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The non-homogeneous Poisson Process

Definition

A counting process {N(t) : t ≥ 0} is said to be a non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0, if:

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments.

(iii) P(N(t + h)− N(t) = 1) = λ(t)h + o(h)

(iv) P(N(t + h)− N(t) ≥ 2) = o(h)

We also introduce the mean value function m(t) defined by:

m(t) =

∫ t

0
λ(u)du
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The non-homogeneous Poisson Process (cont.)

Theorem (5.3)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process with intensity
function λ(t), then:

P(N(t) = n) =
(m(t))n

n!
e−m(t), t ≥ 0, n = 0,1,2, . . .
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The non-homogeneous Poisson process (cont.)

Let {N(t) : t ≥ 0} be a non-homogeneous Poisson process with intensity
function λ(t), and mean value function m(t). Furthermore, let:

Sn = The time of the nth event, n = 1,2, . . .

The density of S1 = T1 is given by:

fS1 (t) = λ(t)e−m(t), t ≥ 0.

More generally the density of Sn, n = 1,2, . . . is given by:

fSn (t) =
[m(t)]n−1

(n − 1)!
λ(t)e−m(t).
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The non-homogeneous Poisson process (cont.)

NOTE 1. If n = 1, we as before get:

fS1 (t) =
[m(t)]1−1

(1− 1)!
λ(t)e−m(t) = λ(t)e−m(t).

NOTE 2. If λ(t) = λ, then m(t) =
∫ t

0 λdu = λt , and we get:

fSn (t) =
[m(t)]n−1

(n − 1)!
λ(t)e−m(t)

=
[λt ]n−1

(n − 1)!
λe−λt =

λn

Γ(n)
tn−1e−λt

Thus, in this case Sn ∼ Gamma(n, λ) as before.
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Time sampling a Poisson Process

Let {N(t) : t ≥ 0} be a homogeneous Poisson Process with rate λ where
each event can be classified as either a Type 1 event or a Type 2 event.

If an event occurs at time t , then the probability that it is of type 1 is p1(t), and
the probability that it is of type 2 is p2(t) = 1− p1(t).

We assume that the event type at time t is independent of the history of the
Poisson process up to time t , and introduce:

Ni (t) = The number of events of type i in [0, t ] t ≥ 0, i = 1,2.

{Ni (t) : t ≥ 0} is a non-homogeneous Poisson Process with intensity
function λpi (t), i = 1,2.

{N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent of each other.
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Compound Poisson Process

Let {N(t) : t ≥ 0} be a Poisson process, and let Y1,Y2, . . . be a sequence of
independent and identically distributed variables, and independent of
{N(t) : t ≥ 0}.

We then define a new stochastic process {X (t) : t ≥ 0} such that:

X (t) =

N(t)∑
i=1

Yi , t ≥ 0.

The process {X (t) : t ≥ 0} is said to be a compound Poisson process.

NOTE: If P(Yi = 1) = 1, i = 1,2, . . ., then obviously X (t) = N(t). Thus, a
(regular) Poisson process is a special case of a compound Poisson process.
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Compound Poisson Process (cont.)
EXAMPLE 1. An insurance company receives claims from its clients at
random points of time. We let:

N(t) = The number of claims in [0, t ], t ≥ 0

and assume that {N(t) : t ≥ 0} is a Poisson process with rate λ. Moreover,
we let:

Yi = The size in NOK of the i th claim, i = 1,2, . . . ,

and assume that Y1,Y2, . . . are independent and identically distributed
variables and independent of {N(t) : t ≥ 0}.

We then introduce:

X (t) =

N(t)∑
i=1

Yi = The sum of claims in [0, t ], t ≥ 0.

Then {X (t) : t ≥ 0} is a compound Poisson process.
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Compound Poisson Process (cont.)

Let E [Yi ] = µ and E [Y 2
i ] = ν, i = 1,2, . . .. Thus, Var[Yi ] = ν − µ2.

The expectation and variance of X (t), calculated by conditioning on N(t) is:

E [X (t)] = E [E [
n∑

i=1

Yi |N(t) = n]] = λt · E [Yi ]

Var[X (t)] = Var[E [
n∑

i=1

Yi |N(t) = n]] + E [Var[
n∑

i=1

Yi |N(t) = n]]

= = λt · E [Y 2
i ]
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Compound Poisson Process (cont.)

As before, we let {N(t) : t ≥ 0} be a homogeneous Poisson process with rate
λ, and let Y1,Y2, . . . be a sequence of independent and identically distributed
variables, and independent of {N(t) : t ≥ 0}.

Finally, let {X (t) : t ≥ 0} be the resulting compound Poisson process. That is:

X (t) =

N(t)∑
i=1

Yi , t ≥ 0.

We now consider the special case where:

P(Yi = yj ) = pj , j ∈ Y,

where the set Y is finite or countably infinite, and
∑

j∈Y pj = 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 5.4 Overview 10 / 16



Compound Poisson Process (cont.)

We then let:

Nj (t) = The number of events in [0, t ] where Yi = yj , j ∈ Y.

Then {Nj (t) : t ≥ 0} is a homogeneous Poisson process with rate λpj , j ∈ Y.

Moreover, the processes are independent of each other.

Finally, we have:

X (t) =
∑
j∈Y

yjNj (t).
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Compound Poisson Process (cont.)

If Z ∼ Po(µ), it can be shown that Z ≈ N(µ, µ) provided that the expected
value, µ is large.

By using the above representation, it follows that when t is large, we have:

X (t) =
∑
j∈Y

yjNj (t) ≈ N(λtE [Yi ], λtE [Y 2
i ])
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Sums of compound Poisson Processes
Let {Xi (t) : t ≥ 0} be a compound Poisson process with rate λi , and where
the random variables associated with the events have a cumulative
distribution function Gi , i = 1, . . . ,n.

We assume that the processes {X1(t) : t ≥ 0}, . . . , {Xn(t) : t ≥ 0} are
independent, and let:

X (t) =
n∑

i=1

Xi (t), t ≥ 0.

Then {X (t) : t ≥ 0} is also a compound Poisson process with rate:

λ =
n∑

i=1

λi

and where the random variables associated with the events have a
cumulative distribution function:

G(y) =
n∑

i=1

λi

λ
Gi (y).
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Remaining lectures - Chapter 6

Lecture 1. (Week 14)

Chapter 6.2 Continuous-Time Markov Chains
Chapter 6.3 Birth and Death Processes

Lecture 2. (Week 16)

Chapter 6.4 The Transition Probability Function Pij (t)

Lecture 3. (Week 17)

Chapter 6.5 Limiting Probabilities
Chapter 6.8 Uniformization
Chapter 6.9 Computing the Transition Probabilities
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Remaining lectures - Chapter 7

Lecture 4. (Week 18)

Chapter 7.1 Renewal Theory and Its Applications
Chapter 7.2 Distribution of N(t)
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Remaining lectures - Chapter 10

Lecture 5. (Week 19)

Chapter 10.1 Brownian Motion
Chapter 10.2 Hitting Times, Maximum Variable, and the Gambler’s
Ruin Problem
Chapter 10.3 Variations on Brownian Motion

EXAM: (Week 22) May 27, 14:30 – June 3, 14:30
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