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First-passage probabilities

Consider a Markov chain {Xn} with state space S, and let A be a non-empty
proper subset of S.

We want to calculate the following probability:

P(Xk ∈ A for some 1 ≤ k ≤ m|X0 = i)

In order to analyze this we introduce:

N = min{n : Xn ∈ A},

where we let N =∞ is Xn /∈ A for all n.

NOTE: N represents the first time the Markov chain enters A.

Wn =

{
Xn if n < N
A if n ≥ N

NOTE: When {Xn} enters A, {Wn} is absorbed in state A.
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First-passage probabilities (cont.)

The transition probabilities of {Wn}, denoted Qi,j , are given by:

Qi,j = Pi,j , i /∈ A, j /∈ A,

Qi,A =
∑
j∈A

Pi,j , i /∈ A, j ∈ A,

QA,A = 1.

We now have:

P(Xk ∈ A for some 1 ≤ k ≤ m|X0 = i)

= P(Wm = A|X0 = i)

= P(Wm = A|W0 = i) = Qm
i,A.
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First-passage probabilities (cont.)

We now consider the following probability:

α = P(Xk /∈ A for all 1 ≤ k ≤ m − 1,Xm = j |X0 = i)

CASE 1. i , j /∈ A

In this case the event {Xk /∈ A for all 1 ≤ k ≤ m − 1,Xm = j} is equivalent to
the event {Wm = j}.

Hence, it follows that:

α = P(Wm = j |W0 = i) = Qm
i,j .
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First-passage probabilities (cont.)

CASE 2. i /∈ A and j ∈ A

In this case we have:

α =
∑
r /∈A

P(Xk /∈ A for all 1 ≤ k ≤ m − 2,Xm−1 = r ,Xm = j |X0 = i)

=
∑
r /∈A

P(Xk /∈ A for all 1 ≤ k ≤ m − 2,Xm−1 = r |X0 = i)

· P(Xm = j |X0 = i ,Xk /∈ A for all 1 ≤ k ≤ m − 2,Xm−1 = r)

=
∑
r /∈A

P(Xk /∈ A for all 1 ≤ k ≤ m − 2,Xm−1 = r |X0 = i) · P(Xm = j |Xm−1 = r)

=
∑
r /∈A

Qm−1
i,r · Pr ,j
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First-passage probabilities (cont.)
CASE 3. i ∈ A and j /∈ A

In this case we have:

α =
∑
r /∈A

P(X1 = r ,Xk /∈ A for all 2 ≤ k ≤ m − 1,Xm = j |X0 = i)

=
∑
r /∈A

P(X1 = r |X0 = i)

· P(Xk /∈ A for all 2 ≤ k ≤ m − 1,Xm = j |X0 = i ,X1 = r)

=
∑
r /∈A

P(X1 = r |X0 = i)

· P(Xk /∈ A for all 2 ≤ k ≤ m − 1,Xm = j |X1 = r)

=
∑
r /∈A

Pi,r ·Qm−1
r ,j
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First-passage probabilities (cont.)

CASE 4. i ∈ A and j ∈ A

By combining the previous arguments we get:

α =
∑

r ,s/∈A

Pi,r ·Qm−2
r ,s · Ps,j
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Unconditional probabilities
We introduce the probabilities:

π
(n)
i = P{Xn = i}, i ∈ S, n = 0,1,2, . . .

We then have:

π
(n+m)
j =

∑
i∈S

P{Xn+m = j ∩ Xn = i}

=
∑
i∈S

P{Xn = i} · P{Xn+m = j |Xn = i}

=
∑
i∈S

π
(n)
i · P

m
ij .

In particular:

π
(1)
j =

∑
i∈S

π
(0)
i · Pij , π

(n+1)
j =

∑
i∈S

π
(n)
i · Pij

A. B. Huseby (Univ. of Oslo) STK2130 – Week 4 8 / 31



uiobmcrop

Unconditional probabilities (cont.)
Assume that:

lim
n→∞

π
(n)
i = πi , i ∈ S.

Then we obviously also have:

lim
n→∞

π
(n+1)
j = πj , j ∈ S.

In particular, if S = {1, . . . , k} and π = (π1, . . . , πk ), then:

πj = lim
n→∞

π
(n+1)
j = lim

n→∞

k∑
i=1

π
(n)
i · Pij =

k∑
i=1

lim
n→∞

π
(n)
i · Pij =

k∑
i=1

πi · Pij

Thus, π must satisfy:

π = π · P.
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Example 4.8 revisited

P{Rain tomorrow|Rain today} = 0.75
P{Rain tomorrow|No rain today} = 0.35

P =

[
0.75 0.25
0.35 0.65

]

P(2) =

[
0.65 0.35
0.49 0.51

]

P(4) =

[
0.5940 0.4060
0.5684 0.4316

]

P(12) =

[
0.5833 0.4167
0.5833 0.4167

]
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Example 4.8 revisited (cont.)

