STK2130 Spring 2016 - Mandatory assignment

Deadline Thursday March 31st, 14:30

You are allowed to collaborate and discuss the problems with other students, but each student has to formulate her or his own answers. You should give the names of the students you collaborate with, so that it is possible to compare the written solutions.

The assignment consists of 3 Problems over 3 pages. Make sure you have the complete assignment.
The answer to the exam project should be handed in on paper on the 7th floor in NHA (Niels Henrik Abels hus). You may deliver a handwritten or Latex/Wordprocessed answer to the project in English or Norwegian.

Problem 1

A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ on the states $\{0,1,2,3,4\}$ is defined by the transition matrix

$$
\mathbf{P}=\left[\begin{array}{ccccc}
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

a) The chain has three classes, $\mathcal{C}_{0}=\{0,1\}, \mathcal{C}_{1}=\{2,3\}, \mathcal{C}_{2}=\{4\}$ where \mathcal{C}_{0} is transient, \mathcal{C}_{1} is closed and \mathcal{C}_{2} is absorbing (and closed). Explain why this is so.
Which of the classes are recurrent?
b) Let T be the time until the chain enters one of the closed classes and define $\mu_{i}=\mathrm{E}\left[T \mid X_{0}=i\right]$ for $i \in \mathcal{C}_{0}$.
Explain why the μ_{i} satisfy the following two equations
(1) $\mu_{0}=\left(\mu_{0}+1\right) \frac{1}{5}+\left(\mu_{1}+1\right) \frac{1}{5}+\frac{3}{5}$
(2) $\quad \mu_{1}=\left(\mu_{0}+1\right) \frac{2}{5}+\left(\mu_{1}+1\right) \frac{1}{5}+\frac{2}{5}$

Solve the equations (1) and (2) to obtain μ_{0} and μ_{1}.
c) Let q_{i} be the probability that the chain ends up in state 4 conditional on $X_{0}=i$. Find and explain equations for obtaining q_{0} and q_{1}. Solve the equations.
d) Let $s_{i j}$ denote the expected number of visits to states $j=0$ and $j=1$ conditional on $X_{0}=i$. Find and solve equations for determining the $s_{i j}$.

Problem 2

Let a Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ on the states $\{0,1,2,3,4\}$ be described by the transition matrix

$$
\mathbf{P}=\left[\begin{array}{lllll}
q & p & 0 & 0 & 0 \\
q & 0 & p & 0 & 0 \\
q & 0 & 0 & p & 0 \\
q & 0 & 0 & 0 & p \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where $0<p<1$ and $q=1-p$.
a) Explain why this Markov chain has a stationary distribution with limit probabilities $\pi_{j}=\lim _{n \rightarrow \infty} \mathrm{P}\left(X_{n}=j \mid X_{0}=i\right)$ determined by equations

$$
\text { (1) } \pi_{j}=p \pi_{j-1} \text { for } j=1,2,3,4
$$

(2) $\quad \sum_{j=0}^{4} \pi_{j}=1$
b) Show that the solution to the equations in (a) are given by

$$
\pi_{j}=\frac{1-p}{1-p^{5}} p^{j} \text { for } j=0,1,2,3,4
$$

c) Let V_{n}^{j} be the indicator that $X_{n}=j$ (i.e. $V_{n}^{j}=1$ if $X_{n}=j$ and $V_{n}^{j}=0$ otherwise).
What is the limit of $\bar{V}_{n}^{j}=\frac{1}{n} \sum_{i=1}^{n} V_{i}^{j}$? when $n \rightarrow \infty$?
(d) For some function $h()$ state the limit of $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$ when $n \rightarrow \infty$?

Evaluate the limits numerically for (i) $h(x)=x$ and (ii) $h(x)=\exp (x)$ when $p=0.3$.

Problem 3

For this problem it is recommended to use some software like R, MATLAB or Python.

We will consider the same Markov chain as in Problem 2 using $p=0.3$ (and $q=0.7$).
a) Let \mathbf{P}^{n} be the product of the transition matrix \mathbf{P} by itself n times. What does the elements $P_{i j}^{n}$ of \mathbf{P}^{n} signify?
Calculate \mathbf{P}^{n} for $n=2,4$ and 8 . Compare with the limiting distribution that you derived in question (b) in Problem 2.
b) Sample and plot a sequence $X_{0}, X_{1}, \ldots, X_{50}$ from the Markov chain with start value $X_{0}=0$.
c) Run sequences $X_{0}, X_{1}, \ldots, X_{n}$ for $n=1000$ and $n=10000$. Calculate the proportion of time that the chain attains different values. Compare with Problem 2, question (c).
Then calculate $\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$ for (i) $h(x)=x$ and (ii) $h(x)=\exp (x)$. Compare with the results you obtained in question (d) of Problem 2.

