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Chapter 4.4 Long-Run Proportions and Limiting
Probabilities

For pairs of states i # j we let f;; denote the probability that the Markov chain,
starting in state /, will ever make a transition into state j:

fj = P(X, = j for some n > 0| Xy = i)

oo

= P((U{Xo = j}1Xo = i)

n=1
We recall that if i — j if and only if f; > 0. We now show that:

Proposition (4.3)
Ifiis recurrentand i < j, then f; = 1. J
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Proof of Proposition 4.3

Proof: Since i «» j there exists an n > 0 such that P > 0. We assume that n
is the minimal integer with this property.

Moreover, since state i is recurrent, with probability one there exists an
infinite sequence 0 = ky < k1 < ko < ---,suchthat X, =i,r=0,1,2,....

We then introduce:
Z=min{r>0: Xgin=j}
Then it is easy to verify that:
P(Z=2z)=P}-(1-P)? z=0,1,2,....

And from this it follows that:

1>2f=P(J{X=}Xo=0)>> P(Z=2z)=1.
n=1 z=0
Hence, we conclude f; = 1 u
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Positive and null recurrency

Assume that j is a recurrent state and introduce:
N =min{n>0:X, =}

Thus, N; is the number of steps until the Markov chain makes a transition into
state j.

We then let:
m; = E[N;j|Xo = j]

That is, m; is the expected number of steps until the Markov chain returns to
state j given that it starts out in state j.

NOTE: Since j is recurrent, we know that P(N; < oo|Xp = j) = 1.
Still, depending on the distribution of N, it may happen that E[N;| Xy = j] = .
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——
Positive and null recurrency (cont.)
Definition

If mj < 0o, we say that j is positive recurrent.
If mj = oo, we say that j is null recurrent.

Let 7; be the long-run proportion of time the Markov chain is in state j:
1 n
= fim, 5 2 1% =)

Proposition (4.4)

If the Markov chain is irreducible and recurrent, then for any initial state Xy,
we have:

7r,-:1/mj

NOTE: If m; = oo, then 7; = 0.
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Proof of Proposition 4.4

Proof: Assume that Xy = i, and introduce:
To=min{r >0: X, =/}
Ty =min{r >0: X7,4r =}
Te=min{r>0: Xr,1.o7_,4r=j}, k=2,3,....

We then note:
o P(Ty < o0) = fj =1 by Proposition 4.3.
e Ti,T,,...areindependent and identically distributed.
o E[T]=m, k=12,...

Hence, by the strong law of large numbers:
1 n
lim - kz_; T« = m; with probability 1.
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Proof of Proposition 4.4 (cont.)

To + Y _r_4 Tk is the time the chain enters state j for the (n+ 1)st time.

The proportion of time the chain has been in state j at this point of time is:

Number of times inj n+1
Total time T+ Tk

Hence, the long-run proportion is given by:

n+1 . 1 1

mi= lim ——————— = lim =
J n Tc n 1 n m;
n—oo TO + Z:k:1 Tk n—oo ﬁ + e i E :k=1 Tk )

NOTE: We have that m; < oo if and only if 1/m; > 0.

Thus, state j is positive recurrent if and only if 7, = 1/m; > 0.
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Positive recurrence is a class property

If state i is positive recurrent and i < j, then state j is positive recurrent as

Proposition (4.5)
well. J

Proof: Since i is positive recurrent, we know that 7; > 0. Moreover, since
i+ J, there exists an n > 0 such that Pj/ > 0.

From this it follows that:

> 7T,‘P,-7 > 0.

Hence, state j is positive recurrent as well |
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Positive recurrence is a class property (cont.)

