STK2130 - Week 5

A. B. Huseby

Department of Mathematics University of Oslo, Norway

э

・ロト ・四ト ・ヨト ・ヨト

Chapter 4.4 Long-Run Proportions and Limiting Probabilities

For pairs of states $i \neq j$ we let $f_{i,j}$ denote the probability that the Markov chain, starting in state *i*, will ever make a transition into state *j*:

$$f_{ij} = P(X_n = j \text{ for some } n > 0 | X_0 = i)$$
$$= P(\bigcup_{n=1}^{\infty} \{X_n = j\} | X_0 = i)$$

We recall that if $i \rightarrow j$ if and only if $f_{ij} > 0$. We now show that:

Proposition (4.3)

If *i* is recurrent and *i* \leftrightarrow *j*, then $f_{ij} = 1$.

ヘロン 人間 とくほ とくほ とう

Proof of Proposition 4.3

Proof: Since $i \leftrightarrow j$ there exists an n > 0 such that $P_{ij}^n > 0$. We assume that n is the minimal integer with this property.

Moreover, since state *i* is recurrent, with probability one there exists an infinite sequence $0 = k_0 < k_1 < k_2 < \cdots$, such that $X_{k_r} = i, r = 0, 1, 2, \dots$. We then introduce:

$$Z=\min\{r\geq 0: X_{k_r+n}=j\}$$

Then it is easy to verify that:

$$P(Z = z) = P_{ij}^n \cdot (1 - P_{ij}^n)^z, \quad z = 0, 1, 2, \dots$$

And from this it follows that:

$$1 \ge f_{ij} = P(\bigcup_{n=1}^{\infty} \{X_n = j\} | X_0 = i) \ge \sum_{z=0}^{\infty} P(Z = z) = 1.$$

Hence, we conclude $f_{ij} = 1$

(4日)(4日)(4日)(4日)(日)(90)

Positive and null recurrency

Assume that *j* is a recurrent state and introduce:

$$N_j = \min\{n > 0 : X_n = j\}$$

Thus, N_j is the number of steps until the Markov chain makes a transition into state *j*.

We then let:

$$m_j = E[N_j | X_0 = j]$$

That is, m_j is the expected number of steps until the Markov chain returns to state *j* given that it starts out in state *j*.

NOTE: Since *j* is recurrent, we know that $P(N_j < \infty | X_0 = j) = 1$.

Still, depending on the distribution of N_j , it may happen that $E[N_j|X_0 = j] = \infty$.

A D A A B A A B A A B A B B

Positive and null recurrency (cont.)

Definition

If $m_j < \infty$, we say that j is positive recurrent. If $m_j = \infty$, we say that j is null recurrent.

Let π_j be the long-run proportion of time the Markov chain is in state *j*:

$$\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n I(X_r = j)$$

Proposition (4.4)

If the Markov chain is irreducible and recurrent, then for any initial state X_0 , we have:

$$\pi_j = 1/m_j$$

NOTE: If $m_i = \infty$, then $\pi_i = 0$.

Proof of Proposition 4.4

Proof: Assume that $X_0 = i$, and introduce:

$$T_0 = \min\{r > 0 : X_r = j\}$$

$$T_1 = \min\{r > 0 : X_{T_0 + r} = j\}$$

$$T_k = \min\{r > 0 : X_{T_0 + \dots + T_{k-1} + r} = j\}, \quad k = 2, 3, \dots$$

We then note:

- $P(T_0 < \infty) = f_{ij} = 1$ by Proposition 4.3.
- T_1, T_2, \ldots are independent and identically distributed.
- $E[T_k] = m_j, \quad k = 1, 2, ...$

Hence, by the strong law of large numbers:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}T_{k}=m_{j} \quad \text{with probability 1.}$$

3

Proof of Proposition 4.4 (cont.)

 $T_0 + \sum_{k=1}^{n} T_k$ is the time the chain enters state *j* for the (n + 1)st time.

