STK2130 - Chapter 6.8

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

6.8 Uniformization

In this section we consider the special case where the Markov chain $\{X(t): t \geq 0\}$, with state space \mathcal{X}, has the property that:

$$
v_{i}=v, \quad \text { for all } i \in \mathcal{X},
$$

where v_{i} as usual denotes the transition rate in state $i, i \in \mathcal{X}$.
We can the introduce a new process $\{N(t): t \geq 0\}$, where:

$$
N(t)=\text { The number of transitions in }[0, t], \quad t \geq 0 .
$$

It is then easy to see that $\{N(t): t \geq 0\}$ is a homogeneous Poisson process with rate v.

6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning on $N(t)$:

$$
P_{i j}(t)=P(X(t)=j \mid X(0)=i)
$$

6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning on $N(t)$:

$$
\begin{aligned}
P_{i j}(t) & =P(X(t)=j \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) \cdot P(N(t)=n \mid X(0)=i)
\end{aligned}
$$

6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning on $N(t)$:

$$
\begin{aligned}
P_{i j}(t) & =P(X(t)=j \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) \cdot P(N(t)=n \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) \cdot P(N(t)=n)
\end{aligned}
$$

6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning on $N(t)$:

$$
\begin{aligned}
P_{i j}(t) & =P(X(t)=j \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) \cdot P(N(t)=n \mid X(0)=i) \\
& =\sum_{n=0}^{\infty} P(X(t)=j \mid X(0)=i, N(t)=n) \cdot P(N(t)=n) \\
& =\sum_{n=0}^{\infty} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}
\end{aligned}
$$

where $Q_{i j}^{n}$ denotes the n-step transition probability from state i to state j for the built-in discete-time Markov chain.

6.8 Uniformization (cont.)

Since $P(N(t)=n)$ typically is small if n is large, we have the following approximation:

$$
P_{i j}(t) \approx \sum_{n=0}^{N} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}
$$

provided that N is large.

6.8 Uniformization (cont.)

Since $P(N(t)=n)$ typically is small if n is large, we have the following approximation:

$$
P_{i j}(t) \approx \sum_{n=0}^{N} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}
$$

provided that N is large.
NOTE: If the built-in discete-time Markov chain is ergodic, i.e., irreducible, positive recurrent and aperiodic, we have, we have:

$$
\lim _{n \rightarrow \infty} Q_{i j}^{n}=\pi_{j}, \quad j \in \mathcal{X} .
$$

Hence, the approximation can be improved by using:

$$
P_{i j}(t) \approx \sum_{n=0}^{N} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}+\pi_{j} \cdot P(N(t)>N)
$$

6.8 Uniformization (cont.)

In fact we have:

$$
\begin{aligned}
P_{i j}(t) & \approx \sum_{n=0}^{N} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}+\pi_{j} \cdot P(N(t)>N) \\
& =\sum_{n=0}^{N} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}+\pi_{j} \cdot[1-P(N(t) \leq N)] \\
& =\sum_{n=0}^{N} Q_{i j}^{n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}+\pi_{j}-\pi_{j} \sum_{n=0}^{N} \frac{(v t)^{n}}{n!} e^{-v t} \\
& =\pi_{j}+\sum_{n=0}^{N}\left(Q_{i j}^{n}-\pi_{j}\right) \frac{(v t)^{n}}{n!} e^{-v t}
\end{aligned}
$$

which typically is a very good approximation even for moderately sized N.

