STK2130 - Chapter 6 overview

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Discrete-time Markov Chains

We recall from Chapter 4:
Let $\left\{X_{n}: n \geq 0\right\}$ be a discrete-time stochastic process with discrete state space \mathcal{X}.

The process is a Markov chain if for $n=1,2, \ldots$ we have:

$$
\begin{aligned}
& P\left(X_{n+1}=j \mid X_{n}=i, X_{u}=x_{u}, 0 \leq u<n\right) \\
& \quad=P\left(X_{n+1}=j \mid X_{n}=i\right), \quad i, j, x_{u} \in \mathcal{X}
\end{aligned}
$$

If we also have that $P\left(X_{n+1}=j \mid X_{n}=i\right)$ is independent of n, then the Markov chain is said to have stationary (or homogeneous) transition probabilities.

6.2 Continuous-Time Markov Chains

Let $\{X(t): t \geq 0\}$ be a continuous-time stochastic process with discrete state space \mathcal{X}.

The process is a Markov chain if for $s, t>0$ we have:

$$
\begin{array}{r}
P(X(t+s)=j \mid X(s)=i, X(u)=x(u), 0 \leq u<s) \\
=P(X(t+s)=j \mid X(s)=i), \quad i, j, x(u) \in \mathcal{X}
\end{array}
$$

If we also have that $P(X(t+s)=j \mid X(s)=i)$ is independent of s, then the Markov chain is said to have stationary (or homogeneous) transition probabilities.

6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:

A continuous-time Markov chain with stationary transition probabilities and state space \mathcal{X} is a stochastic process such that:

- The times spent in the different states are independent random variables (because of the Markov property).
- The amount of time spent in state $i \in \mathcal{X}$ is exponentially distributed with rate v_{i} (because of the Markov property and stationarity).
- When the process leaves state i, it enters state j with some transition probability $Q_{i j}$ where:

$$
\begin{array}{cc}
Q_{i i}=0, & \text { for all } i \in \mathcal{X} \\
\sum_{j \in \mathcal{X}} Q_{i j}=1, & \text { for all } i \in \mathcal{X}
\end{array}
$$

- The transitions follow a discrete-time Markov chain.

6.3 Birth and Death Processes

A Birth and Death Process $\{X(t): t \geq 0\}$ has state space $\mathcal{X}=\{0,1,2, \ldots\}$.
Assume that $X(t)=n>0$. Then the next transition is determined as follows:

- Sample $V \sim \exp \left(\lambda_{n}\right)$ and $W \sim \exp \left(\mu_{n}\right)$ independent of each other with respective outcomes v and w.
- If $v<w$ then the process transits to state $n+1$ at time $t+v$, i.e., $X(t+v)=n+1$. This called a birth.
- If $w<v$ then the process transits to state $n-1$ at time $t+w$, i.e., $X(t+w)=n-1$. This called a death.

NOTE: When $X(t)=0$, only births are possible, so in this case we assume that $W=\infty$, which corresponds to the rate μ_{0} being zero, and $P_{01}=1$.

6.3 Birth and Death Processes

We consider a general birth and death process, $\{X(t): t \geq 0\}$, with birth rates $\lambda_{0}, \lambda_{1}, \ldots$ and death rates μ_{0}, μ_{1}, \ldots, where $\mu_{0}=0$.

Assume that $X(0)=i$, where $i \geq 0$, and define T_{i} to be the time until the process enters state $i+1$ for the first time.

GOAL: Calculate $E\left[T_{i}\right]$.
Since $T_{0} \sim \exp \left(\lambda_{0}\right)$, we know that:

$$
E\left[T_{0}\right]=\frac{1}{\lambda_{0}}
$$

6.3 Birth and Death Processes

By using a recursive relation, and that $E\left[T_{0}\right]=\lambda_{0}^{-1}$, we get:

$$
\begin{aligned}
& E\left[T_{0}\right]=\frac{1}{\lambda_{0}} \\
& E\left[T_{1}\right]=\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1}} \frac{1}{\lambda_{0}} \\
& E\left[T_{2}\right]=\frac{1}{\lambda_{2}}+\frac{\mu_{2}}{\lambda_{2}}\left[\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1}} \frac{1}{\lambda_{0}}\right]
\end{aligned}
$$

6.4 The Transition Probability Function $P_{i j}(t)$

The transition probabilities of a stationary continuous-time Markov chain $\{X(t): t \geq 0\}$, with state space \mathcal{X} are defined as:

$$
P_{i j}(t)=P(X(t+s)=j \mid X(s)=i), \quad t \geq 0, \quad i, j \in \mathcal{X}
$$

