STK2130 - Week 4

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

First-passage probabilities

Consider a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S}, and let \mathcal{A} be a non-empty proper subset of \mathcal{S}.

We want to calculate the following probability:

$$
P\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right)
$$

In order to analyze this we introduce:

$$
N=\min \left\{n: X_{n} \in \mathcal{A}\right\},
$$

where we let $N=\infty$ is $X_{n} \notin \mathcal{A}$ for all n.
NOTE: N represents the first time the Markov chain enters \mathcal{A}.

$$
W_{n}=\left\{\begin{array}{cl}
X_{n} & \text { if } n<N \\
A & \text { if } n \geq N
\end{array}\right.
$$

NOTE: When $\left\{X_{n}\right\}$ enters $\mathcal{A},\left\{W_{n}\right\}$ is absorbed in state A.

First-passage probabilities (cont.)

The transition probabilities of $\left\{W_{n}\right\}$, denoted $Q_{i, j}$, are given by:

$$
\begin{aligned}
Q_{i, j} & =P_{i, j}, \\
Q_{i, A} & =\sum_{j \in \mathcal{A}} P_{i, j}, \quad i \notin \mathcal{A}, j \notin \mathcal{A}, \\
Q_{A, A} & =1
\end{aligned}
$$

We now have:

$$
\begin{aligned}
& P\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right) \\
& \quad=P\left(W_{m}=A \mid X_{0}=i\right) \\
& \quad=P\left(W_{m}=A \mid W_{0}=i\right)=Q_{i, A}^{m} .
\end{aligned}
$$

First-passage probabilities (cont.)

We now consider the following probability:

$$
\alpha=P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-1, X_{m}=j \mid X_{0}=i\right)
$$

CASE 1. $i, j \notin \mathcal{A}$
In this case the event $\left\{X_{k} \notin \mathcal{A}\right.$ for all $\left.1 \leq k \leq m-1, X_{m}=j\right\}$ is equivalent to the event $\left\{W_{m}=j\right\}$.

Hence, it follows that:

$$
\alpha=P\left(W_{m}=j \mid W_{0}=i\right)=Q_{i, j}^{m} .
$$

First-passage probabilities (cont.)

CASE 2. $i \notin \mathcal{A}$ and $j \in \mathcal{A}$
In this case we have:

$$
\begin{aligned}
\alpha= & \sum_{r \notin \mathcal{A}} P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r, X_{m}=j \mid X_{0}=i\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r \mid X_{0}=i\right) \\
& \cdot P\left(X_{m}=j \mid X_{0}=i, X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r \mid X_{0}=i\right) \cdot P\left(X_{m}=j \mid X_{m-1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} Q_{i, r}^{m-1} \cdot P_{r, j}
\end{aligned}
$$

First-passage probabilities (cont.)

CASE 3. $i \in \mathcal{A}$ and $j \notin \mathcal{A}$
In this case we have:

$$
\begin{aligned}
\alpha= & \sum_{r \notin \mathcal{A}} P\left(X_{1}=r, X_{k} \notin \mathcal{A} \text { for all } 2 \leq k \leq m-1, X_{m}=j \mid X_{0}=i\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{1}=r \mid X_{0}=i\right) \\
& \cdot P\left(X_{k} \notin \mathcal{A} \text { for all } 2 \leq k \leq m-1, X_{m}=j \mid X_{0}=i, X_{1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{1}=r \mid X_{0}=i\right) \\
& \cdot P\left(X_{k} \notin \mathcal{A} \text { for all } 2 \leq k \leq m-1, X_{m}=j \mid X_{1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} P_{i, r} \cdot Q_{r, j}^{m-1}
\end{aligned}
$$

First-passage probabilities (cont.)

