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The non-homogeneous Poisson Process

Definition

A counting process {N(t) : t ≥ 0} is said to be a non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0, if:

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments.

(iii) P(N(t + h)− N(t) = 1) = λ(t)h + o(h)

(iv) P(N(t + h)− N(t) ≥ 2) = o(h)

We also introduce the mean value function m(t) defined by:

m(t) =

∫ t

0
λ(u)du
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The non-homogeneous Poisson Process (cont.)

Lemma (5.3)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process with intensity
function λ(t), then:

P(N(t) = 0) = e−m(t), t ≥ 0.

Corollary

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process with intensity
function λ(t), and let T1 be the time of the first event. Then we have:

P(T1 > t) = P(N(t) = 0) = e−m(t), t ≥ 0.

Moreover, the density of T1 is given by:

fT1 (t) = λ(t)e−m(t), t ≥ 0.
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The non-homogeneous Poisson Process (cont.)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process, and s > 0, we
define:

Ns(t) = N(s + t)− N(s).

Lemma (5.4)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process with intensity
function λ(t), then {Ns(t) : t ≥ 0} is a non-homogeneous Poisson process
with intensity function λs(t) = λ(s + t), t ≥ 0.

NOTE:

Ns(t − s) = N(t − s + s)− N(s) = N(t)− N(s)
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The non-homogeneous Poisson Process (cont.)

The mean value function of {Ns(t) : t ≥ 0} is given by:

ms(t) =

∫ t

0
λs(u)du

=

∫ t

0
λ(s + u)du Subst.: v = s + u, dv = du.

=

∫ s+t

s
λ(v)dv

= m(s + t)−m(s)

NOTE:

ms(t − s) = m(t − s + s)−m(s) = m(t)−m(s) =

∫ t

s
λ(u)du
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The non-homogeneous Poisson Process (cont.)

Theorem (5.3)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process with intensity
function λ(t), then:

P(N(t) = n) =
(m(t))n

n!
e−m(t), t ≥ 0, n = 0,1,2, . . .

PROOF: Induction with respect to n. By Lemma 5.3 the theorem holds for
n = 0.

We then assume that we have shown that:

P(N(t) = n) =
(m(t))n

n!
e−m(t), t ≥ 0,

and consider the probability P(N(t) = n + 1).
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The non-homogeneous Poisson Process (cont.)

In order to calculate this probability we condition on T1, noting that if s > t ,
then obviously P(N(t) = n + 1|T1 = s) = 0.

P(N(t) = n + 1) =

∫ t

0
P(N(t) = n + 1|T1 = s) fT1 (s)ds

=

∫ t

0
P(N(t) = n + 1|T1 = s)λ(s)e−m(s)ds

=

∫ t

0
P(N(t)− N(s) = n|T1 = s)λ(s)e−m(s)ds

=

∫ t

0
P(N(t)− N(s) = n)λ(s)e−m(s)ds (Indep. incr.)

=

∫ t

0
P(Ns(t − s) = n)λ(s)e−m(s)ds
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The non-homogeneous Poisson Process (cont.)

By Lemma 5.4 and the induction hypothesis it follows that:

P(Ns(t − s) = n) =
(ms(t − s))n

n!
e−ms(t−s)

=
(m(t)−m(s)))n

n!
e−(m(t)−m(s))

By inserting this into the integral we get:

P(N(t) = n + 1) =

∫ t

0
P(Ns(t − s) = n)λ(s)e−m(s)ds

=

∫ t

0

(m(t)−m(s)))n

n!
e−(m(t)−m(s)) λ(s)e−m(s)ds

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 5.4.1 8 / 36



The non-homogeneous Poisson Process (cont.)

Simplifying the integrand yields:

P(N(t) = n + 1) =

∫ t

0

(m(t)−m(s)))n

n!
e−(m(t)−m(s)) λ(s)e−m(s)ds

=
e−m(t)

n!

∫ t

0
(m(t)−m(s))nλ(s)ds

Substitute: u = m(t)−m(s) =
∫ t

s λ(v)dv and du = −λ(s)ds, and get:

P(N(t) = n + 1) = −e−m(t)

n!

∫ 0

m(t)
undu =

e−m(t)

n!

∫ m(t)

0
undu

=
e−m(t)

n!
· (m(t))n+1

n + 1
=

(m(t))n+1

(n + 1)!
e−m(t)

which completes the induction proof �
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The non-homogeneous Poisson Process (cont.)