Proposition (6.1)
For a pure birth process where $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$, we have:

$$
\begin{aligned}
& P_{i j}(t)=\left(\sum_{k=i}^{j} e^{-\lambda_{k} t} \prod_{r \neq k, r=i}^{j} \frac{\lambda_{r}}{\lambda_{r}-\lambda_{k}}\right)-\left(\sum_{k=i}^{j-1} e^{-\lambda_{k} t} \prod_{r \neq k, r=i}^{j-1} \frac{\lambda_{r}}{\lambda_{r}-\lambda_{k}}\right) \\
& P_{i j}(t)=e^{-\lambda_{i} t}
\end{aligned}
$$

The Yule Process

Assume that $\{X(t): t \geq 0\}$ is a birth and death process with:

$$
\begin{aligned}
& \mu_{n}=0, \quad \text { for all } n \geq 0 \\
& \lambda_{n}=\lambda n, \quad \text { for all } n \geq 0
\end{aligned}
$$

Since the death rate is zero, this is a pure birth process. The birth rate λn is proportional to the state, i.e., number of individuals in the population.

This implies that the time the process stays in state n is exponentially distributed with rate λn. Thus, the expected time between transitions becomes smaller and smaller as n grows.

The Yule process (cont.)

Proposition

Let $\{X(t): t \geq 0\}$ be a Yule process with rate λ. Then we have:

$$
P_{i j}(t)=\binom{j-1}{i-1} e^{-i \lambda t}\left(1-e^{-\lambda t}\right)^{j-i}, \quad t>0, \quad 1 \leq i \leq j
$$

$$
E[X(t) \mid X(0)=i]=i \cdot e^{\lambda t}, \quad t>0, \quad i=1,2, \ldots
$$

6.4 Kolmogorov's Backward Equations

A continuous-time Markov chain with stationary transition probabilities and state space \mathcal{X} is a stochastic process such that:

- The times spent in the different states are independent random variables (because of the Markov property).
- The amount of time spent in state $i \in \mathcal{X}$ is exponentially distributed with rate v_{i} (because of the Markov property and stationarity).
- When the process leaves state i, it enters state j with some transition probability $Q_{i j}$ where:

$$
\begin{aligned}
Q_{i i}=0, & \text { for all } i \in \mathcal{X} \\
\sum_{j \in \mathcal{X}} Q_{i j}=1, & \text { for all } i \in \mathcal{X}
\end{aligned}
$$

- The transitions follow a discrete-time Markov chain.

6.4 Kolmogorov's Backward Equations

We now introduce the following notation:

$$
q_{i j}=v_{i} Q_{i j}, \quad i, j \in \mathcal{X}
$$

INTERPRETATION: Since v_{i} is the rate at which the process makes a transition when in state i and $Q_{i j}$ is the probability that this transition is into state j, it follows that $q_{i j}$ is the rate, when in state i, at which the process makes a transition into state j.

The quantities $q_{i j}$ are called the instantaneous transition rates.
Since we have:

$$
\begin{aligned}
& v_{i}=v_{i} \sum_{j \in \mathcal{X}} Q_{i j}=\sum_{j \in \mathcal{X}} v_{i} Q_{i j}=\sum_{j \in \mathcal{X}} q_{i j}, \\
& Q_{i j}=\frac{q_{i j}}{v_{i}}=\frac{q_{i j}}{\sum_{j \in \mathcal{X}} q_{i j}},
\end{aligned}
$$

the probabilistic properties of $\{X(t): t \geq 0\}$ is determined by the $q_{i j}$'s.

6.4 Kolmogorov's Backward Equations

Theorem (6.1 - Kolmogorov's backward equations)
For all $t \geq 0$ and states $i, j \in \mathcal{X}$ we have:

$$
P_{i j}^{\prime}(t)=\sum_{k \in \mathcal{X} \backslash i} q_{i k} P_{k j}(t)-v_{i} P_{i j}(t) .
$$

PROOF: By Lemma 6.3 we have:

$$
\begin{aligned}
P_{i j}(t+h)-P_{i j}(t) & =\sum_{k \in \mathcal{X}} P_{i k}(h) P_{k j}(t)-P_{i j}(t) \\
& =\sum_{k \in \mathcal{X} \backslash i} P_{i k}(h) P_{k j}(t)+P_{i j}(h) P_{i j}(t)-P_{i j}(t) \\
& =\sum_{k \in \mathcal{X} \backslash i} P_{i k}(h) P_{k j}(t)-\left[1-P_{i i}(h)\right] P_{i j}(t)
\end{aligned}
$$