CASE 4. $i \in \mathcal{A}$ and $j \in \mathcal{A}$
By combining the previous arguments we get:

$$
\alpha=\sum_{r, s \notin \mathcal{A}} P_{i, r} \cdot Q_{r, s}^{m-2} \cdot P_{s, j}
$$

Unconditional probabilities

We introduce the probabilities:

$$
\pi_{i}^{(n)}=P\left\{X_{n}=i\right\}, \quad i \in \mathcal{S}, \quad n=0,1,2, \ldots
$$

We then have:

$$
\begin{aligned}
\pi_{j}^{(n+m)} & =\sum_{i \in \mathcal{S}} P\left\{X_{n+m}=j \cap X_{n}=i\right\} \\
& =\sum_{i \in \mathcal{S}} P\left\{X_{n}=i\right\} \cdot P\left\{X_{n+m}=j \mid X_{n}=i\right\} \\
& =\sum_{i \in \mathcal{S}} \pi_{i}^{(n)} \cdot P_{i j}^{m} .
\end{aligned}
$$

In particular:

$$
\pi_{j}^{(1)}=\sum_{i \in \mathcal{S}} \pi_{i}^{(0)} \cdot P_{i j}, \quad \pi_{j}^{(n+1)}=\sum_{i \in \mathcal{S}} \pi_{i}^{(n)} \cdot P_{i j}
$$

Unconditional probabilities (cont.)

Assume that:

$$
\lim _{n \rightarrow \infty} \pi_{i}^{(n)}=\pi_{i}, \quad i \in \mathcal{S} .
$$

Then we obviously also have:

$$
\lim _{n \rightarrow \infty} \pi_{j}^{(n+1)}=\pi_{j}, \quad j \in \mathcal{S} .
$$

In particular, if $\mathcal{S}=\{1, \ldots, k\}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$, then:

$$
\pi_{j}=\lim _{n \rightarrow \infty} \pi_{j}^{(n+1)}=\lim _{n \rightarrow \infty} \sum_{i=1}^{k} \pi_{i}^{(n)} \cdot P_{i j}=\sum_{i=1}^{k} \lim _{n \rightarrow \infty} \pi_{i}^{(n)} \cdot P_{i j}=\sum_{i=1}^{k} \pi_{i} \cdot P_{i j}
$$

Thus, π must satisfy:

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \cdot \boldsymbol{P}
$$

Example 4.8 revisited

$P\{$ Rain tomorrow \mid Rain today $\}=0.75$
$P\{$ Rain tomorrow \mid No rain today $\}=0.35$

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{ll}
0.75 & 0.25 \\
0.35 & 0.65
\end{array}\right] \\
\boldsymbol{P}^{(2)} & =\left[\begin{array}{ll}
0.65 & 0.35 \\
0.49 & 0.51
\end{array}\right] \\
\boldsymbol{P}^{(4)} & =\left[\begin{array}{ll}
0.5940 & 0.4060 \\
0.5684 & 0.4316
\end{array}\right] \\
\boldsymbol{P}^{(12)} & =\left[\begin{array}{ll}
0.5833 & 0.4167 \\
0.5833 & 0.4167
\end{array}\right]
\end{aligned}
$$

Example 4.8 revisited (cont.)

We now let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}\right)$, and consider the equation:

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \cdot \boldsymbol{P}
$$

which in this case becomes:

$$
\begin{aligned}
& \pi_{1}=0.75 \pi_{1}+0.35 \pi_{2} \\
& \pi_{2}=0.25 \pi_{1}+0.65 \pi_{2}
\end{aligned}
$$

By inserting $\pi_{2}=1-\pi_{1}$ into the first equation, we get:

$$
\pi_{1}=0.75 \pi_{1}+0.35\left(1-\pi_{1}\right)=0.40 \pi_{1}+0.35
$$

From this it follows that:

$$
\begin{aligned}
& \pi_{1}=0.35 /(1-0.40)=0.5833 \\
& \pi_{2}=1-\pi_{1}=0.4167
\end{aligned}
$$

Chapter 4.3. Classification of States

Let $\left\{X_{n}\right\}$ be a Markov chain with state space \mathcal{S} and transition probability matrix \boldsymbol{P}.