REMARK
We recall that {Ns(t) : t ≥ 0} is a non-homogeneous Poisson Process with
mean function:

ms(t) = m(s + t)−m(s) =

∫ s+t

0
λ(u)du −

∫ s

0
λ(u)du =

∫ s+t

s
λ(u)du

By Theorem 5.3 this implies that Ns(t) = N(s + t)− N(s) ∼ Po(ms(t)), and:

E [Ns(t)] = ms(t) =

∫ s+t

s
λ(u)du.

Moreover, Ns(t − s) = N(t)− N(s) ∼ Po(ms(t − s)) = Po(m(t)−m(s)), and:

E [Ns(t − s)] = ms(t − s) = m(t)−m(s) =

∫ t

s
λ(u)du
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Example 5.24
Hot dog stand, opens at 08 A.M., closes at 05 P.M.

08 A.M. — 11 A.M.: Steadily increasing intensity from 5 to 20

11 A.M. — 01 P.M.: Constant intensity of 20

01 P.M. — 05 P.M.: Steadily decreasing intensity from 20 to 12

By letting t = 0 represent 8 a.m. the customer arrival intensity function,
denoted λ(t), can be expressed as:

λ(t) =


5 + 5t 0 ≤ t ≤ 3
20 3 ≤ t ≤ 5
20− 2(t − 5) 5 ≤ t ≤ 9

Hence, we have:

λ(0) = 5 + 5 · 0 = 5, λ(3) = 5 + 5 · 3 = 20,

λ(5) = 20− 2 · (5− 5) = 20, λ(9) = 20− 2 · (9− 5) = 12.
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Example 5.24 (cont.)

20

12

5

8am 11am 1pm 5pm

Figure: Customer arrival intensity function
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Example 5.24 (cont.)

For 0 ≤ s ≤ t we let:

N(t) = Number of arrivals at the hot dog stand in [0, t ]

N(s, t) = Number of arrivals at the hot dog stand in [s, t ] = N(t)− N(s).

By Theorem 5.3 N(t) ∼ Po(m(t)) and N(s, t) ∼ Po(m(t)−m(s)), where:

m(t) =

∫ t

0
λ(u)du, 0 ≤ t

m(t)−m(s) =

∫ t

s
λ(u)du, 0 ≤ s ≤ t
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Example 5.24 (cont.)

Ex. A. What is the expected number of arrivals between 8:30 A.M. and 9:30
A.M? What is the probability that no customers arrive in this period?

SOLUTION: 8:30 A.M. and 9:30 A.M. correspond to respectively s = 1
2 and

t = 3
2 . From this we get that:

E [N( 1
2 ,

3
2 )] = m( 3

2 )−m( 1
2 ) =

∫ 3/2

1/2
λ(u)du =

∫ 3/2

1/2
(5 + 5u)du

=
∣∣∣(3/2)
(1/2) (5t + 5

2 t2)

= ( 15
2 + 45

8 )− ( 5
2 + 5

8 ) = 105
8 −

25
8 = 10.

Moreover, we have:

P(N( 1
2 ,

3
2 ) = 0) = e−(m(t)−m(s)) = e−10 ≈ 0.000045
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Example 5.24 (cont.)

Ex. B. What is the expected number of arrivals between 1:00 P.M. and 3:00
P.M? What is the probability that at least two customers arrive in this period?

SOLUTION: 1:00 P.M. and 3:00 P.M correspond to respectively s = 5 and
t = 7. From this we get that:

E [N(5,7)] = m(7)−m(5) =

∫ 7

5
λ(u)du =

∫ 7

5
(20− 2(u − 5))du

=

∫ 7

5
(20− 2u + 10)du =

∣∣7
5 (20t − t2 + 10t))

= (140− 49 + 70)− (100− 25 + 50)

= 161− 125 = 36.
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Example 5.24 (cont.)

Moreover, we have:

P(N(5,7) ≥ 2) = 1− P(N(5,7) ≤ 1)

= 1− [P(N(5,7) = 0) + P(N(5,7) = 1)]

= 1− [e−(m(7)−m(5)) +
(m(7)−m(5))1

1!
e−(m(7)−m(5))]

= 1− [1 +
36
1

] · e−36

= 1− 37 · e−36 ≈ 1
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Time sampling a homogeneous Poisson Process

We recall the following result (slightly modified):

Theorem (5.2)

We consider a Poisson process {N(t) : t ≥ 0}, and assume that
N(t)− N(s) = n, where s < t . Then the arrival times S1 < S2 < · · · < Sn in
(s, t ] has the following joint density:

f (s1, s2, . . . , sn|N(t)− N(s) = n) =
n!

