STK2130 - Week 3

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Markov Chains

A discrete time, discrete space stochastic process $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ is called a (time homogenuous) Markov chain if:

$$
P\left\{X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right\}=P_{i j}
$$

for all states $i_{0}, i_{1}, \ldots, i_{n-1}, i, j$ and all $n \geq 0$.

One-step transition matrix:

$$
\boldsymbol{P}=\left\|P_{i j}\right\|_{i, j}
$$

$P_{i j} \geq 0$ for all i, j and $\sum_{j} P_{i j}=1$

Chapman-Kolmogorov Equations

n-step transition probabilities:

$$
P_{i j}^{n}=P\left\{X_{n+k}=j \mid X_{k}=i\right\}, \quad n \geq 1
$$

n-step transition matrix:

$$
\boldsymbol{P}^{(n)}=\left\|P_{i j}^{n}\right\|_{i, j}
$$

Chapman-Kolmogorov Equations:

$$
\begin{aligned}
P_{i j}^{n+m} & =\sum_{k} P_{i k}^{n} \cdot P_{k j}^{m} \\
\boldsymbol{P}^{(n+m)} & =\boldsymbol{P}^{(n)} \cdot \boldsymbol{P}^{(m)} \\
\boldsymbol{P}^{(n)} & =\boldsymbol{P}^{(n-1)} \cdot \boldsymbol{P}^{(1)} \\
\boldsymbol{P}^{(n)} & =\boldsymbol{P}^{n}
\end{aligned}
$$

Example 4.8

$P\{$ Rain tomorrow \mid Rain today $\}=0.75$
$P\{$ Rain tomorrow \mid No rain today $\}=0.35$

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{ll}
0.75 & 0.25 \\
0.35 & 0.65
\end{array}\right] \\
\boldsymbol{P}^{(2)} & =\left[\begin{array}{ll}
0.65 & 0.35 \\
0.49 & 0.51
\end{array}\right] \\
\boldsymbol{P}^{(4)} & =\left[\begin{array}{ll}
0.5940 & 0.4060 \\
0.5684 & 0.4316
\end{array}\right] \\
\boldsymbol{P}^{(8)} & =\left[\begin{array}{ll}
0.5836 & 0.4164 \\
0.5830 & 0.4170
\end{array}\right]
\end{aligned}
$$

Example 4.9

$R R=$ Rain yesterday, Rain today, $\bar{R} R=$ No rain yesterday, Rain today,
$R \bar{R}=$ Rain yesterday, No rain today,
$\bar{R} \bar{R}=$ No rain yesterday, No rain today.

$$
\begin{array}{ll}
P\{R R \mid R R\}=0.70 & \\
P\{R \bar{R} \mid R R\}=0.30 \\
P\{R R \mid \bar{R} R\}=0.50 & P\{R \bar{R} \mid \bar{R} R\}=0.50 \\
P\{\bar{R} R \mid R \bar{R}\}=0.40 & P\{\bar{R} \bar{R} \mid R \bar{R}\}=0.60 \\
P\{\bar{R} R \mid \bar{R} \bar{R}\}=0.20 & P\{\bar{R} \bar{R} \mid \bar{R} \bar{R}\}=0.80
\end{array}
$$

Example 4.9 (cont.)

Row/Column order: $R R, \bar{R} R, \bar{R} R, \bar{R} \bar{R}$.

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{llll}
0.70 & 0.00 & 0.30 & 0.00 \\
0.50 & 0.00 & 0.50 & 0.00 \\
0.00 & 0.40 & 0.00 & 0.60 \\
0.00 & 0.20 & 0.00 & 0.80
\end{array}\right] \\
\boldsymbol{P}^{(2)} & =\left[\begin{array}{llll}
0.49 & 0.12 & 0.21 & 0.18 \\
0.35 & 0.20 & 0.15 & 0.30 \\
0.20 & 0.12 & 0.20 & 0.48 \\
0.10 & 0.16 & 0.10 & 0.64
\end{array}\right]
\end{aligned}
$$

$P\{$ Rain Thursday \mid Rain Monday \& Rain Tuesday $\}=0.49+0.12=0.61$

Example 4.9 (cont.)

