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Discrete-time Markov Chains

We recall from Chapter 4:

Let {X, : n > 0} be a discrete-time stochastic process with discrete state
space .

The process is a Markov chain if forn=1,2,... we have:
P(Xni1 = j|IXn=1,Xy = x4,0 < u<n)

:P(Xn+1 :j|Xn:I)7 i,j,XUEX

If we also have that P(X,.1 = j|X, = i) is independent of n, then the Markov
chain is said to have stationary (or homogeneous) transition probabilities.
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6.2 Continuous-Time Markov Chains

Let {X(t) : t > 0} be a continuous-time stochastic process with discrete state
space X.

The process is a Markov chain if for s, t > 0 we have:
P(X(t+s)=jX(s) =i, X(u) =x(u),0<u<s)
= P(X(t+5) = IX(s) = i), ij.x(u)eX
If we also have that P(X(t + s) = j|X(s) = i) is independent of s, then the

Markov chain is said to have stationary (or homogeneous) transition
probabilities.
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6.2 Continuous-Time Markov Chains (cont.)

EXAMPLE: Let {N(t) : t > 0} be a homogeneous Poisson process with rate
A. This process has independent and stationary increments.

Hence, for j > i and s, t > 0 we have:
P(N(t+s) =jIN(s) =i,N(u) = n(u),0 <u<s)

= P(N(t+s) = jIN(s) = i) = P(N(t + s) — N(s) = j — i)

_ (At~ M

G- ’

For j < i the corresponding probabilities are zero.

independent of s

Hence, {N(t) : t > 0} is a Markov chain.
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6.2 Continuous-Time Markov Chains (cont.)

Assume that X(0) = /, and define:
Ti=inf{u>0:X(u) #i}
Thus, T; is the point of time when the process leaves state i.
We then let s,t > 0, and consider:
P(T; > s+ t|T; > s)

=PX(u)y=i0<u<s+tX(u)=i0<u<s)
=P(X(u)=i,s<u<s+tX(s)=1), bythe Markov property
= P(X(u)=1i,0<u<tX(0)=1i), bythe stationary property
=P(T; > 1).

This implies that T; is memoryless, and hence T; is exponentially distributed.
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6.2 Continuous-Time Markov Chains (cont.)

Assume more generally that X(r) = /, and define:
Ti=inf{lu>0:X(r+u)#i}
Thus, T; + r is the point of time when the process leaves state i.

We then let s,t > 0, and consider:

P(T; > s+ t|T; > s)
=PX(u)y=ir<u<r+s+tX(u)=i,r<u<r+s)
=PX(u)=ir+s<u<r+s+HX(r+s)=1i), byMarkov
=P(X(u)=ir<u<r+tX(r)=1i), Dby stationarity
=P(Ti >1).

This implies that T; is memoryless, and hence T; is exponentially distributed.
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6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:

A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

@ The times spent in the different states are independent random variables
(because of the Markov property).

@ The amount of time spent in state i € X' is exponentially distributed with
some mean v,.‘1 (because of the Markov property and stationarity).

@ When the process leaves state J, it enters state j with some transition
probability Q; where:

Qi=0, foralieXx

ZQ,-,-:L forallie X

jex
@ The transitions follow a discrete-time Markov chain.
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Example 6.1 — A Shoe Shine Shop

A Markov chain {X(t) : t > 0} with state space X = {0, 1,2} where:

@ State 0. No customer
@ State 1. Customer in chair 1 (clean and polish)

@ State 2. Customer in chair 2 (polish is buffed)

X(s) = 0: In this state customers arrive in accordance to a Poisson process
with rate \. The time spent in this state is To ~ exp()). Then the process
transits to state 1 with probability Qy1 = 1.

X(t) = 1: The time spent in this state is T1 ~ exp(u1). Then the process
transits to state 2 with probability Q> = 1.

X(u) = 2: The time spent in this state is T, ~ exp(uz2). Then the process
transits to state 0 with probability Qxp = 1, and then the process repeats the
same cycle.
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Example 6.1 (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov
chain is:

Q=] 00 00 1.0

1.0 0.0 0.0

0.0 1.0 0.0]

Thus, the built-in discrete time Markov chain is periodic with a period length
of 3.

NOTE: Even though the built-in discrete time Markov chain is periodic, the

continuous-time Markov chain {X(t) : t > 0} will have a well-defined limiting
distribution.
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Example: A multistate component

A Markov chain {X(t) : t > 0} with state space X = {0, 1,2} where:
@ State 0. The component is failed

@ State 1. The component is functioning but not perfectly

@ State 2. The component is functioning perfectly

X(8) = 2: The time spent in this state is T, ~ exp(u2). Then the process
transits to state 1 with probability Q.1 = 0.5 or to state 0 with probability
on =0.5.

X(t) = 1: The time spent in this state is T1 ~ exp(r1). Then the process
transits to state 0 with probability Qo = 1.

X(u) = 0: The time spent in this state is Top ~ exp(uo). Then the component
is repaired and the process transits to state 2 with probability Qy> = 1, and
then the process repeats the same cycle.
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Example: A multistate component (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov
chain is:

Q=] 10 00 0.0

05 05 00

0.0 0.0 1.0]

In this case the built-in discrete time Markov chain is aperiodic, and the
limiting distribution, = = (mg, 71, m2), found by solving:

TQ=m

w1 =1
is given by:
T = 0.47 ™ = 0.27 o = 0.4
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