(t − s)n , s < s1 < s2 < · · · < sn < t .

The preceding result is often stated as follows:

Corollary (5.2)

Given that n events have occurred in the interval (s, t ], the times at which the
events occur, considered as unordered random variables, are distributed
independently and uniformly in the interval (s, t ].
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Time sampling a Poisson Process (cont.)
Let {N(t) : t ≥ 0} be a homogeneous Poisson Process with rate λ where
each event can be classified as either a Type 1 event or a Type 2 event.

If an event occurs at time t , then the probability that it is of type 1 is p1(t), and
the probability that it is of type 2 is p2(t) = 1− p1(t).

We assume that the event type at time t is independent of the history of the
Poisson process up to time t , and introduce:

Ni (t) = The number of events of type i in [0, t ] t ≥ 0, i = 1,2.

NOTE: N(t) = N1(t) + N2(t). Moreover, it can be shown that for s < t :

(Ni (t)− Ni (s)|N(t)− N(s) = n) ∼ Bin(n, p̄i (s, t)), i = 1,2,

where:

p̄i (s, t) =
1

t − s

∫ t

s
pi (u)du, i = 1,2.
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Time sampling a Poisson Process (cont.)

In order to explain this, we recall that conditional on the event that
N(t)− N(s) = n, the n arrival times in the interval (s, t ] are independent and
uniformly distributed.

Given that the arrival time of an event is u, the probability that this event is of
type i is pi (u). Hence, the unconditional probability that the event is of type i
is:

P(Type i event) =

∫ t

s
pi (u)

1
t − s

du = p̄i (s, t).

Since all event types are classified independent of the Poisson process, we
have a series of n binomial experiments with the same probability of success.

Hence, we have:

(Ni (t)− Ni (s)|N(t)− N(s) = n) ∼ Bin(n, p̄i (s, t)), i = 1,2 �
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Time sampling a Poisson Process (cont.)

We will now show that:

{Ni (t) : t ≥ 0} is a non-homogeneous Poisson Process with intensity
function λpi (t), i = 1,2.

{N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent of each other.

In order to show the first claim, we verify that {Ni (t) : t ≥ 0} satisfies the
axioms.

The proof of the second claim is similar to the corresponding result for the
case where the probabilities p1(t) and p2(t) are constant.
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Time sampling a Poisson Process (cont.)

PROOF: Since N(0) = 0, it follows that Ni (0) = 0, i = 1,2 as well.

Let (s1, t1] and (s2, t2] be disjoint. Since {N(t) : t ≥ 0} has independent
increments, we have for i = 1,2:

P(Ni (t2)− Ni (s2) = k |Ni (t1)− Ni (s1) = `)

=
∞∑

n=k

P(Ni (t2)− Ni (s2) = k |N(t2)− N(s2) = n,Ni (t1)− Ni (s1) = `)

· P(N(t2)− N(s2) = n|Ni (t1)− Ni (s1) = `)

=
∞∑

n=k

P(Ni (t2)− Ni (s2) = k |N(t2)− N(s2) = n) · P(N(t2)− N(s2) = n)

= P(Ni (t2)− Ni (s2) = k)

Hence, {Ni (t) : t ≥ 0} have independent increments, i = 1,2.
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Time sampling a Poisson Process (cont.)
Moreover, we have:

P(N1(t + h)− N1(t) = 1)

= P(N1(t + h)− N1(t) = 1|N(t + h)− N(t) = 1) · P(N(t + h)− N(t) = 1)

+ P(N1(t + h)− N1(t) = 1|N(t + h)− N(t) ≥ 2) · P(N(t + h)− N(t) ≥ 2)

= p1(t) · (λh + o(h)) + o(h)

= λp1(t)h + o(h)

and:

P(N1(t + h)− N1(t) ≥ 2) ≤ P(N(t + h)− N(t) ≥ 2) = o(h).

By similar arguments we get that:

P(N2(t + h)− N2(t) = 1) = λp2(t)h + o(h)

P(N2(t + h)− N2(t) ≥ 2) = o(h).
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Time sampling a Poisson Process (cont.)

Before we prove that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent, we
note that, as a consequence of the first part of the proof, we have for s < t
that:

P(Ni (t)− Ni (s) = k) =
(mi (t)−mi (s))k

k !
e−(mi (t)−mi (s)), k = 0,1,2, . . .

where:

mi (t)−mi (s) =

∫ t

0
λpi (u)du −

∫ s

0
λpi (u)du

=

∫ t

s
λpi (u)du = λ(t − s)

∫ t

s
pi (u)

1
t − s

du = λp̄i (s, t)(t − s).