Row/Column order: $R R, \bar{R} R, \bar{R} R, \bar{R} \bar{R}$.

$$
\boldsymbol{P}^{(7)}=\left[\begin{array}{llll}
0.2723 & 0.1465 & 0.1580 & 0.4233 \\
0.2633 & 0.1477 & 0.1549 & 0.4340 \\
0.2441 & 0.1511 & 0.1477 & 0.4571 \\
0.2352 & 0.1524 & 0.1447 & 0.4678
\end{array}\right]
$$

$P\{$ Rain next Tuesday \mid Rain Monday \& Rain Tuesday $\}$

$$
=0.2723+0.1465=0.4188
$$

Example 4.9 (cont.)

Row/Column order: $R R, \bar{R} R, \bar{R} R, \bar{R} \bar{R}$.

$$
\boldsymbol{P}^{(20)} \approx\left[\begin{array}{llll}
0.25 & 0.15 & 0.15 & 0.50 \\
0.25 & 0.15 & 0.15 & 0.50 \\
0.25 & 0.15 & 0.15 & 0.50 \\
0.25 & 0.15 & 0.15 & 0.50
\end{array}\right]
$$

$P\{$ Rain "some day" in the future $\}$
$\approx P\{$ Rain "some day" in the future|Rain Monday \& Rain Tuesday $\}$
$\approx 0.25+0.15=0.40$

Example 4.10

An urn always contains 2 balls. Ball colors are red and blue.
At each stage a ball is randomly chosen and then replaced by a new ball, which with probability 0.8 is the same color, and with probability 0.2 is the opposite color, as the ball it replaces.

If initially both balls are red, find the probability that the fifth ball selected is red.
$X_{n}=$ The number of red balls after the nth selection. $n=0,1,2, \ldots$

Example 4.10 (cont.)

NOTE: $X_{n} \in\{0,1,2\}$, for all $n=0,1,2, \ldots$
We then have:

$$
\begin{aligned}
& P_{00}=0.8, \quad P_{01}=0.2, \quad P_{02}=0.0 \\
& P_{10}=P\{\text { Red ball selected and replaced }\}=0.5 \cdot 0.2=0.1 \\
& P_{11}=P\{\text { Any ball selected and not replaced }\}=0.8 \\
& P_{12}=P\{\text { Blue ball selected and replaced }\}=0.5 \cdot 0.2=0.1 \\
& P_{20}=0.0, \quad P_{21}=0.2, \quad P_{22}=0.8 \\
& \qquad \boldsymbol{P}=\left[\begin{array}{lll}
0.8 & 0.2 & 0.0 \\
0.1 & 0.8 & 0.1 \\
0.0 & 0.2 & 0.8
\end{array}\right]
\end{aligned}
$$

Example 4.10 (cont.)

$$
\boldsymbol{P}^{(4)}=\left[\begin{array}{lll}
0.4872 & 0.4352 & 0.0776 \\
0.2176 & 0.5648 & 0.2176 \\
0.0776 & 0.4352 & 0.4872
\end{array}\right]
$$

$P($ Selection 5 is red)

$$
\begin{aligned}
& =\sum_{i=0}^{2} P\left(\text { Selection } 5 \text { is red } \mid X_{4}=i\right) \cdot P\left(X_{4}=i \mid X_{0}=2\right) \\
& =0.00 \cdot P_{2,0}^{4}+0.50 \cdot P_{2,1}^{4}+1.00 \cdot P_{2,2}^{4} \\
& =0.50 \cdot 0.4352+0.4872=0.7048
\end{aligned}
$$

Example 4.10 (cont.)

$$
\boldsymbol{P}^{(30)} \approx\left[\begin{array}{lll}
0.25 & 0.50 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.25 & 0.50 & 0.25
\end{array}\right]
$$