State j is said to be accessible from state i, denoted as $i \rightarrow j$, if $P_{i j}^{n}>0$ for some $n \geq 0$.

Note that we have:

$$
\begin{aligned}
\max _{n} P_{i j}^{n} & \leq P\left(\bigcup_{n=1}^{\infty}\left\{X_{n}=j\right\} \mid X_{0}=i\right) \\
& \leq \sum_{n=0}^{\infty} P\left\{X_{n}=j \mid X_{0}=i\right\}=\sum_{n=0}^{\infty} P_{i j}^{n}
\end{aligned}
$$

Hence, $i \rightarrow j$ if and only if:

$$
P\left(\bigcup_{n=1}^{\infty}\left\{X_{n}=j\right\} \mid X_{0}=i\right)>0
$$

Chapter 4.3. Classification of States (cont.)

A state diagram for a Markov chain is a directed graph where the nodes represent the states and the edges represent possible one-step transitions. More precisely, the state diagram contains an edge from node i to node j if and only if $P_{i j}>0$.

If $i, j \in \mathcal{S}$, then $i \rightarrow j$ if and only if the state diagram contains at least one directed path from i to j.

If such a path exists, we have:

$$
P_{i j}^{n} \geq P_{i, k_{1}} \cdot P_{k_{1}, k_{2}} \cdots P_{k_{n-2}, k_{n-1}} \cdot P_{k_{n-1}, j}>0 .
$$

Communicating states

States i and j communicate, denoted as $i \leftrightarrow j$, if $i \rightarrow j$ and $j \rightarrow i$.
The relation \leftrightarrow is an equivalence relation. That is \leftrightarrow satisfies the following properties:

- Reflexivity: $i \leftrightarrow i$.
- Symmetry: $i \leftrightarrow j$ if and only if $j \leftrightarrow i$.
- Transitivity: $i \leftrightarrow j$ and $j \leftrightarrow k$ implies $i \leftrightarrow k$.

Reflexivity follows since we always have $P_{i j}^{0}=1>0$. Symmetry follows directly from the definition.

Communicating states (cont.)

To prove transitivity we assume that $i \leftrightarrow j$ and $j \leftrightarrow k$.
Hence, in particular $i \rightarrow j$ and $j \rightarrow k$, implying that there exists $m, n \geq 0$ such that $P_{i j}^{m}>0$ and $P_{j k}^{n}>0$.

By the Chapman-Kolmogorov equations, we have:

$$
P_{i k}^{m+n}=\sum_{r \in \mathcal{S}} P_{i r}^{m} P_{r k}^{n} \geq P_{i j}^{m} \cdot P_{j k}^{n}>0 .
$$

Hence, by definition $i \rightarrow k$.
By a similar argument we can show that $k \rightarrow i$ as well.
Hence, we conclude that $i \leftrightarrow k$.

Communicating states (cont.)

Two states that communicate are said to be in the same (equivalence) class.
Two classes of states are either identical or disjoint.
PROOF: Assume that $\mathcal{A}, \mathcal{B} \subseteq \mathcal{S}$ represent two equivalence classes, and assume that $\mathcal{A} \cap \mathcal{B} \neq \emptyset$. That is, there exists a state i such that $i \in \mathcal{A} \cap \mathcal{B}$.

Then choose $j \in \mathcal{A}$ and $k \in \mathcal{B}$ arbitrarily.
Now, $i, j \in \mathcal{A}$ implies that $i \leftrightarrow j$ and $i, k \in \mathcal{B}$ implies that $i \leftrightarrow k$.
Hence, by transitivity we also have $j \leftrightarrow k$. That is, j and k belong to the same equivalence class.

Since this holds for any $j \in \mathcal{A}$ and $k \in \mathcal{B}$, this implies that $\mathcal{A}=\mathcal{B}$
The equivalence classes partition the state space \mathcal{S} into a number of disjoint sets. A Markov chain is called irreducible if the number of equivalence classes is one.