6.8 Uniformization (cont.)

Assume (far) more generally that $v_{i} \leq v$ for all $i \in \mathcal{X}$, and let:

$$
Q_{i j}^{*}= \begin{cases}1-\frac{v_{i}}{v} & j=i \\ \frac{v_{i}}{v} Q_{i j} & j \neq i\end{cases}
$$

6.8 Uniformization (cont.)

Assume (far) more generally that $v_{i} \leq v$ for all $i \in \mathcal{X}$, and let:

$$
Q_{i j}^{*}= \begin{cases}1-\frac{v_{i}}{v} & j=i \\ \frac{v_{i}}{v} Q_{i j} & j \neq i\end{cases}
$$

$\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

6.8 Uniformization (cont.)

Assume (far) more generally that $v_{i} \leq v$ for all $i \in \mathcal{X}$, and let:

$$
Q_{i j}^{*}= \begin{cases}1-\frac{v_{i}}{v} & j=i \\ \frac{v_{i}}{v} Q_{i j} & j \neq i\end{cases}
$$

$\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

If the chain is in state i, the probability that a transition results in a state change is v_{i} / v, while the probability of no state change is $1-v_{i} / v$.

6.8 Uniformization (cont.)

Assume (far) more generally that $v_{i} \leq v$ for all $i \in \mathcal{X}$, and let:

$$
Q_{i j}^{*}= \begin{cases}1-\frac{v_{i}}{v} & j=i \\ \frac{v_{i}}{v} Q_{i j} & j \neq i\end{cases}
$$

$\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

If the chain is in state i, the probability that a transition results in a state change is v_{i} / v, while the probability of no state change is $1-v_{i} / v$.

Given that a transition results in a state change from state i, the probability that the next state is state j is $Q_{i j}$ as before.

6.8 Uniformization (cont.)

Assume (far) more generally that $v_{i} \leq v$ for all $i \in \mathcal{X}$, and let:

$$
Q_{i j}^{*}=\left\{\begin{array}{cc}
1-\frac{v_{i}}{v} & j=i \\
\frac{v_{i}}{v} Q_{i j} & j \neq i
\end{array}\right.
$$

$\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

If the chain is in state i, the probability that a transition results in a state change is v_{i} / v, while the probability of no state change is $1-v_{i} / v$.

Given that a transition results in a state change from state i, the probability that the next state is state j is $Q_{i j}$ as before.

The unconditional probability of a transition from state i to state j is then $Q_{i j}^{*}$.

6.8 Uniformization (cont.)

Replacing the $Q_{i j} \mathrm{~s}$ by the $Q_{i j}^{*} \mathrm{~s}$ in the formula for the transition probabilities, we get:

$$
P_{i j}(t)=\sum_{n=0}^{\infty} Q_{i j}^{* n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}
$$

Note that if $v_{i}=v$ for all $i \in \mathcal{X}$, we get:

$$
Q_{i j}^{*}=\left\{\begin{array}{ll}
1-\frac{v_{i}}{v}, & j=i \\
\frac{v_{i}}{v} Q_{i j}, & j \neq i
\end{array}= \begin{cases}0, & j=i \\
Q_{i j}, & j \neq i\end{cases}\right.
$$

Example 6.23

The lifetimes and repair times of a system are independent and exponentially distributed with rates respectively $v_{1}=\lambda$ and $v_{0}=\mu$. (See Example 6.11.)

The system is modelled as a continuous-time Markov chain $\{X(t): t \geq 0\}$ with state space $\mathcal{X}=\{0,1\}$, where ${ }^{1}$:

$$
X(t)=I(\text { The system is functioning at time } t), \quad t \geq 0 .
$$

The matrix of transition probabilities of the built-in discrete-time Markov chain is:

$$
\boldsymbol{Q}=\left[\begin{array}{ll}
Q_{00} & Q_{01} \\
Q_{10} & Q_{11}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

[^0]
Example 6.23 (cont.)

A uniformized version of this model, is obtained by letting $v=\lambda+\mu$, and:

$$
Q_{i j}^{*}= \begin{cases}1-\frac{v_{i}}{v} & j=i \\ \frac{v_{i}}{v} Q_{i j} & j \neq i\end{cases}
$$

Example 6.23 (cont.)

