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First-passage probabilities

Consider a Markov chain {X,} with state space S, and let A be a non-empty
proper subset of S.

We want to calculate the following probability:

P(Xx € Aforsome 1 < k< m|Xy =)

In order to analyze this we introduce:
N =min{n: X, € A},
where we let N = o is X, ¢ A for all n.

NOTE: N represents the first time the Markov chain enters A.

X, ifn< N
W"—{ A ifn>N

NOTE: When {X;,} enters A, {W,} is absorbed in state A.
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First-passage probabilities (cont.)

The transition probabilities of { W}, denoted Q; , are given by:
Qij = Pij, i¢Aj¢ A,

Qia= Z Pij, ¢ AjeA,
jeA

QA,A =1.
We now have:
P(Xx € Aforsome 1 < k< m|Xy =)
=P(Wn=AX=1)
=P(Wn=AWy,=1i)= Q,-’”’A.
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First-passage probabilities (cont.)

We now consider the following probability:

a=P(Xx¢ Aforall1 <k <m—1,Xn=j|Xo=1)

CASE1.i,j¢ A

In this case the event { X ¢ Aforall1 <k < m—1,X, =/} is equivalent to
the event {W,, = j}.

Hence, it follows that:

o= P(Wp = j|Wo = i) = Q.
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First-passage probabilities (cont.)

CASE2.i¢ Aandje A

In this case we have:

a=Y PXc¢ Aforall1 <k<m—2 Xp1=1rXn=jX =1
r¢A

=> P(Xk ¢ Aforall1 <k <m—2,Xp 1 =r|Xo =)
r¢ A
PXm=jlXo=i,Xc ¢ Aforall1 <k<m-2,Xp_1=1)

:ZP(Xk g Aforalll <k<m—-2 Xp_1=r|Xo=1)- P(Xn=j|Xm_1=1)
r¢ A

ZQm1

r¢ A
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First-passage probabilities (cont.)
CASE3.ic Aandj¢ A
In this case we have:
a=>Y PXi=rX¢Aforall2<k<m-—1,Xy =j|Xo = i)

r¢ A

=> P(Xi =r|Xo =)
r¢ A
PXk ¢ Aforall2<k<m—-1,Xp=j|Xo=iX1=r)

=> P(Xi =r|Xo =)
r¢ A
PXk ¢ Aforall2<k<m-—-1,Xp=j|X1=r)
=> Py
r¢ A
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First-passage probabilities (cont.)

CASE4.ic Aandje A

By combining the previous arguments we get:

—2
a= > P, Q% Py
r.s¢ A
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Unconditional probabilities
We introduce the probabilities:

7N = P{X, =1}, i€S, n=0,1.2,...

We then have:

T = 3" P{Xpm = 0 Xp = i}

i€S

= ZP{Xn =i} P{Xnim = jIXn =i}

ieS

-3y

ieS

In particular:

) _ Z”/(O) - Py, ﬂ](n+1) _ Zﬂ’(n) - Pj

€S ieS
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Unconditional probabilities (cont.)
Assume that:

lim = =7, ieS.

n—oo

Then we obviously also have:

lim 7™ =7, jes.

n—oo

In particular, if S = {1,...,k} and w = (7, ..., mk), then:
(n+1) o « " K
; n+1 ; n _ ,
1= = i—

Thus, = must satisfy:
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Example 4.8 revisited

P{Rain tomorrow|Rain today} = 0.75
P{Rain tomorrow|No rain today} = 0.35

p_[075 025
~ 1035 065

p _ [ 065 035
~ | 049 051

pi4) _ [ 05940 0.4060
~ | 05684 0.4316

p(12) _ 0.5833 0.4167
0.5833 0.4167
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Example 4.8 revisited (cont.)