We now let π = (π1, π2), and consider the equation:

π = π · P.

which in this case becomes:

π1 = 0.75π1 + 0.35π2

π2 = 0.25π1 + 0.65π2

By inserting π2 = 1− π1 into the first equation, we get:

π1 = 0.75π1 + 0.35(1− π1) = 0.40π1 + 0.35

From this it follows that:

π1 = 0.35/(1− 0.40) = 0.5833
π2 = 1− π1 = 0.4167
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Chapter 4.3. Classification of States
Let {Xn} be a Markov chain with state space S and transition probability
matrix P.

State j is said to be accessible from state i , denoted as i → j , if Pn
ij > 0 for

some n ≥ 0.

Note that we have:

max
n

Pn
ij ≤ P(

∞⋃
n=1

{Xn = j}|X0 = i)

≤
∞∑

n=0

P{Xn = j |X0 = i} =
∞∑

n=0

Pn
ij .

Hence, i → j if and only if:

P(
∞⋃

n=1

{Xn = j}|X0 = i) > 0.
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Chapter 4.3. Classification of States (cont.)

A state diagram for a Markov chain is a directed graph where the nodes
represent the states and the edges represent possible one-step transitions.
More precisely, the state diagram contains an edge from node i to node j if
and only if Pij > 0.

If i , j ∈ S, then i → j if and only if the state diagram contains at least one
directed path from i to j .

i k1 k2 j

If such a path exists, we have:

Pn
ij ≥ Pi,k1 · Pk1,k2 · · ·Pkn−2,kn−1 · Pkn−1,j > 0.
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Communicating states

States i and j communicate, denoted as i ↔ j , if i → j and j → i .

The relation↔ is an equivalence relation. That is↔ satisfies the following
properties:

Reflexivity: i ↔ i .

Symmetry: i ↔ j if and only if j ↔ i .

Transitivity: i ↔ j and j ↔ k implies i ↔ k .

Reflexivity follows since we always have P0
ii = 1 > 0. Symmetry follows

directly from the definition.
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Communicating states (cont.)

To prove transitivity we assume that i ↔ j and j ↔ k .

Hence, in particular i → j and j → k , implying that there exists m,n ≥ 0 such
that Pm

ij > 0 and Pn
jk > 0.

By the Chapman-Kolmogorov equations, we have:

Pm+n
ik =

∑
r∈S

Pm
ir Pn

rk ≥ Pm
ij · Pn

jk > 0.

Hence, by definition i → k .

By a similar argument we can show that k → i as well.

Hence, we conclude that i ↔ k .
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Communicating states (cont.)

Two states that communicate are said to be in the same (equivalence) class.

Two classes of states are either identical or disjoint.

PROOF: Assume that A,B ⊆ S represent two equivalence classes, and
assume that A ∩ B 6= ∅. That is, there exists a state i such that i ∈ A ∩ B.

Then choose j ∈ A and k ∈ B arbitrarily.

Now, i , j ∈ A implies that i ↔ j and i , k ∈ B implies that i ↔ k .

Hence, by transitivity we also have j ↔ k . That is, j and k belong to the same
equivalence class.

Since this holds for any j ∈ A and k ∈ B, this implies that A = B �

The equivalence classes partition the state space S into a number of disjoint
sets. A Markov chain is called irreducible if the number of equivalence
classes is one.
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Example 4.15

Consider a Markov chain with state space S = {0,1,2} and transition
probability matrix:

P =


1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3


We then observe:

Since P01 = 1
2 > 0, it follows that 0→ 1

Since P10 = 1
2 > 0, it follows that 1→ 0

Since P12 = 1
4 > 0, it follows that 1→ 2

Since P21 = 1
3 > 0, it follows that 2→ 1

Hence, 0↔ 1 and 1↔ 2, and by transitivity 0↔ 2 as well. Thus, the Markov
chain is irreducible.

A. B. Huseby (Univ. of Oslo) STK2130 – Week 4 17 / 31



uiobmcrop

Example 4.15 (cont.)

21

0

Figure: State diagram of an irreducible Markov chain with one class {0,1,2}
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Example 4.16

A Markov chain with state space S = {0,1,2,3} and matrix:

P =


1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1



P01 = P10 = 1
2 , implying that 0↔ 1

Pij = 0, implying that i 6→ j , i = 0,1, j = 2,3

P2i =
1
4 , implying that 2→ i , i = 0,1,2,3

P3i = 0, implying that 3 6→ i , i = 0,1,2

The Markov chain has classes {0,1}, {2} and {3}, and is not irreducible.
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Example 4.16 (cont.)

