
STK2130: Solution to Exam Spring 2012

Problem 1

(a) De�ne what you mean by a branching process.

See page 245-246, Section 4.5 (Branching processes)

(b) Assume that a branching process {Xn} starts with one individual (X0 = 1) and has an
o�spring distribution given by

P (ξ = 0) =
1

12
, P (ξ = 1) =

2

3
, P (ξ = 2) =

1

4
.

Find the probability distribution of X2.

To solve this problem it is highly recommended to plot a Venn's diagram of the situation.
See below.

Then we see how to compute all probabilities in an easy way since each step is independent
of the rest. So

P (X2 = 0) =
1

12
+

2

3

1

12
+

1

4

1

12

1

12
=

9

64
,

P (X2 = 1) =
2

3

2

3
+

1

4

(
1

12

2

3
+

2

3

1

12

)
=

17

36
,

P (X2 = 2) =
2

3

1

4
+

1

4

(
1

12

1

4
+

2

3

2

3
+

1

4

1

12

)
=

83

288
,

P (X2 = 3) =
1

4

(
2

3

1

4
+

1

4

2

3

)
=

1

12
,

P (X2 = 4) =
1

4

1

4

1

4
=

1

64
.
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Observe or check that the sum of all is indeed 1.

(c) Find the probability of ultimate extinction for this process. We see that

µ =
∑
j

jP (ξ = j) =
2

3
+ 2

1

4
=

2

3
+

1

2
=

7

6
> 1.

If we denote by π0 the probability that the population dies out/ultimate extinction. Then

π0 = 1 if µ 6 1

π0 < 1 if µ > 1.

We are in the second situation. To exactly determine π0 we have to solve the following
equation

π0 =
∞∑
j=0

πj0P (ξ = j)

(See page 248) and choose the smallest positive root. Thus

π0 =
1

12
+

2

3
π0 +

1

4
π2
0

which has solution π0 = 1/3.

Problem 2

P =


1 0 0 0 0
0.2 0.3 0.5 0 0
0 0.5 0.2 0.3 0
0 0 0 0.4 0.6
0 0 0 0.5 0.5


(a) There are three classes {1} (recurrent), {2, 3} (transient) and {4, 5} (recurrent)

(b) Given we are in state 2, probability of ultimate absorption in state 1:
We aim at computing the probability of absorption (in this case in 1). So, we can consider

the class {4, 5} as a single state which is absorbing. So rearranging the matrix P , we are
interested only in a process X̃n having transition probability matrx P̃ as follows:

P̃ =


1 0 0 0
0.2 0.3 0.5 0
0 0.5 0.2 0.3
0 0 0 1


In general, for an absorbing state i, denote by Ni = min{n > 0 : Xn = i}. Then observe that

P (Ni <∞|X0 = i) = 1

P (Nj <∞|X0 = i) = 0 if i 6= j are absorbing states
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P (Nj <∞|X0 = i) =
∑
k∈S

P (Nj <∞|X1 = k)pik if i is transient.

The proof of the above summation:

P (Nj <∞|X0 = i) =
∑
k∈S

P (Nj <∞, X1 = k|X0 = i)

=
∑
k∈S

P (Nj <∞, X1 = k,X0 = i)

P (X0 = i)

P (X1 = k,X0 = i)

P (X1 = k,X0 = i)

=
∑
k∈S

P (Nj <∞|X1 = k,X0 = i)P (X1 = k|X0 = i)

=
∑
k∈S

qkpik

In our case j = 1, writing down the equation for X0 = 2 we get,

q2 = p̃21 + q2p̃22 + q3p̃23

We do not have enough equations so we use the ones for q3 as well,

q3 = p̃31 + q2p̃32 + q3p̃33.

Solutions are: q2 = 0.5161 and q3 = 0.32258 so

P (N1 <∞|X0 = 2) = 0.5161.

(c) Starting at 2, �nd the expected time until entering one of the recurrent states.

Denote by T = {time to absorption} and, similarly as before, for a transient state i denote
µi = E [T |X0 = i] and µ = E[T ]. Observe �rst that, if we start at a transient state we need at
least 1 time period, so

E[T |X0 = i] = 1 + E[T ],

which can be computed using conditional expectations and the tower property via a system of
equations

µ2 = 1 + µ2p̃22 + µ3p̃23

µ3 = 1 + µ3p̃32 + µ3p̃33

Moreover, observe that µ1 = µ4 = 0. Solutions are: µ2 = 4.1935 and µ3 = 3.871. In matrix
form, these equations can be solved as follows: Take the transient states {2, 3} and denote by
PT the matrix corresponding to these states:

PT =

(
0.3 0.5
0.5 0.2

)
Then S = (I − PT )−1 is a matrix with entries sij, i, j transient, meaning:

sij = "The expected number of periods that we are in j starting from i"
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Hence, s22 + s23 are the expected number of periods to go to 2 and 3 starting from 3 and since
there are no more transient states, these are all expected time periods in the transient class
(i.e. before exit). In our case:

S =

(
2.5806 1.6129
1.6129 2.2581

)
and µ2 = s22 + s23 = 4.1935.

(d) Knowing we have entered one of the states 4 or 5. Find the stationary distribution of
these two states.

Since this class is closed, we will not get out and we have that the transition probability
matrix of this class is then (

0.4 0.6
0.5 0.5

)
The asymptotic distribution is de�ned as πi = limn→∞ p

n
ij whenever this limit exists for each

i ∈ S. In our case we want to �nd the vector of probabilities π = (π4, π5) which can be found
as the solution to π = πP and the fact that π4 + π5 = 1. Thus

π = (45/99, 54/99)

i.e. the proportion of times we are in state 4 is 4/9 and the proportion of times we are in 5 is
5/9.

Problem 3

Consider a two-dimensional Poisson process of particles in the plane with intensity parameter
λ.

(a) What is the expectation and the variance of the number of particles in a disc of radius r?

A two-dimensional Poisson process is a process {N(B), B ⊂ R2} where

N(B) := {number of events in B}

has distribution function

P (N(B) = k) =
e−λ|B|(λ|B|)k

k!

where |B| means the area of the subset B. So, the above gives us the probability that k
events occur inside the set B. Thus, denoting B((x, y), r) the ball of center (x, y) ∈ R2

radius r we have that

E[N(B((x, y), r))] = V ar[N(B((x, y), r))] = |B((x, y), r)|λ = πr2λ.

(b) Determine the distribution function of the distance D between a particle and its nearest
neighbor.

Let D = dist(x, y) where y is the nearest neighbor of x, this means that inside the circle
of center x and radius D there are no events because y is the closest one. Without loss

4



of generality let us assume that x = (0, 0) the origin. Thus denoting F (d) = P (D < d),
for d > 0, the distribution function of D we have

F (d) = P (D 6 d) = 1− P (D > d) = 1− P (N(B((0, 0), d)) = 0) = 1− e−πλd2 .

(which satis�es the properties of a distribution function, indeed)

(c) Compute the expectation of the distance.

The density function is f(d) = F ′(d) = 2πλde−πλd
2
1{d>0}. So (using integration by parts

and the change of variables x2 = πλd2) we obtain

E[D] = 2πλ

∫ ∞
0

d2e−πλd
2

dd =

∫ ∞
0

e−πλd
2

dd

=
1√
πλ

∫ ∞
0

e−x
2

dx =
1

2
√
λ
.
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