$P($ Selection 31 is red)

$$
\begin{aligned}
& =\sum_{i=0}^{2} P\left(\text { Selection } 31 \text { is red } \mid X_{30}=i\right) \cdot P\left(X_{30}=i \mid X_{0}=2\right) \\
& =0.00 \cdot P_{2,0}^{30}+0.50 \cdot P_{2,1}^{30}+1.00 \cdot P_{2,2}^{30} \\
& \approx 0.50 \cdot 0.50+0.25=0.50
\end{aligned}
$$

Example 4.11

Suppose that balls are successively distributed among 8 urns, with each ball being equally likely to be put in any of these urns.
What is the probability that there will be exactly 3 nonempty urns after 9 balls have been distributed?
$X_{n}=$ Number of nonempty urns after n distributions $\quad n=0,1,2 \ldots$
Transition probabilities:

$$
P_{i, i}=\frac{i}{8}, \quad P_{i, i+1}=\frac{8-i}{8}, \quad i=0,1, \ldots, 8 .
$$

Example 4.11 (cont.)

$$
\boldsymbol{P}=\left[\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 8 & 7 / 8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 / 8 & 6 / 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 / 8 & 5 / 8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 / 8 & 4 / 8 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 5 / 8 & 3 / 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 6 / 8 & 2 / 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 / 8 & 1 / 8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

By calculating $\boldsymbol{P}^{(9)}$ we find the solution to the problem:

$$
P\left(X_{9}=3 \mid X_{0}=0\right)=P_{03}^{9}=0.00756
$$

However, there are some significant shortcuts here.

Example 4.11 (cont.)

The first transition of $\left\{X_{n}\right\}$ is deterministic (from state 0 to 1). Thus, we may instead consider the Markov chain $\left\{Y_{n}\right\}$ instead:

$$
Y_{n}=X_{n+1}, \quad n=0,1,2, \ldots
$$

with state space $\{1,2, \ldots, 8\}$ and use that $P\left(X_{9}=3\right)=P\left(Y_{8}=3\right)$.
We can simplify the problem even further by letting:

$$
Z_{n}=\min \left\{Y_{n}, 4\right\}, \quad n=0,1,2, \ldots,
$$

and use that $P\left(Y_{8}=3\right)=p\left(Z_{8}=3\right)$.

Example 4.11 (cont.)

The state space of the Markov chain $\left\{Z_{n}\right\}$ is $\{1,2,3,4\}$ and its transition matrix is:

$$
\boldsymbol{Q}=\left[\begin{array}{cccc}
1 / 8 & 7 / 8 & 0 & 0 \\
0 & 2 / 8 & 6 / 8 & 0 \\
0 & 0 & 3 / 8 & 5 / 8 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 4.11 (cont.)

We first calculate:

$$
\boldsymbol{Q}^{(4)}=\left[\begin{array}{llll}
0.0002 & 0.0256 & 0.2563 & 0.7178 \\
0.0000 & 0.0039 & 0.0952 & 0.9009 \\
0.0000 & 0.0000 & 0.0198 & 0.9802 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

In order to find $\boldsymbol{Q}^{(8)}$, we use that:

$$
\boldsymbol{Q}^{(8)}=\boldsymbol{Q}^{(4)} \cdot \boldsymbol{Q}^{(4)}
$$

In particular:

$$
\begin{aligned}
P\left(X_{9}\right. & =3)=P\left(Z_{8}=3\right)=Q_{1,3}^{8}=\sum_{k=1}^{4} Q_{1, k}^{4} \cdot Q_{k, 3}^{4} \\
& =0.0002 \cdot 0.2563+0.0256 \cdot 0.0952+0.2563 \cdot 0.0198=0.00756
\end{aligned}
$$

First-passage probabilities

Consider a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S}, and let \mathcal{A} be a non-empty proper subset of \mathcal{S}.

