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Discrete-time Markov Chains

We recall from Chapter 4:

Let {Xn : n ≥ 0} be a discrete-time stochastic process with discrete state
space X .

The process is a Markov chain if for n = 1,2, . . . we have:

P(Xn+1 = j |Xn = i ,Xu = xu,0 ≤ u < n)

= P(Xn+1 = j |Xn = i), i , j , xu ∈ X

If we also have that P(Xn+1 = j |Xn = i) is independent of n, then the Markov
chain is said to have stationary (or homogeneous) transition probabilities.
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6.2 Continuous-Time Markov Chains

Let {X (t) : t ≥ 0} be a continuous-time stochastic process with discrete state
space X .

The process is a Markov chain if for s, t > 0 we have:

P(X (t + s) = j |X (s) = i , X (u) = x(u), 0 ≤ u < s)

= P(X (t + s) = j |X (s) = i), i , j , x(u) ∈ X

If we also have that P(X (t + s) = j |X (s) = i) is independent of s, then the
Markov chain is said to have stationary (or homogeneous) transition
probabilities.
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6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:
A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

The times spent in the different states are independent random variables
(because of the Markov property).

The amount of time spent in state i ∈ X is exponentially distributed with
rate vi (because of the Markov property and stationarity).

When the process leaves state i , it enters state j with some transition
probability Qij where:

Qii = 0, for all i ∈ X∑
j∈X

Qij = 1, for all i ∈ X

The transitions follow a discrete-time Markov chain.
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6.3 Birth and Death Processes

A Birth and Death Process {X (t) : t ≥ 0} has state space X = {0,1,2, . . .}.

Assume that X (t) = n > 0. Then the next transition is determined as follows:

Sample V ∼ exp(λn) and W ∼ exp(µn) independent of each other with
respective outcomes v and w .

If v < w then the process transits to state n + 1 at time t + v , i.e.,
X (t + v) = n + 1. This called a birth.

If w < v then the process transits to state n − 1 at time t + w , i.e.,
X (t + w) = n − 1. This called a death.

NOTE: When X (t) = 0, only births are possible, so in this case we assume
that W =∞, which corresponds to the rate µ0 being zero, and P01 = 1.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6 overview 5 / 21



6.3 Birth and Death Processes

We consider a general birth and death process, {X (t) : t ≥ 0}, with birth
rates λ0, λ1, . . . and death rates µ0, µ1, . . ., where µ0 = 0.

Assume that X (0) = i , where i ≥ 0, and define Ti to be the time until the
process enters state i + 1 for the first time.

GOAL: Calculate E [Ti ].

Since T0 ∼ exp(λ0), we know that:

E [T0] =
1
λ0
.
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6.3 Birth and Death Processes

By using a recursive relation, and that E [T0] = λ−1
0 , we get:

E [T0] =
1
λ0

E [T1] =
1
λ1

+
µ1

λ1

1
λ0

E [T2] =
1
λ2

+
µ2

λ2
[

1
λ1

+
µ1

λ1

1
λ0

]

· · ·
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6.4 The Transition Probability Function Pij(t)

The transition probabilities of a stationary continuous-time Markov chain
{X (t) : t ≥ 0}, with state space X are defined as:

Pij(t) = P(X (t + s) = j |X (s) = i), t ≥ 0, i , j ∈ X

Proposition (6.1)

For a pure birth process where λi 6= λj for all i 6= j , we have:

Pij(t) =

 j∑
k=i

e−λk t
j∏

r 6=k,r=i

λr

λr − λk

−
 j−1∑

k=i

e−λk t
j−1∏

r 6=k,r=i

λr

λr − λk


Pii(t) = e−λi t
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The Yule Process

Assume that {X (t) : t ≥ 0} is a birth and death process with:

µn = 0, for all n ≥ 0
λn = λn, for all n ≥ 0

Since the death rate is zero, this is a pure birth process. The birth rate λn is
proportional to the state, i.e., number of individuals in the population.

This implies that the time the process stays in state n is exponentially
distributed with rate λn. Thus, the expected time between transitions
becomes smaller and smaller as n grows.
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The Yule process (cont.)

Proposition

Let {X (t) : t ≥ 0} be a Yule process with rate λ. Then we have:

Pij(t) =
(

j − 1
i − 1

)
e−iλt(1− e−λt)j−i , t > 0, 1 ≤ i ≤ j

E [X (t)|X (0) = i] = i · eλt , t > 0, i = 1,2, . . .
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6.4 Kolmogorov’s Backward Equations

A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

The times spent in the different states are independent random variables
(because of the Markov property).

The amount of time spent in state i ∈ X is exponentially distributed with
rate vi (because of the Markov property and stationarity).