A uniformized version of this model, is obtained by letting $v=\lambda+\mu$, and:

$$
Q_{i j}^{*}= \begin{cases}1-\frac{v_{i}}{v} & j=i \\ \frac{v_{i}}{v} Q_{i j} & j \neq i\end{cases}
$$

Using that $v_{0}=\mu$ and $v_{1}=\lambda$, we get:

$$
\begin{aligned}
& Q_{00}^{*}=1-\frac{v_{0}}{v}=1-\frac{\mu}{\lambda+\mu}=\frac{\lambda}{\lambda+\mu} \\
& Q_{01}^{*}=\frac{v_{0}}{v} Q_{01}=\frac{\mu}{\lambda+\mu} \cdot 1=\frac{\mu}{\lambda+\mu} \\
& Q_{10}^{*}=\frac{v_{1}}{v} Q_{10}=\frac{\lambda}{\lambda+\mu} \cdot 1=\frac{\lambda}{\lambda+\mu} \\
& Q_{11}^{*}=1-\frac{v_{1}}{v}=1-\frac{\lambda}{\lambda+\mu}=\frac{\mu}{\lambda+\mu}
\end{aligned}
$$

Example 6.23 (cont.)

In matrix form we get:

$$
\boldsymbol{Q}^{*}=\left[\begin{array}{ll}
Q_{00}^{*} & Q_{01}^{*} \\
Q_{10}^{*} & Q_{11}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu} \\
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu}
\end{array}\right]=\left[\begin{array}{cc}
a & (1-a) \\
a & (1-a)
\end{array}\right]
$$

where we have introduced $a=\lambda /(\lambda+\mu)$.
From this it follows that the 2-step transition probability matrix is:

$$
\begin{aligned}
\boldsymbol{Q}^{*(2)} & =\boldsymbol{Q}^{*} \cdot \boldsymbol{Q}^{*}=\left[\begin{array}{ll}
a & (1-a) \\
a & (1-a)
\end{array}\right] \cdot\left[\begin{array}{ll}
a & (1-a) \\
a & (1-a)
\end{array}\right] \\
& =\left[\begin{array}{ll}
(a+(1-a)) a & (a+(1-a))(1-a) \\
(a+(1-a)) a & (a+(1-a))(1-a)
\end{array}\right]=\left[\begin{array}{ll}
a & (1-a) \\
a & (1-a)
\end{array}\right]=\boldsymbol{Q}^{*}
\end{aligned}
$$

Repeating this argument, we get that $\boldsymbol{Q}^{*(n)}=\boldsymbol{Q}^{*}, n=1,2 \ldots$.

Example 6.23 (cont.)

We also recall that:

$$
\boldsymbol{Q}^{*(0)}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\boldsymbol{I}
$$

Using the formula for the transition probabilities, we get:

$$
\begin{aligned}
P_{i j}(t) & =\sum_{n=0}^{\infty} Q_{i j}^{* n} \cdot \frac{(v t)^{n}}{n!} e^{-v t}=Q_{i j}^{* 0} \cdot e^{-v t}+\sum_{n=1}^{\infty} Q_{i j}^{* n} \cdot \frac{(v t)^{n}}{n!} e^{-v t} \\
& =Q_{i j}^{* 0} \cdot e^{-(\lambda+\mu) t}+Q_{i j}^{*} \cdot \sum_{n=1}^{\infty} \frac{((\lambda+\mu) t)^{n}}{n!} e^{-(\lambda+\mu) t} \\
& =I(i=j) \cdot e^{-(\lambda+\mu) t}+Q_{i j}^{*} \cdot\left(1-e^{-(\lambda+\mu) t}\right)
\end{aligned}
$$

Example 6.23 (cont.)

We then use that:

$$
\boldsymbol{Q}^{*}=\left[\begin{array}{ll}
Q_{00}^{*} & Q_{01}^{*} \\
Q_{10}^{*} & Q_{11}^{11}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda \mu \mu} \\
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu}
\end{array}\right]
$$

Example 6.23 (cont.)

We then use that:

$$
\boldsymbol{Q}^{*}=\left[\begin{array}{ll}
Q_{00}^{*} & Q_{01}^{*} \\
Q_{10}^{*} & Q_{11}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu} \\
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu}
\end{array}\right]
$$

Inserting this we get:

$$
P_{00}(t)=e^{-(\lambda+\mu) t}+\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\lambda}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t}
$$

Example 6.23 (cont.)

