction

the MC satisfies a "detailed balance equation"

πjPji = πiPij

where Pij = P (Xn+1 = j|Xn = i).

This obviously holds for j = i. For j 6= i note

πiPij = πiqijαij = πiqij min(1,
πjqji

πiqij
) = min(πiqij, πjqji)

= πjqji min(1,
πiqij

πjqji
) = πjqjiαji = πjPji

Summing both sides of the detailed balance equation over i gives

∑

i

πiPij =
∑

i

πjPji = πj

∑

i

Pji = πj

determining the stationary distribution πj (along with
∑

j πj = 1).
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Reversible Markov chains

With P (Xn = j) = πj the detailed balance equation can be

interpreted as

P(Xn = i,Xn+1 = j) = P(Xn+1 = j|Xn = i)P(Xn = i)

= πiPij = πjPji = P(Xn+1 = i|Xn = j)P(Xn = j)

= P(Xn = j,Xn+1 = i).

This has the consequence that it is impossible to check if the

chain is recorded forwards or backwards, i.e. reversible.

For some MCs, the detailed balanced equations can simplify the

derivation of the stationary distribution (a bit), for instance

Random Walks in Example 4.35
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A worked toy example

We want to simulate from a distribution on states 0, 1, 2, 3 and 4

π = (π0, π1, . . . , π4) = (0.3, 0.2, 0.1, 0.1, 0.3)

With uniform proposal distrib. qij = P(Yn+1 = j|Xn = i) = 0.2

we get for instance
P01 = q01min(1,

π1q10
π0q01

) =
1

5

0.2

0.3
= 2/15

The full transistion matrix becomes
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A simulation
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The left panel shows the autocorrelation corr(Xn, Xn+k) which

tends fast to 0.
Markov chain Monte CarloandReversible Markov chains – p. 8/22



Another proposal distribution

Let the matrix of the qij equal

Q =
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To calculate the transition matrix P for the chain Xn it is only

necessary to calculate αij for which qij > 0.
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A simulation with the new prop.distr.

0 20 40 60 80

0
1

2
3

4

time

X

A sample path

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  X

There is larger dependencies in this chain, will need a longer

runs to calculate precise θ = E[h(X)].
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Choice of qij

In the preceding example the uniform qij = 0.2 gives smaller

dependencies between Xn and Xn+k than the second proposal

distribution. This shows that there is a need to look for "good"

qij .

It is not, however, always the case that a uniform distribution is

best - when the number of states is large and proposal involving

just some neighbours can often be preferred.

Markov chain Monte CarloandReversible Markov chains – p. 11/22

No need to calculate P

When the number of states N + 1 is large it is inconvenient to

calculate the transition probabilities Pij . But there is really no

need to do so.

The sampling can always be carried out in two steps

(a) Given Xn = i sample Yn+1 = j from qij

(b) Calculate αij and sample ui ∼ U [0, 1].

If ui ≤ αij then Xn+1 = j

Otherwise Xn+1 = Xn = i
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For instance my R-script

for simulating the second proposal distribution was done without

calculating P .

X<-0

for (i in 1:10000){

y<-sample(0:4,1,prob=q[X[i]+1,])

alpha<-min(1,px[X[i]+1]*q[X[i]+1,y+1]/(px[y+1]*q[y+1,X[i]+1]))

u<-runif(1)

if (u<alpha) X[i+1]<-y

if (u>alpha) X[i+1]<-X[i]

}
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Estimation of expectations

Initially we stated that a purpose of MCMC is to evaluate

expectations θ = E[h(X)] =
∑N

j=0 h(j)πj.

For the toy example we can immediately calculate

θ1 = E[X] =
∑4

j=0 jπj = 1.9 θ2 = E[eX ] =
∑4

j=0 e
jπj ≈ 19.97
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Partially determined πj

In many problems it is only possible to specify the πj up to a

constant, that is we know πj = bj/C with bj known and the

normalizing constant C unknown.

Hasting-Metropolis is constructed to handle this, because the

constant cancels out in

αij = min(1,
πjqji
πiqij

) = min(1,
bjqji
biqij

)

Such partially determined πj is for instance often the case in

Bayesian statistics (STK4021, H2013) which involve calculating

conditional probabilities, using Bayes rule

P(Y = y|X = x) =
P(X = x|Y = y)P(Y = y)

∑

y P(X = x|Y = y)P(Y = y)
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Partially determined πj , contd.

Here we may know P(X = x|Y = y) and P(Y = y), but there

may be a large number of possible y, thus

C =
∑

y

P(X = x|Y = y)P(Y = y)

can be hard to evaluate.
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A more complicated example

Suppose we want to simulate from a (slightly silly) distribution

πi =
1

C
f(i) =

1

C
exp(−β|i|+ |i| log(α) + γ sin(2πi))

for whole numbers i ∈ Z for certain values of

α = 2.222, β = 1.111 and γ = 7.777.

We can not sample candidates uniformly over Z and simply

choose neighbours of Xn = i so the candidates values are

Yn+1 =







i+ 1 with probability0.5

i− 1 with probability0.5

Acceptance probabilities

αij = min(1,
f(j)

f(i)
) for j = i− 1 and i+ 1
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The function and its components
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Results for the "funny" function
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Example 4.39 in Ross

S = the set of all permutations (x1, . . . , xn) of 1, 2, . . . , n that

satisfies
∑n

j=1 jxj > α for some α.

Want to sample uniformly from S maybe in order to

• Estimate average
∑n

j=1 jxj over S

• Number of elementsK in S

Define a neighbour of s = (x1, x2, . . . , xn) as a permutation

where only two elements have changed place. Let N(s) = the

number of neighbours of s in S.

Sample candidates uniformly over the neighbours. Since the

uniform distribution over S equals π(s) = 1
K
we get acceptance

probabilities
αs,t = min(1,

N(s)

N(t)
)
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Time reversed Markov chains

Let . . . , X−n, X−n+1, . . . , X−1, X0, X1, . . . , Xn, Xn+1, . . . be a

Markov chain on times Z with a stationary distribution

πj = P(Xn = j) for all n.

If we reverse the chain, Yn = X−n then also Yn is a MC with

stationary distribution πj = P(Yn = j)

Thus we can work out the transition probabilities

Qij = P(Yn+1 = j|Yn = i) as

Qij = P(Xn = j|Xn+1 = i) = P(Xn=j,Xn+1=i)

P(Xn+1=i)

= P(Xn=j)P(Xn+1=i|Xn=j)

P(Xn+1=i)
=

πj

πi
Pji

or πiQij = πjPji
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Time reversible MC’s again

Thus we see that if Qij = Pij we obtain

πiPij = πjPji

or the detailed balance equation

or the condition for being a time-reversible Markov chain.
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