We want to calculate the following probability:

$$
P\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right)
$$

In order to analyze this we introduce:

$$
N=\min \left\{n: X_{n} \in \mathcal{A}\right\},
$$

where we let $N=\infty$ is $X_{n} \notin \mathcal{A}$ for all n.
NOTE: N represents the first time the Markov chain enters \mathcal{A}.

$$
W_{n}=\left\{\begin{array}{cl}
X_{n} & \text { if } n<N \\
A & \text { if } n \geq N
\end{array}\right.
$$

NOTE: When $\left\{X_{n}\right\}$ enters $\mathcal{A},\left\{W_{n}\right\}$ is absorbed in state A.

First-passage probabilities (cont.)

The transition probabilities of $\left\{W_{n}\right\}$, denoted $Q_{i, j}$, are given by:

$$
\begin{aligned}
& Q_{i, j}=P_{i, j}, \quad i \notin \mathcal{A}, j \notin \mathcal{A}, \\
& Q_{i, A}=\sum_{j \in \mathcal{A}} P_{i, j}, \quad i \notin \mathcal{A}, j \in \mathcal{A}, \\
& Q_{A, A}=1 .
\end{aligned}
$$

We now have:

$$
\begin{aligned}
& P\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right) \\
& \quad=P\left(W_{m}=A \mid X_{0}=i\right) \\
& \quad=P\left(W_{m}=A \mid W_{0}=i\right)=Q_{i, A}^{m} .
\end{aligned}
$$

Example 4.12

In a sequence of independent flips of a fair coin, let N denote the number of flips until there is a run of 3 consecutive heads. We want to calculate:

$$
\begin{aligned}
& P(N \leq 8)=? \\
& P(N=8)=?
\end{aligned}
$$

To solve this problem we introduce a Markov chain $\left\{W_{n}\right\}$ with states $\mathcal{S}=\{0,1,2,3\}$ defined relative to the sequence of coin flips as follows:

If $W_{n}=i<3$, we currently are on a run of i consecutive heads, and that there has not yet been a run of 3 consecutive heads.
If $W_{n}=3$, a run of 3 consecutive heads has occurred.

Example 4.12 (cont.)

The transition matrix of $\left\{W_{n}\right\}$ is:

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 4.12 (cont.)

$$
\begin{aligned}
& \boldsymbol{P}^{(2)}=\left[\begin{array}{llll}
0.5000 & 0.2500 & 0.2500 & 0.0000 \\
0.5000 & 0.2500 & 0.0000 & 0.2500 \\
0.2500 & 0.2500 & 0.0000 & 0.5000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right] \\
& \boldsymbol{P}^{(4)}=\left[\begin{array}{llll}
0.4375 & 0.2500 & 0.1250 & 0.1875 \\
0.3750 & 0.1875 & 0.1250 & 0.3125 \\
0.2500 & 0.1250 & 0.0625 & 0.5625 \\
0,0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
\end{aligned}
$$

Example 4.12 (cont.)

$$
\begin{aligned}
& \boldsymbol{P}^{(7)}=\left[\begin{array}{llll}
0.3438 & 0.1875 & 0.1016 & 0.3672 \\
0.2891 & 0.1563 & 0.0859 & 0.4688 \\
0.1875 & 0.1016 & 0.0547 & 0.6563 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right] \\
& \boldsymbol{P}^{(8)}=\left[\begin{array}{llll}
0.3164 & 0.1719 & 0.0938 & 0.4180 \\
0.2656 & 0.1445 & 0.0781 & 0.5117 \\
0.1719 & 0.0938 & 0.0508 & 0.6836 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
\end{aligned}
$$

Example 4.12 (cont.)

This implies that:

$$
\begin{aligned}
P(N \leq 8) & =P_{0,3}^{8}=0.4180 \\
P(N=8) & =P(N \leq 8)-P(N \leq 7) \\
& =P_{0,3}^{8}-P_{0,3}^{7} \\
& =0.4180-0.3672=0.0508
\end{aligned}
$$

Alternatively:

$$
P(N=8)=P_{0,2}^{7} \cdot 0.5=0.1016 \cdot 0.5=0.0508
$$