Example 4.15

Consider a Markov chain with state space $\mathcal{S}=\{0,1,2\}$ and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

We then observe:
Since $P_{01}=\frac{1}{2}>0$, it follows that $0 \rightarrow 1$
Since $P_{10}=\frac{1}{2}>0$, it follows that $1 \rightarrow 0$
Since $P_{12}=\frac{1}{4}>0$, it follows that $1 \rightarrow 2$
Since $P_{21}=\frac{1}{3}>0$, it follows that $2 \rightarrow 1$
Hence, $0 \leftrightarrow 1$ and $1 \leftrightarrow 2$, and by transitivity $0 \leftrightarrow 2$ as well. Thus, the Markov chain is irreducible.

Example 4.15 (cont.)

Figure: State diagram of an irreducible Markov chain with one class $\{0,1,2\}$

Example 4.16

A Markov chain with state space $\mathcal{S}=\{0,1,2,3\}$ and matrix:

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
P_{01} & =P_{10}=\frac{1}{2}, \text { implying that } 0 \leftrightarrow 1 \\
P_{i j} & =0, \text { implying that } i \nrightarrow j, \quad i=0,1, \quad j=2,3 \\
P_{2 i} & =\frac{1}{4}, \text { implying that } 2 \rightarrow i, \quad i=0,1,2,3 \\
P_{3 i} & =0, \text { implying that } 3 \nrightarrow i, \quad i=0,1,2
\end{aligned}
$$

The Markov chain has classes $\{0,1\},\{2\}$ and $\{3\}$, and is not irreducible.

Example 4.16 (cont.)

Figure: State diagram of a Markov chain with three classes $\{0,1\},\{2\}$ and \{3\}.

Recurrent and transient states

We consider the probabilities:

$$
f_{i}=P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=i\right\} \mid X_{0}=i\right\}, \quad i \in \mathcal{S} .
$$

- State i is recurrent if $f_{i}=1$.
- State i is transient if $f_{i}<1$.

Assume that $X_{0}=i$, and let N_{i} denote the number of times $X_{n}=i$.

- If i is recurrent, then $P\left(N_{i}=\infty\right)=1$.
- If i is transient, then $P\left(N_{i}=n\right)=f_{i}^{n-1}\left(1-f_{i}\right), n=1,2, \ldots$.

If i is transient and $X_{0}=i$, then N_{i} has a geometric distribution with $E\left[N_{i}\right]=1 /\left(1-f_{i}\right)$.

Proposition 4.1

Let $I_{i}^{(n)}=I\left(X_{n}=i\right), n=0,1, \ldots$. We can then write:

$$
N_{i}=\sum_{n=0}^{\infty} I_{i}^{(n)}
$$

Hence, we have:

$$
\begin{aligned}
E\left[N_{i} \mid X_{0}=i\right] & =\sum_{n=0}^{\infty} E\left[l_{i}^{(n)} \mid X_{0}=i\right] \\
& =\sum_{n=0}^{\infty} P\left[X_{n}=i \mid X_{0}=i\right]=\sum_{n=0}^{\infty} P_{i i}^{n}
\end{aligned}
$$

- State i is recurrent, if $\sum_{n=1}^{\infty} P_{i j}^{n}=\infty$.
- State i is transient, if $\sum_{n=1}^{\infty} P_{i j}^{n}<\infty$.

Corollary 4.2

If state i is recurrent, and $i \leftrightarrow j$, then state j is recurrent as well. Thus, recurrence is a class property.
PROOF: Since $i \leftrightarrow j$, there exists k and m such that $P_{i j}^{k}>0$ and $P_{j i}^{m}>0$.
Hence, for any $n=1,2, \ldots$ we have:

$$
P_{j j}^{m+n+k} \geq P_{j i}^{m} \cdot P_{i j}^{n} \cdot P_{i j}^{k} .
$$

Summing over all n, and using that i is recurrent, $P_{i j}^{k}>0$ and $P_{j i}^{m}>0$ we get:

$$
\sum_{n=1}^{\infty} P_{i j}^{m+n+k} \geq P_{j i}^{m} \cdot P_{i j}^{k} \cdot \sum_{n=1}^{\infty} P_{i i}^{n}=\infty
$$

Hence, we conclude that j is recurrent as well

Corollary 4.2 (cont.)

