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Discrete-time Markov Chains

We recall from Chapter 4:

Let {Xn : n ≥ 0} be a discrete-time stochastic process with discrete state
space X .

The process is a Markov chain if for n = 1,2, . . . we have:

P(Xn+1 = j |Xn = i ,Xu = xu,0 ≤ u < n)

= P(Xn+1 = j |Xn = i), i , j , xu ∈ X

If we also have that P(Xn+1 = j |Xn = i) is independent of n, then the Markov
chain is said to have stationary (or homogeneous) transition probabilities.
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6.2 Continuous-Time Markov Chains

Let {X (t) : t ≥ 0} be a continuous-time stochastic process with discrete state
space X .

The process is a Markov chain if for s, t > 0 we have:

P(X (t + s) = j |X (s) = i , X (u) = x(u), 0 ≤ u < s)

= P(X (t + s) = j |X (s) = i), i , j , x(u) ∈ X

If we also have that P(X (t + s) = j |X (s) = i) is independent of s, then the
Markov chain is said to have stationary (or homogeneous) transition
probabilities.
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6.2 Continuous-Time Markov Chains (cont.)

EXAMPLE: Let {N(t) : t ≥ 0} be a homogeneous Poisson process with rate
λ. This process has independent and stationary increments.

Hence, for j ≥ i and s, t > 0 we have:

P(N(t + s) = j |N(s) = i ,N(u) = n(u),0 ≤ u < s)

= P(N(t + s) = j |N(s) = i) = P(N(t + s)− N(s) = j − i)

=
(λt)j−i

(j − i)!
e−λt , independent of s

For j < i the corresponding probabilities are zero.

Hence, {N(t) : t ≥ 0} is a Markov chain.
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6.2 Continuous-Time Markov Chains (cont.)

Assume that X (0) = i , and define:

Ti = inf{u ≥ 0 : X (u) 6= i}

Thus, Ti is the point of time when the process leaves state i .

We then let s, t > 0, and consider:

P(Ti > s + t |Ti > s)

= P(X (u) = i ,0 ≤ u ≤ s + t |X (u) = i ,0 ≤ u ≤ s)

= P(X (u) = i , s ≤ u ≤ s + t |X (s) = i), by the Markov property

= P(X (u) = i ,0 ≤ u ≤ t |X (0) = i), by the stationary property

= P(Ti > t).

This implies that Ti is memoryless, and hence Ti is exponentially distributed.
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6.2 Continuous-Time Markov Chains (cont.)

Assume more generally that X (r) = i , and define:

Ti = inf{u ≥ 0 : X (r + u) 6= i}

Thus, Ti + r is the point of time when the process leaves state i .

We then let s, t > 0, and consider:

P(Ti > s + t |Ti > s)

= P(X (u) = i , r ≤ u ≤ r + s + t |X (u) = i , r ≤ u ≤ r + s)

= P(X (u) = i , r + s ≤ u ≤ r + s + t |X (r + s) = i), by Markov

= P(X (u) = i , r ≤ u ≤ r + t |X (r) = i), by stationarity

= P(Ti > t).

This implies that Ti is memoryless, and hence Ti is exponentially distributed.
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6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:
A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

The times spent in the different states are independent random variables
(because of the Markov property).

The amount of time spent in state i ∈ X is exponentially distributed with
some mean v−1

i (because of the Markov property and stationarity).

When the process leaves state i , it enters state j with some transition
probability Qij where:

Qii = 0, for all i ∈ X∑
j∈X

Qij = 1, for all i ∈ X

The transitions follow a discrete-time Markov chain.
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Example 6.1 – A Shoe Shine Shop

A Markov chain {X (t) : t ≥ 0} with state space X = {0,1,2} where:

State 0. No customer

State 1. Customer in chair 1 (clean and polish)

State 2. Customer in chair 2 (polish is buffed)

X (s) = 0: In this state customers arrive in accordance to a Poisson process
with rate λ. The time spent in this state is T0 ∼ exp(λ). Then the process
transits to state 1 with probability Q01 = 1.

X (t) = 1: The time spent in this state is T1 ∼ exp(µ1). Then the process
transits to state 2 with probability Q12 = 1.

X (u) = 2: The time spent in this state is T2 ∼ exp(µ2). Then the process
transits to state 0 with probability Q20 = 1, and then the process repeats the
same cycle.
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Example 6.1 (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov
chain is:

Q =

 0.0 1.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0


Thus, the built-in discrete time Markov chain is periodic with a period length
of 3.

NOTE: Even though the built-in discrete time Markov chain is periodic, the
continuous-time Markov chain {X (t) : t ≥ 0} will have a well-defined limiting
distribution.
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Example: A multistate component

A Markov chain {X (t) : t ≥ 0} with state space X = {0,1,2} where:

State 0. The component is failed

State 1. The component is functioning but not perfectly

State 2. The component is functioning perfectly

X (s) = 2: The time spent in this state is T2 ∼ exp(µ2). Then the process
transits to state 1 with probability Q21 = 0.5 or to state 0 with probability
Q20 = 0.5.

X (t) = 1: The time spent in this state is T1 ∼ exp(µ1). Then the process
transits to state 0 with probability Q10 = 1.

X (u) = 0: The time spent in this state is T0 ∼ exp(µ0). Then the component
is repaired and the process transits to state 2 with probability Q02 = 1, and
then the process repeats the same cycle.
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Example: A multistate component (cont.)
Thus, the transition probability matrix of the built-in discrete time Markov
chain is:

Q =

 0.0 0.0 1.0
1.0 0.0 0.0
0.5 0.5 0.0


In this case the built-in discrete time Markov chain is aperiodic, and the
limiting distribution, π = (π0, π1, π2), found by solving:

πQ = π

π1 = 1

is given by:

π0 = 0.4, π1 = 0.2, π2 = 0.4
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