STK2130-sp13 Problem 1

The matrix of one-step transition probabilities for a Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ for the states $\{0,1,2,3\}$ is given by

$$
P=\left(\begin{array}{cccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{3}{4} & \frac{1}{4} & 0 \\
\frac{1}{4} & \frac{1}{4} . & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

a) Find the classes of the Markov chain. Which classes are transient and which are recurrent?
b) Let $P_{i j}^{n}=P X_{n}=j \mid X_{0}=i$. Suppose the chain starts in state $i=1$ or state $i=2$. Find $\lim P_{i j}^{n}$ when $n \rightarrow \infty$.
What are the limits of $P_{i j}^{n}$ for $i=0$ and $i=3$ when $n \rightarrow \infty$?
c) What is the limit for the mean of the $X^{\prime} s$, i.e. $\frac{1}{n} \sum_{i=1}^{n} X_{i}$, when $n \rightarrow \infty$?

Explain your answer.
(Remark that the limit does not depend on the initial state X_{0})
d) Let T be the time until a recurrent state is reached. Find the expected value ν_{j} for T given that the Markov chain starts in a transient state j.
e) Let A_{j} be the number of visits to state j included X_{0} for $j=0$ and $j=3$. Explain why $E\left[A_{0} \mid X_{0}=0\right]=\frac{3}{2}$ and $E\left[A_{3} \mid X_{0}=3\right]=\frac{3}{2}$.
Also compute $E\left[A_{0} \mid X_{0}=0\right]$.