We now let « = (71, m2), and consider the equation:
m=m-P.
which in this case becomes:

7 = 0.75m1 + 0.35m5
7w = 0.257¢ + 0.65m,

By inserting mo = 1 — 7y into the first equation, we get:
w1 = 0.75m1 + 0.35(1 — 1) = 0.40my + 0.35
From this it follows that:
m = 0.35/(1 — 0.40) = 0.5833
m=1—m =0.4167
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Chapter 4.3. Classification of States

Let {X,} be a Markov chain with state space S and transition probability
matrix P.

State j is said to be accessible from state /, denoted as i — j, if P > 0 for
some n > 0.

Note that we have:

max P} < P({J{X»=j}IX =)

n=1
<Y P =j1X% =i} =>_Pf.
n=0 n=0

Hence, i — j if and only if:

AU X = 1} = i) > 0.

n=1
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Chapter 4.3. Classification of States (cont.)
A state diagram for a Markov chain is a directed graph where the nodes
represent the states and the edges represent possible one-step transitions.

More precisely, the state diagram contains an edge from node i to node j if
and only if P; > 0.

Ifi,j € S, then i — jif and only if the state diagram contains at least one
directed path from j to j.

O~O0~0-—  —O

i k1 k2 j

If such a path exists, we have:

n
Pi > Pik - Piso Py ok 1" Piy_yj > 0.
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Communicating states

States i and j communicate, denoted as i < j, if i — jand j — i.

The relation «+ is an equivalence relation. That is «+ satisfies the following
properties:

@ Reflexivity: i < i.
@ Symmetry: i < jif and only if j <> /.

@ Transitivity: i <» jand j <+ k implies i < k.

Reflexivity follows since we always have P = 1 > 0. Symmetry follows
directly from the definition.
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Communicating states (cont.)

To prove transitivity we assume that i <» j and j < k.

Hence, in particular i — j and j — k, implying that there exists m, n > 0 such
that P > 0 and Pj > 0.

By the Chapman-Kolmogorov equations, we have:

m+n __ m pn m n
P —ZPirPrkZPq"/k>0-
res

Hence, by definition i — k.
By a similar argument we can show that kK — i as well.

Hence, we conclude that i <+ k.
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Communicating states (cont.)

Two states that communicate are said to be in the same (equivalence) class.
Two classes of states are either identical or disjoint.

PROOF: Assume that A, B C S represent two equivalence classes, and
assume that AN B # 0. That is, there exists a state i such that i € AN B.
Then choose j € A and k € B arbitrarily.

Now, i,j € Aimplies that i <» j and i, k € B implies that j «» k.

Hence, by transitivity we also have j «+» k. That is, j and k belong to the same
equivalence class.

Since this holds for any j € A and k € 1, this implies that A = B |

The equivalence classes partition the state space S into a number of disjoint
sets. A Markov chain is called irreducible if the number of equivalence
classes is one.
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Example 4.15

Consider a Markov chain with state space S = {0, 1,2} and transition
probability matrix:

1 1
2 2 0
1 1t 1 1
P=13 2 2
1 2
0 3 3

We then observe:

Since Py = 3 > 0, it follows that 0 — 1
Since Pjo = § > 0, it follows that 1 — 0
Since Pp = § > 0, it follows that 1 — 2
Since P = § > 0, it follows that 2 — 1

Hence, 0 ++ 1 and 1 «<» 2, and by transitivity 0 <+ 2 as well. Thus, the Markov
chain is irreducible.
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Example 4.15 (cont.)

J

Figure: State diagram of an irreducible Markov chain with one class {0, 1,2}
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Example 4.16

A Markov chain with state space S = {0, 1,2, 3} and matrix:

3 200
P_;‘Qoo
I I I R |
4 4 1 1
0 0 0 {1

Po1 = Pio = %, implying that 0 < 1

P;j =0, implying thati /4 j, i=0,1, j=2,3
P, =}, implying that2 — i, i=0,1,2,3

Psi =0, implying that 3 /4 i, i=0,1,2

The Markov chain has classes {0, 1}, {2} and {3}, and is not irreducible.
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Example 4.16 (cont.)

