Exercise 4.20

A transition matrix P is said to be doubly stochastic if the sum over each column equals 1 . If such a chain is irreducible and aperiodic and consists of $M+1$ states $0,1, \ldots, M$ show that the limiting probabilities are given by $\pi_{j}=\frac{1}{M+1}$ for all $j=0, \ldots, M$.

Solution: The assumption of irreducibility means that all states communicate with each other and aperiodic means that all states are aperiodic, i.e.: For a sufficient large $n p_{i i}^{(n)}>0$ for all i.

To find the limiting probabilities we have to solve the following system

$$
\pi=\pi P \Longleftrightarrow \pi(P-i d)=0
$$

or

$$
\left(P^{t}-i d\right) \pi=0
$$

A doubly stochastic matrix has eigenvalue 1 indeed! Because if we compute $P-i d$, then each column sums up to 0 ! $\operatorname{So} \operatorname{det}(P-i d)=0$ this means that the rank is not $M+1$. Moreover, observe that the matrix can not have rank less than M.

Then, since the independent variables are all 0 , (the overall matrix rank, $(P-i d \mid 0)$, does not change) the system is compatible, but may have infinitely many solutions: since $\operatorname{rank}(P-i d)=$ M and $\operatorname{rank}(P-i d \mid 0)=M$ with $M+1$ unknowns.

Nevertheless, since we want those solutions such that $\sum_{j=0}^{M} \pi_{j}=1$, this condition makes the system have a unique solution! (we add a row of 1's in the matrix of the system) that is, we increase the ranks by 1 .

Claim: The vector $\pi=\left(\frac{1}{M+1}, \ldots, \frac{1}{M+1}\right)$, satisfies the system: Indeed,

$$
\begin{aligned}
\left(\frac{1}{M+1}, \ldots, \frac{1}{M+1}\right)\left(\begin{array}{ccc}
p_{00} & \cdots & p_{0 M} \\
\vdots & \ddots & \vdots \\
p_{M 0} & \cdots & p_{M M}
\end{array}\right) & =(\frac{1}{M+1} \underbrace{\sum_{i=0}^{M} p_{i j}}_{=1}, \ldots, \frac{1}{M+1} \underbrace{\sum_{i=0}^{M} p_{i M}}_{=1})= \\
& =\left(\frac{1}{M+1}, \ldots, \frac{1}{M+1}\right)
\end{aligned}
$$

So $\pi=(1 /(M+1), \ldots, 1 /(M+1))$ solves the system and since the solution is unique, π is the solution we wanted!

Exercise 4.22

Indication: Consider a new process X_{n} defined as $X_{n}:=Y_{n} \bmod 13$ (This means, X_{n} is the remainder of the integer division of Y_{n} / X_{n}, if such remainder is 0 , this means that Y_{n} is a multiple of 13). Observe that the state space of Y is $S=\{0,1,2, \ldots, 12\}$ and that the number of multiples of 13 in X_{n} is the same as the number of 0 's in Y_{n}.

Finally, the transition probabilities of Y are easy to compute. (To conclude, use the previous exercise to get $\pi=(1 / 13, \ldots, 1 / 13))$.