Corollary (4.5.1)
If state i is null recurrent and i < j, then state j is null recurrent as well. J

Proof: Assume that i is null recurrent and i «» j. If j is positive recurrent,
Proposition 4.5 implies that i is positive recurrent as well. However, this
contradicts the assumption [ |

Corollary (4.5.2)
An irreducible finite state Markov chain must be positive recurrent. J

Proof: By Proposition 4.5 all states in an irreducible are either positive
recurrent or null recurrent. If all states are null recurrent, then x; = 0 for all
i € §. However, this is impossible if |S| is finite [ ]
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Long-run proportion of states

We have that:

m;Pj = Long-run proportion of transitions that go from i/ to j

Hence, by summing over all possible preceding states of j, we get:

Tj = ZF,’P,’j

ieS
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——
Long-run proportion of states (cont.)

Theorem (4.1)

Consider an irreducible Markov chain. If the chain is positive recurrent, then
the long-run proportions are the unique solution of the equations:

mj = ZT(,’P;/, forallje S
ies

Zﬁ/:1

jes

Moreover, if there is no solution of these linear equations, then the Markov
chain is either transient or null recurrent, and 7; = 0 for all j € S.
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Symmetric random walk

Consider a Markov chain with state space S={...,-2,-1,0,1,2,...} and
where:

Piit1=Pij—1=1/2, ieS.
By Example 4.19 we know that this chain is recurrent.

Assume that Xy = i. Then by symmetry we must have 7,y = 7,1, and hence
it follows by Theorem 4.1 that:

T = Tj—1 '%+7Ti+1 : %
Since 7;_1 = 7.1, this implies that:

TjiA = Tj = Tjq.
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Symmetric random walk (cont.)

Similarly it follows by Theorem 4.1 that:

]
Tipl =T 5 + Tiy2 -

Nj—= NI—=

M =T+ % +mi2-

Since mj_1 = m; = 71, this implies that:
Ti—2 = M| = Tj}2.

Continuing in the same way, we get that:
Tk =m =Tk, K=1,2,...

Since the initial state i was arbitrarily chosen, we conclude that the long-run
proportions are the same for all states regardless of the initial state, and
denote this common proportion by .
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Symmetric random walk (cont.)

If the chain is positive recurrent, it follows by Theorem 4.1 that:
Z T =T - Z 1=1
jeS jeS

However, > . o 1 = oo, so this implies that 7 = 0.

jeS

Thus, we conclude that the chain is null recurrent.
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I
Example 4.22

P{Rain tomorrow|Rain today} = o = 0.7
P{Rain tomorrow|No rain today} = g = 0.4

P[5 675

In order to find the long-run proportion of rain (mg) and not-rain (1), we solve
the equations:

o = amp + B
m = (1 —a)m+ (1 — B)m

mo +m = 1.
SOLUTION:
__ B _4 __t-ao 3
T a7 " T1%5-a T
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——
Example 4.23 - Mood of an individual

0 = cheerful, 1 = so-so, 2 = glum.

05 04 0.1
P=| 03 04 03
02 03 05
In order to find the long-run proportions m, 71 and w2, we solve the equations:
w9 = 0.5m9 + 0.371 + 0.2m>
w1 = 0.4m9 + 0.471 + 0.3m>
w0 = 0.1m9 + 0.371 + 0.5m5
m +m +me=1.
SOLUTION:

21 2 1
™ =65 = 0.3387, w1 = 6_2 =0.3710, m = 6_2 = 0.2903
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|
Example 4.23 (cont.)

[ 0.3446 0.3734 0.2820 ]
P — | 0.3378 0.3706 0.2916
| 0.3330 0.3686 0.2984 |

[ 0.3388 0.3710 0.2902 ]
P® — | 0.3387 0.3710 0.2903
| 0.3386 0.3709 0.2904 |

0.3387 0.3710 0.2903
p('® — | 0.3387 0.3710 0.2903
0.3387 0.3710 0.2903
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——
Example 4.24 - Class mobility

0 = Upper class, 1 = Middle class, 2 = Lower class.