The proportion of time the chain has been in state *j* at this point of time is:

$$\frac{\text{Number of times in } j}{\text{Total time}} = \frac{n+1}{T_0 + \sum_{k=1}^n T_k}$$

Hence, the long-run proportion is given by:

$$\pi_j = \lim_{n \to \infty} \frac{n+1}{T_0 + \sum_{k=1}^n T_k} = \lim_{n \to \infty} \frac{1}{\frac{T_0}{n+1} + \frac{n}{n+1} \cdot \frac{1}{n} \sum_{k=1}^n T_k} = \frac{1}{m_j}$$

NOTE: We have that $m_i < \infty$ if and only if $1/m_i > 0$.

Thus, state *j* is positive recurrent if and only if $\pi_j = 1/m_j > 0$.

Proposition (4.5)

If state i is positive recurrent and $i \leftrightarrow j$, then state j is positive recurrent as well.

Proof: Since *i* is positive recurrent, we know that $\pi_i > 0$. Moreover, since $i \leftrightarrow j$, there exists an n > 0 such that $P_{ij}^n > 0$.

From this it follows that:

$$\pi_j \geq \pi_i \boldsymbol{P}_{ij}^n > \mathbf{0}.$$

Hence, state *j* is positive recurrent as well

→ ∃ > < ∃ >

Positive recurrence is a class property (cont.)

Corollary (4.5.1)

If state i is null recurrent and $i \leftrightarrow j$, then state j is null recurrent as well.

Proof: Assume that *i* is null recurrent and $i \leftrightarrow j$. If *j* is positive recurrent, Proposition 4.5 implies that *i* is positive recurrent as well. However, this contradicts the assumption

Corollary (4.5.2)

An irreducible finite state Markov chain must be positive recurrent.

Proof: By Proposition 4.5 all states in an irreducible are either positive recurrent or null recurrent. If all states are null recurrent, then $\pi_i = 0$ for all $i \in S$. However, this is impossible if |S| is finite

イロト イポト イヨト イヨト

Long-run proportion of states

We have that:

 $\pi_i P_{ij}$ = Long-run proportion of transitions that go from *i* to *j*

Hence, by summing over all possible preceding states of *j*, we get:

$$\pi_j = \sum_{i \in \mathcal{S}} \pi_i \boldsymbol{P}_{ij}$$

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Long-run proportion of states (cont.)

Theorem (4.1)

Consider an irreducible Markov chain. If the chain is positive recurrent, then the long-run proportions are the unique solution of the equations:

$$\pi_j = \sum_{i \in \mathcal{S}} \pi_i P_{ij}, \quad \textit{for all } j \in \mathcal{S}$$
 $\sum_{i \in \mathcal{S}} \pi_j = 1$

Moreover, if there is no solution of these linear equations, then the Markov chain is either transient or null recurrent, and $\pi_i = 0$ for all $j \in S$.

A (10) A (10)

Symmetric random walk

Consider a Markov chain with state space $\mathcal{S} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ and where:

$$P_{i,i+1} = P_{i,i-1} = 1/2, \quad i \in S.$$

By Example 4.19 we know that this chain is recurrent.

Assume that $X_0 = i$. Then by symmetry we must have $\pi_{i-1} = \pi_{i+1}$, and hence it follows by Theorem 4.1 that:

$$\pi_i = \pi_{i-1} \cdot \frac{1}{2} + \pi_{i+1} \cdot \frac{1}{2}$$

Since $\pi_{i-1} = \pi_{i+1}$, this implies that:

$$\pi_{i-1} = \pi_i = \pi_{i+1}.$$

3

Symmetric random walk (cont.)

Similarly it follows by Theorem 4.1 that:

$$\pi_{i+1} = \pi_i \cdot \frac{1}{2} + \pi_{i+2} \cdot \frac{1}{2}$$

$$\pi_{i-1} = \pi_i \cdot \frac{1}{2} + \pi_{i-2} \cdot \frac{1}{2}$$

Since $\pi_{i-1} = \pi_i = \pi_{i+1}$, this implies that:

$$\pi_{i-2} = \pi_i = \pi_{i+2}.$$

Continuing in the same way, we get that:

$$\pi_{i-k} = \pi_i = \pi_{i+k}, \quad k = 1, 2, \dots$$

Since the initial state *i* was arbitrarily chosen, we conclude that the long-run proportions are the same for all states regardless of the initial state, and denote this common proportion by π .

・ロト ・ 四ト ・ ヨト ・ ヨト …

Symmetric random walk (cont.)

