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7.1 Renewal theory – Introduction

Definition

Let {N(t) : t ≥ 0} be a counting process and let Xn denote the nth interarrival
time, i.e., the time between the (n − 1)st and the nth event of this process,
n = 1,2, . . ..

If X1,X2, . . . are independent and identically distributed, then {N(t) : t ≥ 0} is
said to be a renewal process.

EXAMPLE: Consider a situation where we have an infinite supply of
lightbulbs, and let Xn denote the lifetime of the nth lightbulb.

We use one lightbulb at a time. As soon as a lightbulb fails, it is immediately
replaced by a new one.

We then introduce the counting process {N(t) : t ≥ 0} where N(t) represents
the number of failed lightbulbs at time t .

If X1,X2, . . . are independent and identically distributed, then {N(t) : t ≥ 0} is
a renewal process.
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7.1 Renewal theory – Introduction (cont.)
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Figure: Renewal and interarrival times

For a renewal process the events are referred to as renewals.

If {N(t) : t ≥ 0} is a renewal process with interarrival times X1,X2, . . . we let:

S0 = 0, Sn =
n∑

i=1

Xi , n = 1,2, . . .

That is, S1 = X1 is the time of the first renewal, S2 = X1 + X2 is the time of the
second renewal. In general Sn is the time of the nth renewal.
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7.1 Renewal theory – Introduction (cont.)

We denote the cumulative distribution function of the interarrival times by F ,
and assume that:

F (0) = P(Xn = 0) < 1, and lim
t→∞

F (t) = P(Xn <∞) = 1.

We also assume that E [Xn] = µ > 0.

Under these assumptions we can show:

N(t) <∞ for all t with probability 1.

N(∞) = limt→∞ N(t) =∞ with probability 1.
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7.2 Distribution of N(t)

In order to determine the distribution of N(t), we note that:

N(t) ≥ n⇔ Sn ≤ t

Hence, we get:

P(N(t) = n) = P(N(t) ≥ n)− P(N(t) ≥ n + 1)

= P(Sn ≤ t)− P(Sn+1 ≤ t)

= Fn(t)− Fn+1(t)

where Fn denotes the distribution of Sn, i.e., the n-fold convolution of the
distribution F .
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7.2 Distribution of N(t) (cont.)

We can also calculate P(N(t) = n) by conditioning on Sn and get:

P(N(t) = n) =

∫ ∞
0

P(N(t) = n|Sn = s)fSn (s)ds

=

∫ t

0
P(N(t) = n|Sn = s)fSn (s)ds +

∫ ∞
t

0 · fSn (s)ds

=

∫ t

0
P(Xn+1 > t − s|Sn = s)fSn (s)ds

=

∫ t

0
F̄ (t − s)fSn (s)ds

where F̄ (·) = 1− F (·).
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The renewal function m(t)

Proposition (The renewal function)

Let {N(t) : t ≥ 0} be a renewal process, and let m(t) = E [N(t)] be the
renewal function. Then the following holds:

m(t) <∞, for all t <∞

The stochastic properties of {N(t) : t ≥ 0} are uniquely determined by
m(t).

NOTE: We have shown earlier that P(N(t) <∞) = 1. From this result alone
we cannot infer that m(t) <∞ as well, as there are many distributions for
which the mean values are infinite. Thus, the result that we in fact have
m(t) <∞ is a stronger result.
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Integral equation for m(t)

We F denote the cumulative distribution, and f the density of X1.

An integral equation for m(t) can be found by conditioning on X1:

m(t) =

∫ ∞
0

E [N(t)|X1 = x ]f (x)dx

=

∫ t

0
E [N(t)|X1 = x ]f (x)dx +

∫ ∞
t

0 · f (x)dx

=

∫ t

0
[1 + E [N(t − x)]]f (x)dx

= F (t) +

∫ t

0
m(t − x)f (x)dx

This equation is called the renewal equation.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 7 and 10 8 / 19



10.1 Brownian Motion

Definition (Brownian motion)

A Brownian motion is a stochastic process {X (t) : t ≥ 0} where:

(i) X (0) = 0

(ii) {X (t) : t ≥ 0} has stationary and independent increments

(iii) X (t) ∼ N(0, σ2t), t > 0

If σ = 1, {X (t) : t ≥ 0} is called a standard Brownian motion.

NOTE: If {Y (t) : t ≥ 0} is a Brownian motion, where Y (t) ∼ N(0, σ2t), then
{X (t) : t ≥ 0}, where X (t) = Y (t)/σ, for all t ≥ 0 is a standard Brownian
motion.
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10.1 Brownian Motion (cont.)

We consider a standard Brownian motion {X (t) : t ≥ 0}.

