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Discrete-time Markov Chains

We recall from Chapter 4:

Let {X, : n > 0} be a discrete-time stochastic process with discrete state
space .

The process is a Markov chain if forn=1,2,... we have:
P(Xni1 = j|IXn=1,Xy = x4,0 < u<n)

:P(Xn+1 :j|Xn:I)7 i,j,XUEX

If we also have that P(X,.1 = j|X, = i) is independent of n, then the Markov
chain is said to have stationary (or homogeneous) transition probabilities.
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6.2 Continuous-Time Markov Chains

Let {X(t) : t > 0} be a continuous-time stochastic process with discrete state
space X.

The process is a Markov chain if for s, t > 0 we have:
P(X(t+s)=jX(s) =i, X(u) =x(u),0<u<s)
= P(X(t+5) = IX(s) = i), ij.x(u)eX
If we also have that P(X(t + s) = j|X(s) = i) is independent of s, then the

Markov chain is said to have stationary (or homogeneous) transition
probabilities.
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6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:

A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

@ The times spent in the different states are independent random variables
(because of the Markov property).

@ The amount of time spent in state / € X' is exponentially distributed with
rate v; (because of the Markov property and stationarity).

@ When the process leaves state J, it enters state j with some transition
probability Q; where:

Qi=0, foralieXx

ZQ,-,-:L forallie X

jex
@ The transitions follow a discrete-time Markov chain.
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6.3 Birth and Death Processes

A Birth and Death Process {X(t) : t > 0} has state space X = {0,1,2,...}.

Assume that X(t) = n > 0. Then the next transition is determined as follows:

@ Sample V ~ exp(\,) and W ~ exp(u,) independent of each other with
respective outcomes v and w.

@ If v < w then the process transits to state n+ 1 attime t + v, i.e.,
X(t+ v) = n+1. This called a birth.

@ If w < v then the process transits to state n — 1 attime t + w, i.e.,
X(t+ w)=n—1. This called a death.

NOTE: When X(t) = 0, only births are possible, so in this case we assume
that W = oo, which corresponds to the rate pg being zero, and Pyy = 1.
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6.3 Birth and Death Processes

We consider a general birth and death process, {X(f) : t > 0}, with birth
rates Ao, A1, ... and death rates uqg, pt1, . .., where ug = 0.

Assume that X(0) = i, where i > 0, and define T; to be the time until the
process enters state i + 1 for the first time.

GOAL: Calculate E[T;].

Since Ty ~ exp(Xg), we know that:

]
E[To] = e
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6.3 Birth and Death Processes

By using a recursive relation, and that E[Ty] = A7, we get:

]
E[To]:/\—o

- 1 p1 1
E[T] = v + ™ M

b e 1 g 1
HM—&+MM M o
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6.4 The Transition Probability Function P;(t)

The transition probabilities of a stationary continuous-time Markov chain
{X(t) : t > 0}, with state space X are defined as:

Pj(t) = P(X(t+s)=j|X(s)=1i), t>0, i,jeX

Proposition (6.1)
For a pure birth process where \; # A; for all i # j, we have:

J J A j—1 j—1 \
_ — Akt r — Akt r
Pj(t) = Ze g H A — Ak N kze * H A — Ak
k=i =i

r#k,r=i r#k,r=i

Pi(t) = e~ Mt
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The Yule Process

Assume that {X(t) : t > 0} is a birth and death process with:

un=0, foraln>0
Ap=2An, foraln>0

Since the death rate is zero, this is a pure birth process. The birth rate An is
proportional to the state, i.e., number of individuals in the population.

This implies that the time the process stays in state n is exponentially

distributed with rate An. Thus, the expected time between transitions
becomes smaller and smaller as n grows.
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The Yule process (cont.)

Proposition

Let{X(t): t > 0} be a Yule process with rate . Then we have:

Pi(t) = (j,: !

1

>e—"“(1—e—“)/—", t>0, 1<i<j
EX(t)|X(0)=i=i-€e,

t>0, i=12,...
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6.4 Kolmogorov’s Backward Equations

A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

@ The times spent in the different states are independent random variables
(because of the Markov property).

@ The amount of time spent in state i € X' is exponentially distributed with
rate v; (because of the Markov property and stationarity).