If the chain is positive recurrent, it follows by Theorem 4.1 that:

$$\sum_{j\in\mathcal{S}}\pi_j=\pi\cdot\sum_{j\in\mathcal{S}}\mathbf{1}=\mathbf{1}$$

However, $\sum_{j \in S} 1 = \infty$, so this implies that $\pi = 0$.

Thus, we conclude that the chain is null recurrent.

(日)

Example 4.22

P{Rain tomorrow|Rain today} = α = 0.7 P{Rain tomorrow|No rain today} = β = 0.4

$$\mathbf{P} = \begin{bmatrix} lpha & (1-lpha) \\ eta & (1-eta) \end{bmatrix}$$

In order to find the long-run proportion of rain (π_0) and not-rain (π_1) , we solve the equations:

$$\pi_{0} = \alpha \pi_{0} + \beta \pi_{1}$$

$$\pi_{1} = (1 - \alpha)\pi_{0} + (1 - \beta)\pi_{1}$$

$$\pi_{0} + \pi_{1} = 1.$$

SOLUTION:

$$\pi_0 = \frac{\beta}{1+\beta-\alpha} = \frac{4}{7}, \quad \pi_1 = \frac{1-\alpha}{1+\beta-\alpha} = \frac{3}{7}.$$

Example 4.23 - Mood of an individual

0 = cheerful, 1 = so-so, 2 = glum.

$$\boldsymbol{P} = \begin{bmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}$$

In order to find the long-run proportions π_0 , π_1 and π_2 , we solve the equations:

$$\begin{aligned} \pi_0 &= 0.5\pi_0 + 0.3\pi_1 + 0.2\pi_2 \\ \pi_1 &= 0.4\pi_0 + 0.4\pi_1 + 0.3\pi_2 \\ \pi_2 &= 0.1\pi_0 + 0.3\pi_1 + 0.5\pi_2 \\ \pi_0 + \pi_1 + \pi_2 &= 1. \end{aligned}$$

SOLUTION:

$$\pi_0 = \frac{21}{62} = 0.3387, \quad \pi_1 = \frac{23}{62} = 0.3710, \quad \pi_2 = \frac{18}{62} = 0.2903$$

く 同 ト く ヨ ト く ヨ ト -

Example 4.23 (cont.)

$$\boldsymbol{P}^{(4)} = \left[\begin{array}{cccc} 0.3446 & 0.3734 & 0.2820 \\ 0.3378 & 0.3706 & 0.2916 \\ 0.3330 & 0.3686 & 0.2984 \end{array} \right]$$

$$\boldsymbol{P}^{(8)} = \left[\begin{array}{cccc} 0.3388 & 0.3710 & 0.2902 \\ 0.3387 & 0.3710 & 0.2903 \\ 0.3386 & 0.3709 & 0.2904 \end{array} \right]$$

$$\boldsymbol{P}^{(16)} = \left[\begin{array}{cccc} 0.3387 & 0.3710 & 0.2903 \\ 0.3387 & 0.3710 & 0.2903 \\ 0.3387 & 0.3710 & 0.2903 \end{array} \right]$$

Э.

<ロ> <問> <問> < 回> < 回> 、

Example 4.24 - Class mobility

0 =Upper class, 1 =Middle class, 2 =Lower class.

$$\boldsymbol{P} = \left[\begin{array}{cccc} 0.45 & 0.48 & 0.07 \\ 0.05 & 0.70 & 0.25 \\ 0.01 & 0.50 & 0.49 \end{array} \right]$$

In order to find the long-run proportions π_0 , π_1 and π_2 , we solve the equations:

$$\begin{aligned} \pi_0 &= 0.45\pi_0 + 0.05\pi_1 + 0.01\pi_2 \\ \pi_1 &= 0.48\pi_0 + 0.70\pi_1 + 0.50\pi_2 \\ \pi_2 &= 0.07\pi_0 + 0.25\pi_1 + 0.49\pi_2 \\ \pi_0 + \pi_1 + \pi_2 &= 1. \end{aligned}$$

SOLUTION:

$$\pi_0 = 0.0624, \quad \pi_1 = 0.6234, \quad \pi_2 = 0.3142$$

Example 4.24 (cont.)