Figure: State diagram of a Markov chain with three classes {0, 1}, {2} and

{3}
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Recurrent and transient states

We consider the probabilities:

fi=P({X=i}X=i ics
r=1

@ State iis recurrent if f; = 1.

@ State jis transient if f; < 1.
Assume that Xy = /, and let N; denote the number of times X, = i.
@ If i is recurrent, then P(N; = o0) = 1.

@ If iis transient, then P(N; = n) = f"~'(1 — f), n=1,2,.. ..

If i is transient and Xy = /, then N; has a geometric distribution with
E[N]=1/(1 = f).
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Proposition 4.1

Let ) = (X, = i), n=0,1,.... We can then write:

N; = i /"

n=0

Hence, we have:

EIN|Xo=11=>_ E[" (X0 = 1]
n=0

=Y PXa=ilXo=1=)Y_ P}
n=0 n=0

@ State / is recurrent, if Y, Pfl = oo.

@ State i is transient, if >, P < cc.
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Corollary 4.2

If state i is recurrent, and i < j, then state j is recurrent as well. Thus,
recurrence is a class property.

PROOF: Since i ++ j, there exists k and m such that P,j? > 0and P > 0.

Hence, forany n=1,2,... we have:
pmtntk > pm _pn . pk
Jii = i i i+

Summing over all n, and using that i is recurrent, P}j‘ > 0and P > 0 we get:

oo o0
m-+n+k m Kk n __
Y PP PPLPfY Pl =oo
n=1 n=1
Hence, we conclude that j is recurrent as well [ |
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Corollary 4.2 (cont.)

e Corollary 4.2 also implies that transience is a class property. For if state i is
transient and i <» j, then state j must also be transient. For if j were recurrent
then, by Corollary 4.2, i would also be recurrent and hence could not be
transient.

e Corollary 4.2 along with the fact that not all states in a finite Markov chain
can be transient leads to the conclusion that all states of a finite irreducible
Markov chain are recurrent.
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Example 4.17

Consider a Markov chain with state space S = {0, 1,2, 3} and transition
probability matrix:

o

o
- a4 O O

2
0
0
0

o
o O O mn=

It is easy to verify that j +» j for all i, j € S. Hence, the Markov chain is
irreducible and thus all states must be recurrent |
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Example 4.17 (cont.)

Figure: State diagram of an irreducible Markov chain with one class
{0,1,2,3}
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Example 4.18

Consider a Markov chain with state space S = {0,1,2,3,4} and transition
probability matrix:

1 2000
1 000
P=j0 o0 3 O
00 % o0
4 2 00 3]
This chain has classes {0,1}, {2,3} and {4}.
The first two classes are recurrent and the third transient [ |
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Example 4.18 (cont.)

Figure: State diagram of a Markov chain with classes {0, 1}, {2,3} and {4}
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Example 4.19 - Random walk

Consider a Markov chain with state space S ={...,-2,-1,0,1,2,...} and
where 0 < p < 1 and:

Piiy1=p, Piic1=(1-p), ieS.

It is obvious that i <» j for all /,j € S. Hence, according to Corollary 4.2 all
states are either recurrent or transient.

In order to check for recurrence, it is sufficient to check if Y2, P§, = oc.

We then observe that X, is odd if nis odd, and X, is even if nis even. Hence,
since 0 is even, we have:

P '=0, n=1,2,...

Py = (2:>p”(1 -p) = (5!':7)!! (1 =p)", n=1,2,...
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Example 4.19 - Random walk (cont.)

We then use Stirling’s formula for n!:

n! ~ n"t1/2e=1\/21

From this we get:

(2[’7)! ~ (2n)2n+1/26—2n /27.r _ (2n)2n+1/2€—2n /271. _ 22n _ 4n
nint = (pnii/2e-n\/27)2  nPle2(2r) \/nr  /nr

Hence:
P = B0y —(4p(\1/;_ﬂp))"
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Example 4.19 - Random walk (cont.)

This implies that:

oo

> pgg=y ORI

n=1

This series is divergent if and only if p = 3

Hence, the states are recurrent if and only if p = %
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