When the process leaves state i , it enters state j with some transition
probability Qij where:

Qii = 0, for all i ∈ X∑
j∈X

Qij = 1, for all i ∈ X

The transitions follow a discrete-time Markov chain.
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6.4 Kolmogorov’s Backward Equations
We now introduce the following notation:

qij = viQij , i , j ∈ X .

INTERPRETATION: Since vi is the rate at which the process makes a
transition when in state i and Qij is the probability that this transition is into
state j , it follows that qij is the rate, when in state i , at which the process
makes a transition into state j .

The quantities qij are called the instantaneous transition rates.

Since we have:

vi = vi

∑
j∈X

Qij =
∑
j∈X

viQij =
∑
j∈X

qij ,

Qij =
qij

vi
=

qij∑
j∈X qij

,

the probabilistic properties of {X (t) : t ≥ 0} is determined by the qij ’s.
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6.4 Kolmogorov’s Backward Equations

Theorem (6.1 – Kolmogorov’s backward equations)

For all t ≥ 0 and states i , j ∈ X we have:

P ′ij(t) =
∑

k∈X\i

qik Pkj(t)− viPij(t).

PROOF: By Lemma 6.3 we have:

Pij(t + h)− Pij(t) =
∑
k∈X

Pik (h)Pkj(t)− Pij(t)

=
∑

k∈X\i

Pik (h)Pkj(t) + Pii(h)Pij(t)− Pij(t)

=
∑

k∈X\i

Pik (h)Pkj(t)− [1− Pii(h)]Pij(t)
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6.4 Kolmogorov’s Backward Equations (cont.)

By dividing both sides by h and letting h→ 0, we can use Lemma 6.2 and get:

lim
h→0

Pij(t + h)− Pij(t)
h

=
∑

k∈X\i

lim
h→0

Pik (h)
h

Pkj(t)− lim
h→0

1− Pii(h)
h

Pij(t)

=
∑

k∈X\i

qik Pkj(t)− viPij(t)

�
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6.4 Kolmogorov’s Forward Equations

Theorem (6.2 – Kolmogorov’s forward equations)

For all t ≥ 0 and states i , j ∈ X we have:

P ′ij(t) =
∑

k∈X\j

Pik (t)qkj − Pij(t)vj .

PROOF: By Lemma 6.3 we have:

Pij(t + h)− Pij(t) =
∑
k∈X

Pik (t)Pkj(h)− Pij(t)

=
∑

k∈X\j

Pik (t)Pkj(h) + Pij(t)Pjj(h)− Pij(t)

=
∑

k∈X\j

Pik (t)Pkj(h)− Pij(t)[1− Pjj(h)]
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6.4 Kolmogorov’s Forward Equations (cont.)

By dividing both sides by h and letting h→ 0, we can use Lemma 6.2 and get:

lim
h→0

Pij(t + h)− Pij(t)
h

=
∑

k∈X\j

Pik (t) lim
h→0

Pkj(h)
h
− Pij(t) lim

h→0

1− Pjj(h)
h

=
∑

k∈X\j

Pik (t)qkj − Pij(t)vj

�
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6.4 Kolmogorov’s Equations

We again assume that X = {1,2, . . . ,n}, and recall the following matrices:

R =


−v1 q1,2 q1,3 · · · q1,n
q2,1 −v2 q2,3 · · · q2,n
q3,1 q3,2 −v3 · · · q3,n

...
...

...
. . .

...
qn,1 qn,2 qn,3 · · · −vn



P(t) =


P1,1(t) P1,2(t) P1,1(t) · · · P1,n(t)
P2,1(t) P2,2(t) P2,3(t) · · · P2,n(t)
P3,1(t) P3,2(t) P3,3(t) · · · P3,n(t)

...
...

...
. . .

...
Pn,1(t) Pn,2(t) Pn,3(t) · · · Pn,n(t)


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6.4 Kolmogorov’s Equations
Kolmogorov’s backward equations:

P ′ij(t) =
∑

k∈X\i

qik Pkj(t)− viPij(t).

can be written in the following form:

P ′(t) = RP(t).

Kolmogorov’s forward equations:

P ′ij(t) =
∑

k∈X\j

Pik (t)qkj − Pij(t)vj .

can be written in the following form:

P ′(t) = P(t)R.
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Remaining lectures - Chapter 6

Week 18

Chapter 6.5 Limiting Probabilities
Chapter 6.8 Uniformization
Chapter 6.9 Computing the Transition Probabilities
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Remaining lectures - Chapter 7

Week 19

Chapter 7.1 Renewal Theory and Its Applications
Chapter 7.2 Distribution of N(t)
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Remaining lectures - Chapter 10

Week 20

Chapter 10.1 Brownian Motion
Chapter 10.2 Hitting Times, Maximum Variable, and the Gambler’s
Ruin Problem
Chapter 10.3 Variations on Brownian Motion

EXAM: (Week 22) May 27, 14:30 – June 3, 14:30
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