$$\boldsymbol{P}^{(4)} = \left[\begin{array}{ccccc} 0.0932 & 0.6199 & 0.2869 \\ 0.0623 & 0.6241 & 0.3136 \\ 0.0564 & 0.6229 & 0.3207 \end{array} \right]$$

$$\boldsymbol{P}^{(8)} = \left[\begin{array}{cccc} 0.0635 & 0.6233 & 0.3132 \\ 0.0624 & 0.6234 & 0.3142 \\ 0.0622 & 0.6235 & 0.3144 \end{array} \right]$$

$$\boldsymbol{P}^{(16)} = \left[\begin{array}{cccc} 0.0624 & 0.6234 & 0.3142 \\ 0.0624 & 0.6234 & 0.3142 \\ 0.0624 & 0.6234 & 0.3142 \end{array} \right]$$

Э.

<ロ> <問> <問> < 回> < 回> 、

Two gene types: A and a

Three possible gene pairs: AA, aa, Aa.

In generation 0 we assume that the proportions of these gene pairs are respectively:

 p_0 = Proportion of *AA*, q_0 = Proportion of *aa*, r_0 = Proportion of *Aa*

By conditioning on the gene pairs of a parent we get the following probabilities for one of the genes for a given child:

$$P(A) = P(A|AA)p_0 + P(A|aa)q_0 + P(A|Aa)r_0$$

= 1 \cdot p_0 + 0 \cdot q_0 + \frac{1}{2} \cdot r_0 = p_0 + \frac{1}{2} \cdot r_0
P(a) = P(a|AA)p_0 + P(a|aa)q_0 + P(a|Aa)r_0
= 0 \cdot p_0 + 1 \cdot q_0 + \frac{1}{2} \cdot r_0 = q_0 + \frac{1}{2} \cdot r_0

< 日 > < 同 > < 回 > < 回 > < □ > <

From this we get the proportions of the gene pairs in the generation 1:

$$p = P(A) \cdot P(A) = (p_0 + \frac{1}{2} \cdot r_0)^2$$

$$q = P(a) \cdot P(a) = (q_0 + \frac{1}{2} \cdot r_0)^2$$

$$r = 2P(A)P(a) = 2 \cdot (p_0 + \frac{1}{2} \cdot r_0)(q_0 + \frac{1}{2} \cdot r_0)$$

Hence, in the generation 1 the probabilities for the two gene types are:

$$P(A) = p + \frac{1}{2} \cdot r$$

= $(p_0 + \frac{1}{2} \cdot r_0)^2 + (p_0 + \frac{1}{2} \cdot r_0)(q_0 + \frac{1}{2} \cdot r_0)$
= $(p_0 + \frac{1}{2} \cdot r_0)[p_0 + \frac{1}{2} \cdot r_0 + q_0 + \frac{1}{2} \cdot r_0]$
= $p_0 + \frac{1}{2} \cdot r_0$
 $P(a) = q + \frac{1}{2} \cdot r$

$$= (q_0 + \frac{1}{2} \cdot r_0)^2 + (p_0 + \frac{1}{2} \cdot r_0)(q_0 + \frac{1}{2} \cdot r_0)$$

= $(q_0 + \frac{1}{2} \cdot r_0)[q_0 + \frac{1}{2} \cdot r_0 + p_0 + \frac{1}{2} \cdot r_0]$
= $q_0 + \frac{1}{2} \cdot r_0$

A. B. Huseby (Univ. of Oslo)

We now define:

 X_n = The gene pair of an *n*th generation child, n = 1, 2, ...where the state space is $S = \{AA, aa, Aa\}$.

