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Chapter 6.5 Limiting Probabilities

To determine the limiting distribution, we use Kolmogorov’s forward equations:

P ′ij(t) =
∑

k∈X\j

Pik (t)qkj − Pij(t)vj .

By taking the limit on both sides when t goes to infinity, we get:

0 = lim
t→∞

P ′ij(t) = lim
t→∞

 ∑
k∈X\j

Pik (t)qkj − Pij(t)vj


=
∑

k∈X\j

πk qkj − πjvj , j ∈ X .

Combined with the equation
∑

j∈X πj = 1, we can determine the limiting
distribution.
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6.5 Limiting Probabilities (cont.)

In the case where X = {1, . . . ,n} we introduce:

R =


−v1 q1,2 q1,3 · · · q1,n
q2,1 −v2 q2,3 · · · q2,n
q3,1 q3,2 −v3 · · · q3,n

...
...

...
. . .

...
qn,1 qn,2 qn,3 · · · −vn


and let π = (π1, . . . , πn). Then the equations:∑

k∈X\j

πk qkj − πjvj = 0, j ∈ X .

can be written as:

πR = 0.

where 0 = (0, . . . ,0).
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6.5 Limiting Probabilities (cont.)

The limiting distribution for continuous-time Markov chains is found by using
the following equations:

πR = 0,
∑
j∈X

πj = 1

We compare this to the equations we use for discrete-time Markov chains:

πP = π,
∑
j∈X

πj = 1

or equivalently:

π(P − I) = 0,
∑
j∈X

πj = 1

where P denotes the matrix of transition probabilities for the chain.
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6.5 Limiting Probabilities (cont.)

When the limiting probabilities exist, we say that the chain is ergodic.

Necessary and sufficient conditions for the existence of the limiting
distribution are:

All states of the Markov chain communicate in the sense that starting in
state i there is a positive probability of ever being in state j , for all i , j ∈ X .

The Markov chain is positive recurrent in the sense that, starting in any
state, the mean time to return to that state is finite.

If these conditions hold, the limiting probabilities exist and satisfy the derived
equations.

In addition, the probability πj also has the interpretation of being the long-run
proportion of time that the process is in state j .
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6.8 Uniformization

In this section we consider the special case where the Markov chain
{X (t) : t ≥ 0}, with state space X , has the property that:

vi = v , for all i ∈ X ,

where vi as usual denotes the transition rate in state i , i ∈ X .

We can the introduce a new process {N(t) : t ≥ 0}, where:

N(t) = The number of transitions in [0, t ], t ≥ 0.

It is then easy to see that {N(t) : t ≥ 0} is a homogeneous Poisson process
with rate v .
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6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning
on N(t):

Pij(t) = P(X (t) = j |X (0) = i)

=
∞∑

n=0

P(X (t) = j |X (0) = i ,N(t) = n) · P(N(t) = n|X (0) = i)

=
∞∑

n=0

P(X (t) = j |X (0) = i ,N(t) = n) · P(N(t) = n)

=
∞∑

n=0

Qn
ij ·

(vt)n

n!
e−vt

where Qn
ij denotes the n-step transition probability from state i to state j for

the built-in discete-time Markov chain.
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6.8 Uniformization

Assume (far) more generally that vi ≤ v for all i ∈ X , and let:

Q∗ij =

{
1− vi

v j = i
vi
v Qij j 6= i

{X (t) : t ≥ 0} can now be interpreted as a Markov chain, where the transition
rate is v for all states i ∈ X . However, only a fraction of the transitions results
in actual state changes.

If the chain is in state i , the probability that a transition results in a state
change is vi/v , while the probability of no state change is 1− vi/v .

Given that a transition results in a state change from state i , the probability
that the next state is state j is Qij as before.

The unconditional probability of a transition from state i to state j is then Q∗ij .

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6 overview 2 9 / 15



6.8 Uniformization

Replacing the Qijs by the Q∗ij s in the formula for the transition probabilities, we
get:

Pij(t) =
∞∑

n=0

Q∗nij ·
(vt)n

n!
e−vt

Note that if vi = v for all i ∈ X , we get:

Q∗ij =

{
1− vi

v , j = i
vi
v Qij , j 6= i

=

{
0, j = i

Qij , j 6= i
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6.9 Computing the Transition Probabilities
We start out by introducing the following notation:

rij =

{
qij if i 6= j
−vi if i = j

Kolmogorov’s backward equations can then be written as:

P ′ij(t) =
∑

k∈X\i

qik Pkj(t) + viPij(t)

=
∑
k∈X

rik Pkj(t)

Similarly, Kolmogorov’s forward equations can then be written as:

P ′ij(t) =
∑

k∈X\i

Pik (t)qkj + Pij(t)vj

=
∑
k∈X

Pik (t)rkj
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6.9 Computing the Transition Probabilities

Now, let R = [rij ]i,j∈X be the matrix of the rij ’s.

Then Kolmogorov’s backward equations can then be written in matrix form as:

P ′(t) = RP(t)

while Kolmogorov’s forward equations can then be written in matrix form as:

P ′(t) = P(t)R

Both sets of equations can be viewed as a matrix version of a scalar
differential equation of the form:

P ′(t) = rP(t) = P(t)r

This scalar differential equation has the solution P(t) = P(0)ert .
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6.9 Computing Transition Probabilities (cont.)

It can be shown that Kolmogorov’s backward and forward equations have a
similar solution:

P(t) = P(0)eRt

Using the boundary condition that P(0) = I , we get that:

P(t) = eRt ,

where the matrix eRt is given by:

eRt =
∞∑

n=0

Rn tn

n!
= lim

n→∞

(
I + R · t

n

)n

≈
(

I + R · t
N

)N

where N is large.
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Remaining lectures - Chapter 7

Week 19

Chapter 7.1 Renewal Theory and Its Applications
Chapter 7.2 Distribution of N(t)
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Remaining lectures - Chapter 10

Week 20

Chapter 10.1 Brownian Motion
Chapter 10.2 Hitting Times, Maximum Variable, and the Gambler’s
Ruin Problem
Chapter 10.3 Variations on Brownian Motion

EXAM: (Week 22) May 27, 14:30 – June 4, 14:30
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