2

3

1

0

Figure: State diagram of a Markov chain with three classes {0,1}, {2} and
{3}.
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Recurrent and transient states

We consider the probabilities:

fi = P(
∞⋃

r=1

{Xr = i}|X0 = i}, i ∈ S.

State i is recurrent if fi = 1.

State i is transient if fi < 1.

Assume that X0 = i , and let Ni denote the number of times Xn = i .

If i is recurrent, then P(Ni =∞) = 1.

If i is transient, then P(Ni = n) = f n−1
i (1− fi), n = 1,2, . . ..

If i is transient and X0 = i , then Ni has a geometric distribution with
E [Ni ] = 1/(1− fi).
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Proposition 4.1

Let I(n)i = I(Xn = i), n = 0,1, . . .. We can then write:

Ni =
∞∑

n=0

I(n)i

Hence, we have:

E [Ni |X0 = i] =
∞∑

n=0

E [I(n)i |X0 = i]

=
∞∑

n=0

P[Xn = i |X0 = i] =
∞∑

n=0

Pn
ii

State i is recurrent, if
∑∞

n=1 Pn
ii =∞.

State i is transient, if
∑∞

n=1 Pn
ii <∞.
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Corollary 4.2

If state i is recurrent, and i ↔ j , then state j is recurrent as well. Thus,
recurrence is a class property.

PROOF: Since i ↔ j , there exists k and m such that Pk
ij > 0 and Pm

ji > 0.

Hence, for any n = 1,2, . . . we have:

Pm+n+k
jj ≥ Pm

ji · Pn
ii · Pk

ij .

Summing over all n, and using that i is recurrent, Pk
ij > 0 and Pm

ji > 0 we get:

∞∑
n=1

Pm+n+k
jj ≥ Pm

ji · Pk
ij ·
∞∑

n=1

Pn
ii =∞

Hence, we conclude that j is recurrent as well �
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Corollary 4.2 (cont.)

• Corollary 4.2 also implies that transience is a class property. For if state i is
transient and i ↔ j , then state j must also be transient. For if j were recurrent
then, by Corollary 4.2, i would also be recurrent and hence could not be
transient.

• Corollary 4.2 along with the fact that not all states in a finite Markov chain
can be transient leads to the conclusion that all states of a finite irreducible
Markov chain are recurrent.
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Example 4.17

Consider a Markov chain with state space S = {0,1,2,3} and transition
probability matrix:

P =


0 0 1

2
1
2

1 0 0 0

0 1 0 0

0 1 0 0


It is easy to verify that i ↔ j for all i , j ∈ S. Hence, the Markov chain is
irreducible and thus all states must be recurrent �
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Example 4.17 (cont.)

2

3

1

0

Figure: State diagram of an irreducible Markov chain with one class
{0,1,2,3}
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Example 4.18

Consider a Markov chain with state space S = {0,1,2,3,4} and transition
probability matrix:

P =



1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2


This chain has classes {0,1}, {2,3} and {4}.

The first two classes are recurrent and the third transient �
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Example 4.18 (cont.)

1

0

3

22

4

Figure: State diagram of a Markov chain with classes {0,1}, {2,3} and {4}
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Example 4.19 - Random walk

Consider a Markov chain with state space S = {. . . ,−2,−1,0,1,2, . . .} and
where 0 < p < 1 and:

Pi,i+1 = p, Pi,i−1 = (1− p), i ∈ S.

It is obvious that i ↔ j for all i , j ∈ S. Hence, according to Corollary 4.2 all
states are either recurrent or transient.

In order to check for recurrence, it is sufficient to check if
∑∞

n=1 Pn
00 =∞.

We then observe that Xn is odd if n is odd, and Xn is even if n is even. Hence,
since 0 is even, we have:

P2n−1
00 = 0, n = 1,2, . . .

P2n
00 =

(
2n
n

)
pn(1− p)n =

(2n)!
n!n!

[p(1− p)]n, n = 1,2, . . .
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Example 4.19 - Random walk (cont.)

We then use Stirling’s formula for n!:

n! ≈ nn+1/2e−n
√

2π

From this we get:

(2n)!
n!n!

≈ (2n)2n+1/2e−2n
√

2π
(nn+1/2e−n

√
2π)2

=
(2n)2n+1/2e−2n

√
2π

n2n+1e−2n(2π)
=

22n
√

nπ
=

4n
√

nπ

Hence:

P2n
00 =

(2n)!
n!n!

[p(1− p)]n ≈ (4p(1− p))n
√

nπ
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Example 4.19 - Random walk (cont.)

This implies that:

∞∑
n=1

P2n
00 ≈

∞∑
n=1

(4p(1− p))n
√

nπ

This series is divergent if and only if p = 1
2 .

Hence, the states are recurrent if and only if p = 1
2 .
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