@ When the process leaves state J, it enters state j with some transition
probability Q; where:

Qi=0, foralieXx

Y @=1, foralliex

jeX
@ The transitions follow a discrete-time Markov chain.
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6.4 Kolmogorov’s Backward Equations
We now introduce the following notation:

qgij = V,'Q,‘j, i,jeX.

INTERPRETATION: Since v; is the rate at which the process makes a
transition when in state / and Qj is the probability that this transition is into
state j, it follows that gj is the rate, when in state /, at which the process
makes a transition into state j.

The quantities g; are called the instantaneous transition rates.
Since we have:
Vi=vi) Q=) viQi=>_ a
jex jex jex
Qj = 9 _ __ 9 7
Vi Zje/‘\f gjj

the probabilistic properties of {X(t) : t > 0} is determined by the gj’s.
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6.4 Kolmogorov’s Backward Equations

Theorem (6.1 — Kolmogorov’s backward equations)
Forallt > 0 and states i,j € X we have:

Pj(t) = z Qi Pri(t) — viPy(t).

kex\i

PROOF: By Lemma 6.3 we have:

P,'j(t-i- h) — P,j(t) = Z P,’k(h)ij(t) — P,"(t)

kex

= 3= Pulh)Py(t) + PAMPI1) ~ Py()
kex\i

= > Pi(h)Py(t) = [1 = Pi(h)]P;(1)

keX\i
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6.4 Kolmogorov’s Backward Equations (cont.)

By dividing both sides by h and letting h — 0, we can use Lemma 6.2 and get:

im Pilt+h) — Py(t) _ Pr(h) 1= Pi(h)
flvano h N ,/lvino h Py(1) _llvino h Pi(1)
keXx\i
= Y quPy(t) — viPi(t)
kex\i
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6.4 Kolmogorov’s Forward Equations

Theorem (6.2 — Kolmogorov’s forward equations)
Forallt > 0 and states i,j € X we have:

= > Pu(t)ag - Pyt

kex\j

PROOF: By Lemma 6.3 we have:

Pij(t+ h) — P,,(t)—ZP,k )Pyi(h) — Pj(t)

kex

Z Pic(t)Pii(h) + Pj(t)Py(h) — Py(t)
kex\j

= Y Pi(t)Py(h) — Pi()[1 — Py(h)]

kex\j

A. B. Huseby (Univ. of Oslo) STK2130 — Chapter 6 overview 15/21



6.4 Kolmogorov’s Forward Equations (cont.)

By dividing both sides by h and letting h — 0, we can use Lemma 6.2 and get:

 Py(t+h)— Py(t) o Pgth) o 1= Py(h)
i UL P 5 g o PP g oy L0
keXx\j
= Y Pu(t)ag - Pi(t)y
kex\j
|
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6.4 Kolmogorov’s Equations

We again assume that X = {1,2, ..., n}, and recall the following matrices:

Vi GQi2 Qi3 - Qin
Q21 —Vo Q23 -+ Q2p
R—=| 91 Q2 —V3 --- Q3n
Qn1 Gn2 Qnz -+ —Vp
Pii(t) Piao(t) Pra(t) - Pya(t)
P271(t) P272(t) P273(t) P27n(t)
P(t)= | Ps1(t) Paa(t) Pas(t) --- Psn(t)
Pn71(t) Pn72(t) Pn73(t) Pn7n(t)
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6.4 Kolmogorov’s Equations

Kolmogorov’s backward equations:

P,;(t) = Z q,'kij(t) — V,'P,'j(t).

kex\i
can be written in the following form:

P'(t) = RP(t).

Kolmogorov’s forward equations:

Pi(t)= > Pr(t)ay — Py(t)y;
keXx\j

can be written in the following form:

P'(t) = P(t)R.
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Remaining lectures - Chapter 6

@ Week 18

o Chapter 6.5 Limiting Probabilities
o Chapter 6.8 Uniformization
o Chapter 6.9 Computing the Transition Probabilities
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Remaining lectures - Chapter 7

@ Week 19

o Chapter 7.1 Renewal Theory and Its Applications
o Chapter 7.2 Distribution of N(t)
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Remaining lectures - Chapter 10

@ Week 20

o Chapter 10.1 Brownian Motion

e Chapter 10.2 Hitting Times, Maximum Variable, and the Gambler’s
Ruin Problem

@ Chapter 10.3 Variations on Brownian Motion

EXAM: (Week 22) May 27, 14:30 — June 3, 14:30
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