0.45 0.48 0.07
P=| 0.05 0.70 0.25
0.01 0.50 0.49
In order to find the long-run proportions m, 71 and 2, we solve the equations:
mo = 0.4579 + 0.0571 + 0.017>

71 = 0.48my + 0.707¢ + 0.5075

mp = 0.0779 + 0.257¢ + 0.497,
o+ m + M = 1.

SOLUTION:

mo = 0.0624, 71 =0.6234, m =0.3142
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I
Example 4.24 (cont.)

[ 0.0932 0.6199 0.2869 ]
P® — | 0.0623 0.6241 0.3136
| 0.0564 0.6229 0.3207 |

[ 0.0635 0.6233 0.3132 ]
P® — | 0.0624 0.6234 0.3142
| 0.0622 0.6235 0.3144 |

0.0624 0.6234 0.3142
P8 — | 0.0624 0.6234 0.3142
0.0624 0.6234 0.3142
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I
Example 4.25 - The Hardy-Weinberg Law

Two gene types: Aand a
Three possible gene pairs: AA, aa, Aa.

In generation 0 we assume that the proportions of these gene pairs are
respectively:

po = Proportion of AA, qo = Proportion of aa, ry = Proportion of Aa

By conditioning on the gene pairs of a parent we get the following
probabilities for one of the genes for a given child:

P(A) = P(AlAA)py + P(Alaa)qo + P(A|Aa)r
=1-pp+0-Go+3 lo=Po+ 310

P(a) = P(alAA)po + P(alaa)qo + P(alAa)r
=0-po+1-Q+3-H=G+3
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

From this we get the proportions of the gene pairs in the generation 1:
p=P(A)- P(A) = (po + § - 1o)°
q=P(a)-P(a)=(qo + 3 - 1o)?
r=2P(A)P(a) =2 (Po + § - 1o)(do + } - o)

Hence, in the generation 1 the probabilities for the two gene types are:

PAY=p+1-r
=(Po+3-10)*+ (Po+ % - 10)(do + 3 - o)
=(po+3-0)lPo+3-fo+qo+ 31l
=Po+3-1o

Pa)=q+3-r
=(Qo+5-M0)°+(Po+ 3 1)+ 35 N)
=(qo+3-)[q+ 3 fo+po+ 3]

_ 1
=qo+35 /o
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

We now define:
Xn = The gene pair of an nth generation child, n=1,2,...
where the state space is S = {AA, aa, Aa}.
The transition matrix for this chain is:
p+r/2 0 q+r/2

P= 0 q-+r/2 p+r/2
p/2+r/4 q/2+r/4 p/2+qg/2+1r/2
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

To see this, we proceed as follows:
P(Xni1 = AA|X, = AA)

= P(Xp11 = AA| X, = AA, other parentis AA) - p
+ P(Xn+1 = AA|X, = AA, other parentis aa) - q
+ P(Xn1 = AA| X, = AA, other parentis Aa) - r

:1.p+o.q+%.r:p+é

P(Xns1 = aalX, = AA) =0
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Example 4.25 - The Hardy-Weinberg Law (cont.)

P(Xni1 = AalX, = AA)

= P(Xn+1 = Aa| X, = AA, other parent is AA) - p
+ P(Xh11 = Aa| X, = AA, other parentis aa) - g
+ P(Xn1 = Aa|X, = AA, other parentis Aa) - r

,
=0-p+1-g+3:r=q+5

24/34
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

P(Xns1 = AAIX, = aa) = 0

P(Xnt1 = aal X, = aa)
= P(Xn+1 = aa|X, = aa, other parentis AA) - p
+ P(Xn1 = aa|lX, = aa, other parentis aa) - q
+ P(X,41 = aa|lX, = aa, other parentis Aa) - r

:Oop+1«q+%.r:q+£
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Example 4.25 - The Hardy-Weinberg Law (cont.)

P(Xnt1 = Aal X, = aa)

= P(Xh+1 = Aa| X, = aa, other parentis AA) - p
+ P(Xn+1 = Aal X, = aa, other parentis aa) - q
+ P(Xn+1 = Aa| X, = aa, other parentis Aa) - r

r
:1-p+0-q+%-r:p_|-§

26/34
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Example 4.25 - The Hardy-Weinberg Law (cont.)

