
Synopsis of Chapter 4, Ross, Markov Chains

Definition Markov chain: A sequence of discrete random variablesX0, X1, X2, . . .
is called a Markov chain (by Ross) if

(i) P(Xn = j|X0, X1, X2, . . . , Xn−1 = i) = P(Xn = j|Xn−1 = i)

(ii) P(Xn = j|Xn−1 = i) = Pij for all n

In some texts sequences satisfying (i) and (ii) would be called an homogeneous
Markov chain and sequences only satisfying (i) would be called an inhomogeneous
Markov chain. In the following we will use the definition of Ross.

We refer to Pij as (one-step) transition probabilities. The matrix P = [Pij] of all
transition probabilities is called the transition matrix. The row sums of P will
always be equal to one.

Chapman-Kolmogorov equations

The n-step transition probabilities are defined as Pn
ij = P(Xn = j|X0 = i)

and Pn = [Pn
ij] is the n-step transition matrix.

The Chapman-Kolmogorov equations states

Pn+m
ij =

∑
k

Pn
ikP

m
kj

where the sum is over all possible k. Using matrix notation the Chapman-
Kolomogorov equations can be written as Pn+m = PnPm.

Classification of states

• A state j is said to be accessible from i if there exists an n such that
Pn

ij > 0.

• Two states i and j are said to communicate if j is accessible form i and
i is accessible from j.

• A class of states is defined as the set of all communicating states.

• An irreducible Markov chain has only one class.

• An absorbing state i has Pii = 1. Absorbing states constitute one class.



• A closed class is a class C that the Markov chain can not leave, thus
Pij = 0 if i ∈ C and j not in C.

• A transient state/class is a state/class for which the probability of ever
returning is less than one.

• A recurrent state/class is state/class for which the probability of ever
returning equals one.

• A positive recurrent state/class is a state/class for which the expected re-
turn time to a state i within in the class is finite. A null-recurrent state/class
is a recurrent state/class with infinite expected return time.

• The period of a state/class is the largest common divisor of the n such
that Pn

ii > 0. An aperiodic Markov chain has period equal to one.

• An ergodic Markov chain is an aperiodic and positive recurrent Markov
chain.

”One-step” analysis

For several problems it is useful to (i) consider all possible outcomes of X1 and
then (ii) to condition on and sum over these possible outcomes. Such an approach
is by some (not Ross) referred to as ”one-step” analysis. In this section it is
assumed that the state space is finite.

• Let C0 be the set of transient states and C1 the union of all closed sets.
Then with T equal to the time until entering C1 and µi = E[T |X0 = i] we
find µi solving the set of linear equations given by

µi =
∑
j∈C0

Pij(µj + 1) +
∑
j∈C1

Pij

• If there are two closed sets C1 and C2 and transient states i ∈ C0 we have
that the probabilities qi that the process eventually enters C1 given that
X0 = i are determined solving the set of equations

qi =
∑
j∈C0

Pijqj +
∑
j∈C1

Pij

• Let sij equal the expected number of visits to j where both i and j are
transients states and C0 is the set of all transient states. Then the sij can
be found solving the linear equations

sij = δij +
∑
k∈C0

Pikskj

where δij equals one when i = j and zero otherwise.



Stationary distribution

Assume an irreducible and ergodic Markov chain. Then we have

Pn
ij → πj

when n → ∞ where the πj are uniquely determined by
∑

j πj = 1 and

πj =
∑
i

πiPij for all j.

The πj can be interpreted as

• limiting probabilities (Pn
ij → πj)

• the stationary distribution (i.e. if P(X0 = j) = πj then for all n we also
have P(Xn = j) = πj)

• the limit of the proportion of visits to j

• the inverse of the expected return time to j (i.e. if mjj is the expected
number of transitions starting in j until the chain returns to j then we
have πj =

1
mjj

)

Markov chain Monte Carlo methods

Assume an irreducible and ergodic Markov chain X0, X1, X2, . . . with stationary
distribution Pn

ij → πj. Let θ =
∑

i h(i)πi = E[h(X)] when X has the stationary
distribution. Then

1

n

n∑
i=0

h(Xi) → θ when n → ∞

For an irreducible and ergodic Markov chain satisfying πiPij = πjPji we have

(i) the πj = limn→∞ P(Xn = j) are stationary probabilities of the chain

(ii) the chain is reversible if it , i.e. P(Xn = i,Xn+1 = j) = P(Xn = j,Xn+1 = i)
when the chain has attained the stationary distribution



With the Hastings-Metropolis algorithm one constructs a reversible Markov chain
by

• Given Xn = i sample a candidate value Yn+1 with conditional probabilites
qij = P(Yn+1 = j|Xn = i). The qij correspond to an irreducible Markov
chain.

• The candidate value is accepted, i.e. Xn+1 = Yn+1 = j, with probability

αij = min(1,
πjqji
πiqij

)

and is rejected, i.e. Xn+1 = Xn, with probability 1− αij

Branching processes

Assume thatXn is the size of the population in generation n where each individual
in each generation breeds Z individuals independently with probability Pj =
P(Z = j), j = 0, 1, 2, . . . and expectation µ =

∑∞
j=0 jPj. Then

• the population dies out with probability one if µ < 1 and also for µ = 1 (if
P0 > 0)

• if X0 = 1 and µ > 1 the probability that population dies out π0 can be
found solving the equation π0 =

∑∞
j=0 π

j
0Pj