The transition matrix for this chain is:

$$\boldsymbol{P} = \left[\begin{array}{ccc} p + r/2 & 0 & q + r/2 \\ 0 & q + r/2 & p + r/2 \\ p/2 + r/4 & q/2 + r/4 & p/2 + q/2 + r/2 \end{array} \right]$$

3

< 日 > < 同 > < 回 > < 回 > < □ > <

To see this, we proceed as follows:

$$P(X_{n+1} = AA | X_n = AA)$$

$$= P(X_{n+1} = AA | X_n = AA, \text{ other parent is } AA) \cdot p$$

$$+ P(X_{n+1} = AA | X_n = AA, \text{ other parent is } aa) \cdot q$$

$$+ P(X_{n+1} = AA | X_n = AA, \text{ other parent is } Aa) \cdot r$$

$$= 1 \cdot p + 0 \cdot q + \frac{1}{2} \cdot r = p + \frac{r}{2}$$

$$P(X_{n+1} = aa | X_n = AA) = 0$$

イロト イポト イヨト イヨト

$$P(X_{n+1} = Aa | X_n = AA)$$

= $P(X_{n+1} = Aa | X_n = AA$, other parent is $AA) \cdot p$
+ $P(X_{n+1} = Aa | X_n = AA$, other parent is $aa) \cdot q$
+ $P(X_{n+1} = Aa | X_n = AA$, other parent is $Aa) \cdot r$

$$= 0 \cdot p + 1 \cdot q + \frac{1}{2} \cdot r = q + \frac{r}{2}$$

æ

<ロ> <問> <問> < 回> < 回> 、

$$P(X_{n+1} = AA | X_n = aa) = 0$$

 $P(X_{n+1} = aa | X_n = aa)$

 $= P(X_{n+1} = aa | X_n = aa, \text{ other parent is } AA) \cdot p$ + $P(X_{n+1} = aa | X_n = aa, \text{ other parent is } aa) \cdot q$ + $P(X_{n+1} = aa | X_n = aa, \text{ other parent is } Aa) \cdot r$

$$= 0 \cdot p + 1 \cdot q + \frac{1}{2} \cdot r = q + \frac{r}{2}$$

$$P(X_{n+1} = Aa | X_n = aa)$$

= $P(X_{n+1} = Aa | X_n = aa$, other parent is $AA) \cdot p$
+ $P(X_{n+1} = Aa | X_n = aa$, other parent is $aa) \cdot q$
+ $P(X_{n+1} = Aa | X_n = aa$, other parent is $Aa) \cdot r$

$$=1\cdot p+0\cdot q+\frac{1}{2}\cdot r=p+\frac{r}{2}$$

A. B. Huseby (Univ. of Oslo)

STK2130 - Week 5

æ

<ロ> <問> <問> < 回> < 回> 、

$$P(X_{n+1} = AA|X_n = Aa)$$

= $P(X_{n+1} = AA|X_n = Aa$, other parent is $AA) \cdot p$
+ $P(X_{n+1} = AA|X_n = Aa$, other parent is $aa) \cdot q$
+ $P(X_{n+1} = AA|X_n = Aa$, other parent is $Aa) \cdot r$

$$= \frac{1}{2} \cdot p + 0 \cdot q + \frac{1}{4} \cdot r = \frac{p}{2} + \frac{r}{4}$$

æ

$$P(X_{n+1} = aa | X_n = Aa)$$

= $P(X_{n+1} = aa | X_n = Aa$, other parent is $AA) \cdot p$
+ $P(X_{n+1} = aa | X_n = Aa$, other parent is $aa) \cdot q$
+ $P(X_{n+1} = aa | X_n = Aa$, other parent is $Aa) \cdot r$

$$= \mathbf{0} \cdot \mathbf{p} + \frac{1}{2} \cdot \mathbf{q} + \frac{1}{4} \cdot \mathbf{r} = \frac{\mathbf{q}}{2} + \frac{\mathbf{r}}{4}$$

A. B. Huseby (Univ. of Oslo)

STK2130 - Week 5

æ

$$P(X_{n+1} = Aa | X_n = Aa)$$

= $P(X_{n+1} = Aa | X_n = Aa$, other parent is $AA) \cdot p$
+ $P(X_{n+1} = Aa | X_n = Aa$, other parent is $aa) \cdot q$
+ $P(X_{n+1} = Aa | X_n = Aa$, other parent is $Aa) \cdot r$

$$= \frac{1}{2} \cdot p + \frac{1}{2} \cdot q + \frac{1}{2} \cdot r = \frac{p}{2} + \frac{q}{2} + \frac{r}{2}$$

э

We now assume that the distribution p, q, r is stable from generation to generation. This means that:

$$p = P(A) \cdot P(A) = (p + \frac{r}{2})^2$$
$$q = P(a) \cdot P(a) = (q + \frac{r}{2})^2$$
$$r = 2P(A)P(a) = 2 \cdot (p + \frac{r}{2})(q + \frac{r}{2})$$

We then claim that this implies that p, q, r also is the long-time distribution of the Markov chain with transition matrix *P*.

