Additional exercises for STK2130 Spring 2013.

Exercise 2 Assume that X(t) is a pure birth process with birth rates $\lambda_i = \lambda$ for all X(t) = i.

a) Argue that X(t) is a Poisson-process and explain why

$$P_{ij}(t) = \frac{(\lambda t)^{(j-i)}}{(j-i)!} \exp(-\lambda t)$$

for $0 \leq i \leq j$ and $P_{ij}(t) = 0$ for j < i.

- b) Show that these $P_{ij}(t)$ satisfy both the backward and forward Kolmogorov equations.
- c) Show that the $P_{ij}(t)$ for the Poisson-process also can be generated recursively by the method in Proposition 6.4 in Ross, i.e. assume that if the formula holds for $P_{i,j-1}(t)$ then by Prop. 6.4 it also holds for $P_{ij}(t)$.

Exercise 3 Assume that we have a Yule-process, i.e. a pure birth process with birth rate $\lambda_i = i\lambda$ for i = 1, 2, 3, ... In Ross (Example 6.8 and Exercise 5.11) it has been shown that

$$P_{1j}(t) = \exp(-\lambda t)(1 - \exp(-\lambda t))^{j-1}$$
 for $j = 1, 2, 3, \dots$

$$P_{ij}(t) = {\binom{j-1}{i-1}} \exp(-i\lambda t)(1 - \exp(-\lambda t))^{j-i} \text{ for } i > 1 \text{ and } j = i, i+1, i+2, \dots$$

and $P_{ij}(t) = 0$ otherwise

- a) Verify that these $P_{ij}(t)$ satisfy both the backward end forward Kolmogorov equations.
- b) Show that also the $P_{ij}(t)$ for the Yule-process can be generated recursively by the method in Proposition 6.4 in Ross, i.e. assume that if the formula holds for $P_{i,j-1}(t)$ then by Prop. 6.4 it also holds for $P_{ij}(t)$.

Exercise 4 A competing risk model is a simple time-continuous Markov chain with an individual starting state 0 (referred to as being alive) and eventually moving to state k = 1, 2, ..., K states (referred to as dying of cause k) with a (constant) rate q_{0k} . Determine

- i) $P_{00}(t) = P(X(t) = 0 | X(0) = 0)$
- ii) $P_{0k}(t) = P(X(t) = k | X(0) = 0)$ for k = 1, 2, ..., K

and calculate $\lim_{t\to\infty} P_{0k}(t)$