Let 0 < t1 < t2 < · · · < tn, and let Xi = X (ti ), i = 1,2, . . . ,n

The joint density of X1, . . . ,Xn has the form:

ft (x1, . . . , xn) = C(t)e−(1/2)Q(x1,...,xn)

where C(t) is a suitable normalizing constant, and where:

Q(x1, . . . , xn) =
x2

1
t1

+
(x2 − x1)2

t2 − t1
+ · · ·+ (xn − xn−1)2

tn − tn−1

This formula is valid for any n ≥ 1 and for any 0 < t1 < · · · < tn. Moreover,
from this formula we can derive all possible conditional densities as well.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 7 and 10 10 / 19



10.1 Brownian Motion (cont.)

EXAMPLE: Let 0 < t1 < t2, and let X1 = X (t1) and X2 = X (t2). Then the joint
density of X1 and X2 is:

ft (x1, x2) = C(t)e−(1/2)Q(x1,x2)

where:

Q(x1, x2) =
x2

1
t1

+
(x2 − x1)2

t2 − t1

The marginal densities of X1 and X2 are respectively:

ft1 (x1) = C(t1)e−(1/2)(x2
1/t1)

ft2 (x2) = C(t2)e−(1/2)(x2
2/t2)
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10.1 Brownian Motion (cont.)

The conditional density of X2 given X1 = x1 then becomes:

fX2|X1=x1 =
ft (x1, x2)

ft1 (x1)
=

C(t)e
−(1/2)

[
x2
1

t1
+

(x2−x1)
2

t2−t1

]

C(t1)e
−(1/2)

[
x2
1

t1

]

= C(t2|t1)e
−(1/2)

[
(x2−x1)

2

t2−t1

]

where the normalizing constant C(t2|t1) = C(t)/C(t1).

By this and similar arguments we show that:

(X2|X1 = x1) ∼ N(x1, t2 − t1).

(X1|X2 = x2) ∼ N( t1
t2

x2,
t1
t2

(t2 − t1)).
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10.2 Hitting Times, Max Variable and Ruin
Let {X (t) : t ≥ 0} be a Brownian motion process with variance parameter σ2,
and let:

Ta = inf{t > 0 : X (t) = a} = The first time the process hits a.

We want to compute P(Ta ≤ t), where a > 0. In order to so, we instead
consider P(X (t) ≥ a), and condition on the event {Ta ≤ t}:

P(X (t) ≥ a) = P(X (t) ≥ a|Ta ≤ t)P(Ta ≤ t)

+ P(X (t) ≥ a|Ta > t)P(Ta > t)

By symmetry, it follows that:

P(X (t) ≥ a|Ta ≤ t) = 1
2

Moreover, we obviously have:

P(X (t) ≥ a|Ta > t) = 0
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Hitting Times, Max Variable and Ruin (cont.)
Hence, we have:

P(X (t) ≥ a) = 1
2 P(Ta ≤ t)

and thus:

P(Ta ≤ t) = 2 · P(X (t) ≥ a) = 2 · P(
X (t)
σ
√

t
≥ a
σ
√

t
) = 2 · Φ(− a

σ
√

t
)

If a < 0, we can use a similar argument, and obtain:

P(Ta ≤ t) = 2 · P(X (t) ≤ a) = 2 · P(
X (t)
σ
√

t
≤ a
σ
√

t
) = 2 · Φ(

a
σ
√

t
)

The formulas can be combined to:

P(Ta ≤ t) = 2 · Φ(− |a|
σ
√

t
)
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Hitting Times, Max Variable and Ruin (cont.)

NOTE:

If a > 0: max
0≤s≤t

X (s) ≥ a ⇔ Ta ≤ t

If a < 0: min
0≤s≤t

X (s) ≤ a ⇔ Ta ≤ t

Hence, if a > 0, we have:

P( max
0≤s≤t

X (s) ≥ a) = P(Ta ≤ t) = 2 · Φ(− a
σ
√

t
)

Similarly, if a < 0, we have:

P( min
0≤s≤t

X (s) ≤ a) = P(Ta ≤ t) = 2 · Φ(
a
σ
√

t
)
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Hitting Times, Max Variable and Ruin (cont.)
Finally, we let b < 0 < a, and let T = min{Ta,Tb} where:

Ta = inf{t > 0 : X (t) = a} = The first time the process hits a

Tb = inf{t > 0 : X (t) = b} = The first time the process hits b

We want to calculate P(Ta < Tb) = P(X (T ) = a).

Let P(X (T ) = a) = p, and P(X (T ) = b) = 1− P(X (T ) = a) = 1− p.

Since E [X (t)] = 0 for all t ≥ 0, it follows that we in particular must have:

0 = E [X (T )] = a · p + b · (1− p) = (a− b)p + b

By solving this equation with respect to p, we get:

P(Ta < Tb) = P(X (T ) = a) = p =
−b

a− b
=

|b|
a + |b|
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10.3 Variations on Brownian Motion

Brownian Motion with drift

Geometric Brownian Motion
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10.3.1 Brownian Motion with drift

We say that {X (t) : t ≥ 0} is a Brownian motion process with drift coefficient
µ and variance parameter σ2 if:

X (0) = 0

{X (t) : t ≥ 0} has stationary and independent increments

X (t) ∼ N(µt , σ2t), t ≥ 0.

An equivalent definition is to let {B(t) : t ≥ 0} be a standard Brownian motion
process, and then define:

X (t) = σB(t) + µt
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10.3.2 Geometric Brownian Motion

If {Y (t) : t ≥ 0} is a Brownian motion process drift coefficient µ and variance
parameter σ2, then the process {X (t) : t ≥ 0} defined by:

X (t) = eY (t)

is called a geometric Brownian motion process.

If {X (t) : t ≥ 0} is geometric Brownian motion process, we obtain:

E [X (t)|X (u),0 ≤ u ≤ s] = X (s)eµ(t−s)+σ2(t−s)/2
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