- Corollary 4.2 also implies that transience is a class property. For if state i is transient and $i \leftrightarrow j$, then state j must also be transient. For if j were recurrent then, by Corollary 4.2, i would also be recurrent and hence could not be transient.
- Corollary 4.2 along with the fact that not all states in a finite Markov chain can be transient leads to the conclusion that all states of a finite irreducible Markov chain are recurrent.

Example 4.17

Consider a Markov chain with state space $\mathcal{S}=\{0,1,2,3\}$ and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

It is easy to verify that $i \leftrightarrow j$ for all $i, j \in \mathcal{S}$. Hence, the Markov chain is irreducible and thus all states must be recurrent

Example 4.17 (cont.)

Figure: State diagram of an irreducible Markov chain with one class \{0, 1, 2, 3\}

Example 4.18

Consider a Markov chain with state space $\mathcal{S}=\{0,1,2,3,4\}$ and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

This chain has classes $\{0,1\},\{2,3\}$ and $\{4\}$.
The first two classes are recurrent and the third transient

Example 4.18 (cont.)

Figure: State diagram of a Markov chain with classes $\{0,1\},\{2,3\}$ and $\{4\}$

Example 4.19 - Random walk

Consider a Markov chain with state space $\mathcal{S}=\{\ldots,-2,-1,0,1,2, \ldots\}$ and where $0<p<1$ and:

$$
P_{i, i+1}=p, \quad P_{i, i-1}=(1-p), \quad i \in \mathcal{S} .
$$

It is obvious that $i \leftrightarrow j$ for all $i, j \in \mathcal{S}$. Hence, according to Corollary 4.2 all states are either recurrent or transient.
In order to check for recurrence, it is sufficient to check if $\sum_{n=1}^{\infty} P_{00}^{n}=\infty$.
We then observe that X_{n} is odd if n is odd, and X_{n} is even if n is even. Hence, since 0 is even, we have:

$$
\begin{aligned}
P_{00}^{2 n-1} & =0, \quad n=1,2, \ldots \\
P_{00}^{2 n} & =\binom{2 n}{n} p^{n}(1-p)^{n}=\frac{(2 n)!}{n!n!}[p(1-p)]^{n}, \quad n=1,2, \ldots
\end{aligned}
$$

Example 4.19 - Random walk (cont.)

We then use Stirling's formula for $n!$:

$$
n!\approx n^{n+1 / 2} e^{-n} \sqrt{2 \pi}
$$

From this we get:

$$
\frac{(2 n)!}{n!n!} \approx \frac{(2 n)^{2 n+1 / 2} e^{-2 n} \sqrt{2 \pi}}{\left(n^{n+1 / 2} e^{-n} \sqrt{2 \pi}\right)^{2}}=\frac{(2 n)^{2 n+1 / 2} e^{-2 n} \sqrt{2 \pi}}{n^{2 n+1} e^{-2 n}(2 \pi)}=\frac{2^{2 n}}{\sqrt{n \pi}}=\frac{4^{n}}{\sqrt{n \pi}}
$$

Hence:

$$
P_{00}^{2 n}=\frac{(2 n)!}{n!n!}[p(1-p)]^{n} \approx \frac{(4 p(1-p))^{n}}{\sqrt{n \pi}}
$$

Example 4.19 - Random walk (cont.)

This implies that:

$$
\sum_{n=1}^{\infty} P_{00}^{2 n} \approx \sum_{n=1}^{\infty} \frac{(4 p(1-p))^{n}}{\sqrt{n \pi}}
$$

This series is divergent if and only if $p=\frac{1}{2}$.
Hence, the states are recurrent if and only if $p=\frac{1}{2}$.