Note also that since p1(t) + p2(t) = 1, we also have p̄1(s, t) + p̄2(s, t) = 1.
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Time sampling a Poisson Process (cont.)

To show that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent we let s < t ,
and consider:

P[(N1(t)− N1(s) = k) ∩ (N2(t)− N2(s) = `)]

= P[(N1(t)− N1(s) = k) ∩ (N(t)− N(s) = k + `)]

=

(
k + `

k

)
p̄1(s, t)k · p̄2(s, t)` · [λ(t − s)]k+`

(k + `)!
e−λ(t−s)

=
(λp̄1(s, t)(t − s))k

k !
e−λp̄1(s,t)(t−s) · (λp̄2(s, t)(t − s))`

`!
e−λp̄2(s,t)(t−s)

= P(N1(t)− N1(s) = k) · P(N2(t)− N2(s) = `)

Hence, we conclude that (N1(t)−N1(s)) and (N2(t)−N2(s)) are independent
for all s < t , implying that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent.
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Example 5.25 – An M/G/∞ queue

Clients arrive at a server according to homogeneous Poisson process
{N(t) : t ≥ 0} with rate λ:

N(t) = Number of clients arriving in [0, t ], t ≥ 0.

We then introduce:

Xn = The amount time it takes to serve the nth client, n = 1,2, . . .

We assume that X1,X2, . . . are independent and identically distributed with
cumulative distribution function G, and also that X1,X2, . . . are independent of
{N(t) : t ≥ 0}.
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Example 5.25 (cont.)

An M/G/c queue is a stochastic process where:

Clients arrive according to a Markovian counting process, (i.e. a Poisson
process), which explains the M in the notation

The amount time it takes to serve a client has cdf G

The server has a capacity of c, i.e., c clients can be served at the same
time.

In this case X1,X2, . . . are independent and identically distributed, which is
justified by assuming that the server has an infinite capacity, i.e., c =∞.
Thus, the time it takes to serve a client is not affected by the number of clients
presently being served.

So in this particular case we have an M/G/∞ queue.
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Example 5.25 (cont.)

We then assume that 0 ≤ s < t , and introduce:

D(s, t) = Number of clients departing in (s, t ].

In order to find the probability distribution of D(s, t) we start by arguing that:

(D(s, t)|N(t) = n) ∼ Bin(n, p̄(s, t)), t ≥ 0,

where:

p̄(s, t) =
1
t

∫ t

s
G(u)du.

In order to explain this, we recall that conditional on the event that N(t) = n,
the n arrival times in the interval [0, t ] are independent and uniformly
distributed.
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Example 5.25 (cont.)

Given that the arrival time of a client is u ∈ [0, t ] and denoting the service time
by X , the probability that this client departs in the interval (s, t ] is:

P(s < u + X ≤ t |u) =

{
G(t − u)−G(s − u) if u < s

G(t − u) if s ≤ u < t

Hence, the unconditional probability that the client departs in [s, t ] is:

P(s < u + X ≤ t) =
1
t
· [
∫ s

0
(G(t − u)−G(s − u))du +

∫ t

s
G(t − u)du]

=
1
t
· [
∫ t

0
G(t − u)du −

∫ s

0
G(s − u)du] (Subst.: v = t − u and v = s − u.)

=
1
t
· [
∫ t

0
G(v)dv −

∫ s

0
G(v)dv ] =

1
t

∫ t

s
G(v)dv = p̄(s, t)
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Example 5.25 (cont.)

Since X is independent of the Poisson process, we have a series of n
binomial experiments with the same probability of success.

Hence, we have (D(s, t)|N(t) = n) ∼ Bin(n, p̄(s, t)), �

In the following we let D(t) = D(0, t), and claim that {D(t) : t ≥ 0} is a
non-homogeneous Poisson process with intensity function:

λ(t) = λ ·G(t).

In order to show this, we must verify that the axioms (i), (ii), (iii) and (iv) of the
definition are satisfied. Axiom (i) states that D(0) = 0, which is obviously
satisfied.

