STK2130 – Chapter 10.3

A. B. Huseby

Department of Mathematics University of Oslo, Norway

э

10.3 Variations on Brownian Motion

- Brownian Motion with drift
- Geometric Brownian Motion

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

10.3.1 Brownian Motion with drift

We say that $\{X(t) : t \ge 0\}$ is a Brownian motion process with drift coefficient μ and variance parameter σ^2 if:

- X(0) = 0
- $\{X(t) : t \ge 0\}$ has stationary and independent increments

•
$$X(t) \sim N(\mu t, \sigma^2 t), t \ge 0.$$

An equivalent definition is to let $\{B(t) : t \ge 0\}$ be a standard Brownian motion process, and then define:

$$X(t) = \sigma B(t) + \mu t$$

ヘロト ヘ回ト ヘヨト ヘヨト

10.3.2 Geometric Brownian Motion

If $\{Y(t) : t \ge 0\}$ is a Brownian motion process drift coefficient μ and variance parameter σ^2 , then the process $\{X(t) : t \ge 0\}$ defined by:

$$X(t) = e^{Y(t)}$$

is called a geometric Brownian motion process.

If $\{X(t) : t \ge 0\}$ is geometric Brownian motion process, we may compute: $E[X(t)|X(u), 0 \le u \le s] = E[e^{Y(t)}|Y(u), 0 \le u \le s]$ $= E[e^{Y(s)+Y(t)-Y(s)}|Y(u), 0 \le u \le s]$ $= X(s)E[e^{Y(t)-Y(s)}|Y(u), 0 \le u \le s]$ $= X(s)E[e^{Y(t)-Y(s)}]$

Geometric Brownian Motion (cont.)

If $W \sim N(\xi, \tau^2)$, the moment generating function of W is given by:

$$M_W(u) = E[e^{uW}] = e^{\xi u + \tau^2 u^2/2}$$

Since $(Y(t) - Y(s)) \sim N(\mu(t - s), \sigma^2(t - s))$, it follows that: $E[e^{Y(t) - Y(s)}] = M_{Y(t) - Y(s)}(1) = e^{\mu(t - s) + \sigma^2(t - s)/2}$

Hence, we obtain:

$$E[X(t)|X(u), 0 \le u \le s] = X(s)e^{\mu(t-s)+\sigma^2(t-s)/2}$$

Geometric Brownian Motion (cont.)

Geometric Brownian motion is useful in the modeling of stock prices over time when the percentage changes are independent and identically distributed.

We let:

 X_n = the price of some stock at time n, n = 0, 1, 2, ...

$$Y_n = \frac{X_n}{X_{n-1}}, \quad n = 1, 2, \dots$$

Then, it might be reasonable to assume that $Y_1, Y_2, ...,$ are independent and identically distributed.

Then it follows that:

$$X_n = X_0 Y_1 Y_2 \cdots Y_n$$

Or equivalently, since stock prices typically are positive numbers:

$$\log(X_n) = \log(X_0) + \sum_{i=1}^n \log(Y_i)$$

Geometric Brownian Motion (cont.)

By the central limit theorem $log(X_n)$, being a sum of independent identically distributed variables, will be approximately normally distributed.

Hence, X_n can be approximated by a geometric Brownian motion.