6.4 Kolmogorov's Backward Equations (cont.)

By dividing both sides by h and letting $h \rightarrow 0$, we can use Lemma 6.2 and get:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{P_{i j}(t+h)-P_{i j}(t)}{h} & =\sum_{k \in \mathcal{X} \backslash i} \lim _{h \rightarrow 0} \frac{P_{i k}(h)}{h} P_{k j}(t)-\lim _{h \rightarrow 0} \frac{1-P_{i i}(h)}{h} P_{i j}(t) \\
& =\sum_{k \in \mathcal{X} \backslash i} q_{i k} P_{k j}(t)-v_{i} P_{i j}(t)
\end{aligned}
$$

6.4 Kolmogorov's Forward Equations

Theorem (6.2 - Kolmogorov's forward equations)
For all $t \geq 0$ and states $i, j \in \mathcal{X}$ we have:

$$
P_{i j}^{\prime}(t)=\sum_{k \in \mathcal{X} \backslash} P_{i k}(t) q_{k j}-P_{i j}(t) v_{j}
$$

PROOF: By Lemma 6.3 we have:

$$
\begin{aligned}
P_{i j}(t+h)-P_{i j}(t) & =\sum_{k \in \mathcal{X}} P_{i k}(t) P_{k j}(h)-P_{i j}(t) \\
& =\sum_{k \in \mathcal{X} \backslash} P_{i k}(t) P_{k j}(h)+P_{i j}(t) P_{i j}(h)-P_{i j}(t) \\
& =\sum_{k \in \mathcal{X} \backslash} P_{i k}(t) P_{k j}(h)-P_{i j}(t)\left[1-P_{j j}(h)\right]
\end{aligned}
$$

6.4 Kolmogorov's Forward Equations (cont.)

By dividing both sides by h and letting $h \rightarrow 0$, we can use Lemma 6.2 and get:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{P_{i j}(t+h)-P_{i j}(t)}{h} & =\sum_{k \in \mathcal{X} \backslash j} P_{i k}(t) \lim _{h \rightarrow 0} \frac{P_{k j}(h)}{h}-P_{i j}(t) \lim _{h \rightarrow 0} \frac{1-P_{j j}(h)}{h} \\
& =\sum_{k \in \mathcal{X} \backslash j} P_{i k}(t) q_{k j}-P_{i j}(t) v_{j}
\end{aligned}
$$

6.4 Kolmogorov's Equations

We again assume that $\mathcal{X}=\{1,2, \ldots, n\}$, and recall the following matrices:

$$
\begin{gathered}
\boldsymbol{R}=\left[\begin{array}{ccccc}
-v_{1} & q_{1,2} & q_{1,3} & \cdots & q_{1, n} \\
q_{2,1} & -v_{2} & q_{2,3} & \cdots & q_{2, n} \\
q_{3,1} & q_{3,2} & -v_{3} & \cdots & q_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_{n, 1} & q_{n, 2} & q_{n, 3} & \cdots & -v_{n}
\end{array}\right] \\
\boldsymbol{P}(t)=\left[\begin{array}{ccccc}
P_{1,1}(t) & P_{1,2}(t) & P_{1,1}(t) & \cdots & P_{1, n}(t) \\
P_{2,1}(t) & P_{2,2}(t) & P_{2,3}(t) & \cdots & P_{2, n}(t) \\
P_{3,1}(t) & P_{3,2}(t) & P_{3,3}(t) & \cdots & P_{3, n}(t) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
P_{n, 1}(t) & P_{n, 2}(t) & P_{n, 3}(t) & \cdots & P_{n, n}(t)
\end{array}\right]
\end{gathered}
$$

6.4 Kolmogorov's Equations

Kolmogorov's backward equations:

$$
P_{i j}^{\prime}(t)=\sum_{k \in \mathcal{X} \backslash i} q_{i k} P_{k j}(t)-v_{i} P_{i j}(t) .
$$

can be written in the following form:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{R} \boldsymbol{P}(t)
$$

Kolmogorov's forward equations:

$$
P_{i j}^{\prime}(t)=\sum_{k \in \mathcal{X} \backslash} P_{i k}(t) q_{k j}-P_{i j}(t) v_{j} .
$$

can be written in the following form:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{P}(t) \boldsymbol{R}
$$

Remaining lectures - Chapter 6

- Week 18
- Chapter 6.5 Limiting Probabilities
- Chapter 6.8 Uniformization
- Chapter 6.9 Computing the Transition Probabilities

Remaining lectures - Chapter 7

- Week 19
- Chapter 7.1 Renewal Theory and Its Applications
- Chapter 7.2 Distribution of $N(t)$

Remaining lectures - Chapter 10

- Week 20
- Chapter 10.1 Brownian Motion
- Chapter 10.2 Hitting Times, Maximum Variable, and the Gambler's Ruin Problem
- Chapter 10.3 Variations on Brownian Motion

EXAM: (Week 22) May 27, 14:30 - June 3, 14:30