In order to verify the other axioms we first find the unconditional probability
distribution of D(s, t).
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Example 5.25 (cont.)
The probability distribution of D(s, t) is obtained by conditioning on N(t):

P(D(s, t) = k) =
∞∑

n=k

P(D(s, t) = k |N(t) = n) · P(N(t) = n)

=
∞∑

n=k

(
n
k

)
[p̄(s, t)]k [1− p̄(s, t)]n−k · (λt)n

n!
e−λt

=
(p̄(s, t)λt)k

k !
e−p̄(s,t)λt

∞∑
n=k

((1− p̄(s, t))λt)n−k

(n − k)!
e−(1−p̄(s,t))λt

=
(p̄(s, t)λt)k

k !
e−p̄(s,t)λt

∞∑
j=0

((1− p̄(s, t))λt)j

j!
e−(1−p̄(s,t))λt

=
(p̄(s, t)λt)k

k !
e−p̄(s,t)λt , k = 0,1,2, . . .
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Example 5.25 (cont.)
Thus, we conclude that D(s, t) ∼ Po(p̄(s, t) · λt). By a similar argument it can
also be shown that if (s1, t1] and (s2, t2] are disjoint intervals, then D(s1, t1)
and D(s2, t2) are independent.

We recall that:

p̄(s, t) =
1
t

∫ t

s
G(u)du.

Hence, we get that:

p̄(s, t) · λt =

[
1
t

∫ t

s
G(u)du

]
· λt =

∫ t

s
λG(u)du.

From this we get that:

D(s, t) ∼ Po(

∫ t

s
λG(u)du)
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Example 5.25 (cont.)
By Taylor expansion we have for a given function f and h > 0 that:

f (h) = f (0) + f ′(0)h + o(h)

Hence, we get:

f1(h) =

∫ t+h

t
λG(u)du = λG(t)h + o(h)

f2(h) = e−ah = 1− ah + o(h)

Hence, we get:

P(D(t , t + h) = 0) = e−(λG(t)h+o(h)) = 1− λG(t)h + o(h)

P(D(t , t + h) = 1) =
λG(t)h + o(h)

1!
e−(λG(t)h+o(h)) = λG(t)h + o(h)

P(D(t , t + h) ≥ 2) = 1− [1− λG(t)h + o(h) + λG(t)h + o(h)] = o(h)
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Example 5.25 (cont.)

By combining all the above results, it follows that {D(t) : t ≥ 0} is a
non-homogeneous Poisson process with intensity function:

λ(t) = λ ·G(t).

NOTE:

lim
t→∞

λ(t) = λ · lim
t→∞

G(t) = λ.

Hence, when t is large, the intensity function of the departure process
{D(t) : t ≥ 0} is approximately equal to the arrival rate λ.
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The non-homogeneous Poisson process (cont.)

Let {N(t) : t ≥ 0} be a non-homogeneous Poisson process with intensity
function λ(t), and mean value function m(t). Furthermore, let:

Sn = The time of the nth event, n = 1,2, . . .

We have shown that the density of S1 = T1 is given by:

fS1 (t) = λ(t)e−m(t), t ≥ 0.

We shall now derive the density of Sn, n = 1,2, . . ..

In order to do so, it is convenient once again to introduce:

N(s, t) = N(t)− N(s), 0 ≤ s < t
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The non-homogeneous Poisson process (cont.)
Let h > 0. We then have:

P(t < Sn ≤ t + h) = P(N(t) = n − 1 ∩ N(t , t + h) = 1) + o(h)

= P(N(t) = n − 1) · P(N(t , t + h) = 1) + o(h)

=
[m(t)]n−1

(n − 1)!
e−m(t) · [λ(t)h + o(h)] + o(h)

=
[m(t)]n−1

(n − 1)!
λ(t)e−m(t)h + o(h)

Hence, the density of Sn becomes:

fSn (t) = lim
h→0

P(t < Sn ≤ t + h)

h
= lim

h→0

[
[m(t)]n−1

(n − 1)!
λ(t)e−m(t) +

o(h)

h

]

=
[m(t)]n−1

(n − 1)!
λ(t)e−m(t).

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 5.4.1 35 / 36



The non-homogeneous Poisson process (cont.)

NOTE 1. If n = 1, we as before get:

fS1 (t) =
[m(t)]1−1

(1− 1)!
λ(t)e−m(t) = λ(t)e−m(t).

NOTE 2. If λ(t) = λ, then m(t) =
∫ t

0 λdu = λt , and we get:

fSn (t) =
[m(t)]n−1

(n − 1)!
λ(t)e−m(t)

=
[λt ]n−1

(n − 1)!
λe−λt =

λn

Γ(n)
tn−1e−λt

Thus, in this case Sn ∼ Gamma(n, λ) as before.
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