Since obviously p + q + r = 1, it is sufficient to verify that:

$$(p,q,r)P = (p,q,r)$$

< 日 > < 同 > < 回 > < 回 > < □ > <

That is, we must check:

$$p(p + \frac{r}{2}) + r(\frac{p}{2} + \frac{r}{4}) = (p + \frac{r}{2})^2 = p$$

$$q(q + \frac{r}{2}) + r(\frac{q}{2} + \frac{r}{4}) = (q + \frac{r}{2})^2 = q$$

$$p(q + \frac{r}{2}) + q(p + \frac{r}{2}) + r(\frac{p}{2} + \frac{q}{2} + \frac{r}{2})$$

$$= p(q + \frac{r}{2}) + q(p + \frac{r}{2}) + \frac{r}{2}(p + \frac{r}{2} + q + \frac{r}{2})$$

$$= (p + \frac{r}{2})(q + \frac{r}{2}) + (q + \frac{r}{2})(p + \frac{r}{2})$$

$$= 2(p + \frac{r}{2})(q + \frac{r}{2}) = r$$

3

(日)

Stationary probabilities

The long-run proportions π_j , $j \in S$ are called the stationary probabilities of the Markov chain.

In fact if $P(X_0 = j) = \pi_j$, $j \in S$, then $P(X_n = j) = \pi_j$, $j \in S$, n = 1, 2, ... as well. To see this, we let $\pi_j^{(n)} = P(X_n = j)$, $j \in S$, n = 0, 1, 2, ... Moreover, let $\pi^{(n)}$ denote the vector of $\pi_j^{(n)}$, $j \in S$, and let π denote the vector of π_j , $j \in S$. Thus, $\pi = \pi^{(0)}$, and $\pi = \pi P$

By conditioning on X_{n-1} it follows that $\pi^{(n)} = \pi^{(n-1)}P$, n = 1, 2, ...

Hence, $\pi^{(1)} = \pi^{(0)} P = \pi P = \pi$.

By induction this implies that $\pi^{(n)} = \pi P = \pi$.

Bounded functions on the state space

Proposition (4.6)

Let $\{X_n\}$ be an irreducible Markov chain with stationary probabilities π_j , $j \in S$, and let f be a bounded function on the state space. Then with probability 1:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(X_n) = \sum_{j\in\mathcal{S}}\pi_j f(j)$$

Proof: Let $a_j(N)$ be the amount of time the Markov chain spends in state *j* during the periods $1, \ldots, N$. Then we have:

$$\sum_{n=1}^{N} f(X_n) = \sum_{j \in S} a_j(N) f(j)$$

Hence,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(X_n) = \lim_{N \to \infty} \sum_{j \in \mathcal{S}} \frac{a_j(N)}{N} f(j) = \sum_{j \in \mathcal{S}} \pi_j f(j)$$

Example 4.29 - Car insurance

State space $S = \{1, 2, 3, 4\}$ bonus classes. We let f(j) denote the premium as a function of state, and assume that:

 $f(1) = 200, \quad f(2) = 250, \quad f(3) = 400, \quad f(4) = 600.$

Transition matrix:

P =	0.6065	0.3033	0.0758	0.0144
	0.6065	0.0000	0.3033	0.0902
	0.0000	0.6065	0.0000	0.3935
	0.0000	0.0000	0.6065	0.0144 0.0902 0.3935 0.3935

The stationary distribution is found by solving $\pi = \pi P$ combined with the restriction that $\pi_1 + \cdots + \pi_4 = 1$, and we get:

 $\pi_1 = 0.3692, \quad \pi_2 = 0.2395, \quad \pi_3 = 0.2103, \quad \pi_4 = 0.1809$

Average annual premium is then:

 $f(1) \cdot \pi_1 + f(2) \cdot \pi_2 + f(3) \cdot \pi_3 + f(4) \cdot \pi_4 = 326.375$