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The non-homogeneous Poisson Process

Definition
A counting process {N(t) : t > 0} is said to be a non-homogeneous Poisson
process with intensity function \(t), t > 0, if:
(i)  N@O)=0
(i) {N(t),t > 0} has independent increments.
(i) P(N(t+ h) — N(t) = 1) = A(t)h + o(h)
(iv)  P(N(t+h)— N(t) > 2) = o(h)

We also introduce the mean value function m(t) defined by:

m(t) = /Ot)\(u)du
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The non-homogeneous Poisson Process (cont.)

Theorem (5.3)

function X(t), then:

PIN(t) = ) = T

m(6))" o—m(n

If{N(t) : t > 0} is a non-homogeneous Poisson process with intensity
n!

i

t>0,

n=0,1,2,...
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The non-homogeneous Poisson process (cont.)

Let {N(t) : t > 0} be a non-homogeneous Poisson process with intensity
function A(t), and mean value function m(t). Furthermore, let:

S, = The time of the nthevent, n=1,2,...

The density of S; = Ty is given by:
fs, (1) = M(t)e™™D, t>0.

More generally the density of S,, n=1,2,... is given by:

[m(t)]"

=T A(t)e~™0.

fs, (1) =
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The non-homogeneous Poisson process (cont.)

NOTE 1. If n =1, we as before get:

1-1
fs, (1) = %)\(t)e—m(t) = )\(t)e_m(t).

NOTE 2. If A(f) = A, then m(t) = [ A\du = At, and we get:

5.0 = PO\ (e

 (n—=1)!
RN LY ATt ot
"0 Trm e

Thus, in this case S, ~ Gamma(n, \) as before.
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Time sampling a Poisson Process

Let {N(t) : t > 0} be a homogeneous Poisson Process with rate A where
each event can be classified as either a Type 1 event or a Type 2 event.

If an event occurs at time £, then the probability that it is of type 1 is p(t), and
the probability that it is of type 2 is po(t) = 1 — p1(t).

We assume that the event type at time t is independent of the history of the
Poisson process up to time ¢, and introduce:

N;i(t) = The number of events of type /in [0,] t>0, i=1,2.
@ {N(t) : t > 0} is a non-homogeneous Poisson Process with intensity

function A\p;(t), i =1,2.
@ {Ny(t):t>0}and {Ny(t): t > 0} are independent of each other.
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Compound Poisson Process

Let {N(t) : t > 0} be a Poisson process, and let Y;, Y, ... be a sequence of
independent and identically distributed variables, and independent of
{N(t): t > 0}.

We then define a new stochastic process {X(t) : t > 0} such that:

®
X(t)y=)_ Y, t=0.
i=1

The process {X(t) : t > 0} is said to be a compound Poisson process.

NOTE: If P(Y;=1)=1,i=1,2,..., then obviously X(t) = N(t). Thus, a
(regular) Poisson process is a special case of a compound Poisson process.
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Compound Poisson Process (cont.)

EXAMPLE 1. An insurance company receives claims from its clients at
random points of time. We let:

N(t) = The number of claims in [0,t], t>0

and assume that {N(f) : t > 0} is a Poisson process with rate A\. Moreover,
we let:

Y; = The size in NOK of the ith claim, i=1,2,...,
and assume that Y, Yo, ... are independent and identically distributed
variables and independent of {N(t) : t > 0}.

We then introduce:
N(D)
X(t)=>"Y;=The sumof claims in [0, ], t>0.
i=1
Then {X(t) : t > 0} is a compound Poisson process.
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Compound Poisson Process (cont.)

Let E[Y]] = pand E[Y?] =v,i=1,2,.... Thus, Var[Y]] = v — p2.

The expectation and variance of X(t), calculated by conditioning on N(f) is:

E[X(t)] = EIE[Y_ YiIN(t) = n]] = At- E[Y]

i=1

Var[X(1)] = Var[E[>_ YiIN(t) = n]] + E[Var[>_ YiIN(t) = 1]

i=1 i=1

== M- E[Y/Z]
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Compound Poisson Process (cont.)

As before, we let {N(t) : t > 0} be a homogeneous Poisson process with rate
A, andlet Yy, Yo, ... be a sequence of independent and identically distributed
variables, and independent of {N(t) : t > 0}.

Finally, let {X(¢) : t > 0} be the resulting compound Poisson process. That is:

We now consider the special case where:

where the set ) is finite or countably infinite, and Zjey pj=1.
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Compound Poisson Process (cont.)

We then let:

N;(t) = The number of events in [0, f] where Y; = y;, je .

Then {N;(t) : t > 0} is a homogeneous Poisson process with rate Ap;, j € V.
Moreover, the processes are independent of each other.

Finally, we have:

X(t) =" yNi().

JEY
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Compound Poisson Process (cont.)

If Z ~ Po(u), it can be shown that Z ~ N(pu, 1) provided that the expected
value, p is large.

By using the above representation, it follows that when t is large, we have:

= > _yN(t) = NME[Y], ME[Y?])
jey
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Sums of compound Poisson Processes
Let {X(t) : t > 0} be a compound Poisson process with rate A;, and where

the random variables associated with the events have a cumulative
distribution function G;, i =1,...,n.

We assume that the processes {Xi(t) : t > 0}, ..., {Xp(t) : t > 0} are
independent, and let:

n
X(t)=>_X(t). t=o.
i=1
Then {X(t) : t > 0} is also a compound Poisson process with rate:
n
A=)
i=1

and where the random variables associated with the events have a
cumulative distribution function:

6) =Y VG
i=1
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Remaining lectures - Chapter 6

@ Lecture 1. (Week 14)

e Chapter 6.2 Continuous-Time Markov Chains
o Chapter 6.3 Birth and Death Processes

@ Lecture 2. (Week 16)
e Chapter 6.4 The Transition Probability Function Pj(t)

@ Lecture 3. (Week 17)

e Chapter 6.5 Limiting Probabilities
o Chapter 6.8 Uniformization
o Chapter 6.9 Computing the Transition Probabilities
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Remaining lectures - Chapter 7

@ Lecture 4. (Week 18)

o Chapter 7.1 Renewal Theory and Its Applications
o Chapter 7.2 Distribution of N(t)
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Remaining lectures - Chapter 10

@ Lecture 5. (Week 19)

o Chapter 10.1 Brownian Motion

e Chapter 10.2 Hitting Times, Maximum Variable, and the Gambler’s
Ruin Problem

@ Chapter 10.3 Variations on Brownian Motion

EXAM: (Week 22) May 27, 14:30 — June 3, 14:30
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