We then use that:

$$
\boldsymbol{Q}^{*}=\left[\begin{array}{ll}
Q_{00}^{*} & Q_{01}^{*} \\
Q_{10}^{*} & Q_{11}^{11}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda \mu \mu} \\
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu}
\end{array}\right]
$$

Inserting this we get:

$$
\begin{aligned}
& P_{00}(t)=e^{-(\lambda+\mu) t}+\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\lambda}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t} \\
& P_{01}(t)=\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\mu}{\lambda+\mu}-\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t}
\end{aligned}
$$

Example 6.23 (cont.)

We then use that:

$$
\boldsymbol{Q}^{*}=\left[\begin{array}{ll}
Q_{00}^{*} & Q_{01}^{*} \\
Q_{10}^{*} & Q_{11}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu} \\
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu}
\end{array}\right]
$$

Inserting this we get:

$$
\begin{aligned}
& P_{00}(t)=e^{-(\lambda+\mu) t}+\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\lambda}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t} \\
& P_{01}(t)=\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\mu}{\lambda+\mu}-\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t} \\
& P_{10}(t)=\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\lambda}{\lambda+\mu}-\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}
\end{aligned}
$$

Example 6.23 (cont.)

We then use that:

$$
\boldsymbol{Q}^{*}=\left[\begin{array}{ll}
Q_{00}^{*} & Q_{01}^{*} \\
Q_{10}^{*} & Q_{11}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu} \\
\frac{\lambda}{\lambda+\mu} & \frac{\mu}{\lambda+\mu}
\end{array}\right]
$$

Inserting this we get:

$$
\begin{aligned}
& P_{00}(t)=e^{-(\lambda+\mu) t}+\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\lambda}{\lambda+\mu}+\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t} \\
& P_{01}(t)=\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\mu}{\lambda+\mu}-\frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu) t} \\
& P_{10}(t)=\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\lambda}{\lambda+\mu}-\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t} \\
& P_{11}(t)=e^{-(\lambda+\mu) t}+\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) t}\right)=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}
\end{aligned}
$$

Example 6.24

We consider the same two-state system as in Example 6.23, and assume that $X(0)=1$. We then define:

$$
U(t)=\int_{0}^{t} X(s) d s=\text { The fraction of the interval }[0, t] \text { where } X(s)=1
$$

We can then calculate $E[U(t)]$ as follows:

$$
\begin{aligned}
E[U(t)] & =E\left[\int_{0}^{t} X(s) d s\right]=\int_{0}^{t} E[X(s)] d s \\
& =\int_{0}^{t} P(X(s)=1 \mid X(0)=1) d s=\int_{0}^{t} P_{11}(s) d s
\end{aligned}
$$

Example 6.24 (cont.)

Hence, since we have shown that:

$$
P_{11}(t)=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}
$$

we get that:

$$
\begin{aligned}
E[U(t)] & =\int_{0}^{t}\left[\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) s}\right] d s \\
& =\frac{\mu t}{\lambda+\mu}+\frac{\lambda}{(\lambda+\mu)^{2}}\left[1-e^{-(\lambda+\mu) t}\right]
\end{aligned}
$$

Example 6.24 (cont.)

Hence, since we have shown that:

$$
P_{11}(t)=\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) t}
$$

we get that:

$$
\begin{aligned}
E[U(t)] & =\int_{0}^{t}\left[\frac{\mu}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu) s}\right] d s \\
& =\frac{\mu t}{\lambda+\mu}+\frac{\lambda}{(\lambda+\mu)^{2}}\left[1-e^{-(\lambda+\mu) t}\right]
\end{aligned}
$$

We note that this also implies that:

$$
\lim _{t \rightarrow \infty} E\left[\frac{U(t)}{t}\right]=\frac{\mu}{\lambda+\mu}=\lim _{t \rightarrow \infty} P_{11}(t)
$$

[^0]: ${ }^{1}$ In the Ross(2019) state 0 is the functioning state and state 1 is the failed state.