P(X,.1 = AAX, = Aa)
= P(Xp+1 = AA| X, = Aa, other parent is AA) - p
+ P(Xht1 = AA| X, = Aa, other parentis aa) - g
+ P(Xn1 = AA|X, = Aa, other parentis Aa) - r

:%.p+0.q+%.r:g+

A~
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

P(Xn+1 = agl X, = Aa)

= P(Xh+1 = aa| X, = Aa, other parentis AA) - p
+ P(Xn+1 = aal X, = Aa, other parentis aa) - q
+ P(Xn+1 = aal X, = Aa, other parentis Aa) - r

q
2

:0.p_|_%.q_|_‘1‘.r: +

r
4
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Example 4.25 - The Hardy-Weinberg Law (cont.)

P(X.1 = Aa|X, = Aa)

= P(Xh+1 = Aa| X, = Aa, other parentis AA) - p
+ P(Xht1 = Aa| X, = Aa, other parentis aa) - q
+ P(Xnt1 = Aa| X, = Aa, other parentis Aa) - r

p,q T
:%.p+1§.q+%.r:§+§+§

29/34
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

We now assume that the distribution p, g, r is stable from generation to
generation. This means that:

p=P(A)- P(A) = (p+ 5)°
q="P(a)- P(a) = (q+ 5)°
r=2P(A)P(@) =2 (p+ 5)(q+ 3)

We then claim that this implies that p, g, r also is the long-time distribution of
the Markov chain with transition matrix P.

Since obviously p+ g + r = 1, it is sufficient to verify that:

(p,q,r)Pz(p,q,I’)
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

That is, we must check:

r Pyry_ Tya _

NIQ

r r r
Q(Q+§)+"( +Z)=(Q+§)2=q

r r p q r
p(a+3)+alp+3)+r(5+5+3)

r r r r r
=p(q+ §)+q(p+—)+—(p+—+q+ 3)

=P+ 5)(G+ ) +(a+ )P+ )

=2(p+ )(CI+ )
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Stationary probabilities

The long-run proportions 7, j € S are called the stationary probabilities of the
Markov chain.

Infactif P(Xo =j) =mj,j€ S, then P(X, =j)=mnj,j€S,n=1,2,...as well.

To see this, we let w}”) =P(X,=J),j€S,n=0,1,2,.... Moreover, let 7("
denote the vector of w}”’, j € S, and let 7 denote the vector of 7, j € S.

Thus, T = 71-(0), and w = 7P
By conditioning on X,_+ it follows that #(" = #("-P, n=1,2, ...
Hence, #(") = 7O P — zP = 7.

By induction this implies that 7(") = =P = 7.
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|
Bounded functions on the state space

Proposition (4.6)

Let {X,} be an irreducible Markov chain with stationary probabilities rj, j € S,
and let f be a bounded function on the state space. Then with probability 1:

N
Jm L > 106) = X ()

jes

Proof: Let g;(N) be the amount of time the Markov chain spends in state j
during the periods 1,..., N. Then we have:

N
D (X)) =D a(N)f())

n=1 jES
Hence,

N .
Jm L > 106 = jm 3 A0 1) >l
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Example 4.29 - Car insurance

State space S = {1,2, 3,4} bonus classes. We let f(j) denote the premium
as a function of state, and assume that:

f(1) =200, f(2) =250, f(3) =400, f(4)=600.

Transition matrix:

0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935

P:

The stationary distribution is found by solving = = 7P combined with the
restriction that w1 + - - - + m4 = 1, and we get:

m = 0.3692, w=0.2395, m3=0.2103, w4 =0.1809
Average annual premium is then:
f(1) -1+ f(2) - w2 + £(3) - w3 + f(4) - 14 = 326.375
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