STK2130 - Week 8

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Periodic Markov chains

We recall that a Markov chain $\left\{X_{n}\right\}$ is said to be periodic if it can only return to a state in a multiple of $d>1$ steps.
EXAMPLE: Assume that $\left\{X_{n}\right\}$ has state space $\mathcal{S}=\{0,1\}$, and transition matrix:

$$
\boldsymbol{P}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Assuming that $X_{0}=0$, it follows that:

$$
X_{n}= \begin{cases}0, & \text { if } n \text { is even } \\ 1, & \text { if } n \text { is odd }\end{cases}
$$

Thus, this chain can return to a state (0 or 1) in a multiple of 2 steps.
QUESTION: Does periodicity only occur when the chain is deterministic?

Periodic Markov chains (cont.)

EXAMPLE 1: Assume that $\left\{X_{n}\right\}$ has state space $\mathcal{S}=\{0,1,2\}$, and transition matrix:

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0.0 & 1.0 & 0.0 \\
0.5 & 0.0 & 0.5 \\
0.0 & 1.0 & 0.0
\end{array}\right]
$$

Assuming that $X_{0}=1$, the chain will return to this state for $n=2,4,6, \ldots$. Thus, the chain is periodic but not deterministic.

Figure: A non-deterministic periodic Markov chain

Periodic Markov chains (cont.)

EXAMPLE 2. One-dimensional random walk. If $X_{0}=0$, then X_{n} is even if n is even, and odd if n is odd. The chain can only return to state 0 in an even number of steps. Thus, this chain is periodic but not deterministic.

Figure: A one-dimensional random walk

Periodic Markov chains (cont.)

EXAMPLE 3: Assume that $\left\{X_{n}\right\}$ has state space $\mathcal{S}=\{0,1,2,3,4\}$, and transition matrix:

$$
\boldsymbol{P}=\left[\begin{array}{lllll}
0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
0.5 & 0.0 & 0.0 & 0.0 & 0.5 \\
0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 0.0
\end{array}\right]
$$

Assuming that $X_{0}=2$, the chain will return to this state for $n=3,6,9, \ldots$. Thus, the chain is periodic but not deterministic.

Figure: A non-deterministic periodic Markov chain

Chapter 4.7 Branching Processes

Population with X_{0} individuals, each able to produce offspring of the same kind during its lifetime.

$$
P_{j}=P(\text { An individual produces } j \text { new offspring }), \quad j=0,1,2, \ldots
$$

ASSUMPTIONS: $P_{0}>0$ and $P_{j}<1$ for $j=0,1,2, \ldots$
$X_{n}=$ Population size in the nth generation. $, \quad n=0,1,2, \ldots$

$$
\boldsymbol{P}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
P_{0} & P_{1} & P_{2} & P_{3} & \cdots \\
P_{0}^{2} & 2 P_{0} \cdot P_{1} & \cdots & \cdots & \cdots \\
P_{0}^{3} & 3 P_{0}^{2} \cdot P_{1} & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

Chapter 4.7 Branching Processes (cont.)

NOTE:

- Since $P_{00}=1$, then 0 is a recurrent state.
- Since $P_{0}>0$, it follows that $P_{j 0}=P_{0}^{j}>0$.

Hence, state j is transient for all $j>0$.

- Any finite set of transient states $\{1,2, \ldots, n\}$ will be visited only a finite number of times.

Hence, since $P_{0}>0$, the population size converges to 0 or ∞ with probability 1.

Chapter 4.7 Branching Processes (cont.)

Assume that $X_{0}=1$, and let μ and σ^{2} denote respectively the mean and the variance of the number of offspring of an individual. Then:

$$
\begin{aligned}
\mu & =\sum_{j=0}^{\infty} j P_{j}, \\
\sigma^{2} & =\sum_{j=0}^{\infty}(j-\mu)^{2} P_{j}
\end{aligned}
$$

We also let Z_{r} be the number of offspring from individual r in the $(n-1)$ st generation. Hence:

$$
X_{n}=\sum_{r=1}^{X_{n-1}} Z_{r}
$$

Chapter 4.7 Branching Processes (cont.)

$$
\begin{aligned}
E\left[X_{n}\right] & =E\left[E\left[X_{n} \mid X_{n-1}\right]\right] \\
& =E\left[E\left[\sum_{r=1}^{X_{n-1}} Z_{r} \mid X_{n-1}\right]\right] \\
& =E\left[X_{n-1} \mu\right]=\mu E\left[X_{n-1}\right]
\end{aligned}
$$

Since we have assumed that $X_{0}=1$, it follows by induction that:

$$
E\left[X_{n}\right]=\mu^{n}
$$

To find $\operatorname{Var}\left[X_{n}\right]$ we use that:

$$
\begin{aligned}
\operatorname{Var}\left[X_{n}\right] & =E\left[\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right]+\operatorname{Var}\left[E\left(X_{n} \mid X_{n-1}\right)\right] \\
& =E\left[\operatorname{Var}\left(\sum_{r=1}^{X_{n-1}} Z_{r} \mid X_{n-1}\right)\right]+\operatorname{Var}\left[E\left(\sum_{r=1}^{X_{n-1}} Z_{r} \mid X_{n-1}\right)\right]
\end{aligned}
$$

Chapter 4.7 Branching Processes (cont.)

$$
\begin{aligned}
& =E\left[\operatorname{Var}\left(\sum_{r=1}^{X_{n-1}} Z_{r} \mid X_{n-1}\right)\right]+\operatorname{Var}\left[E\left(\sum_{r=1}^{X_{n-1}} Z_{r} \mid X_{n-1}\right)\right] \\
& =E\left[X_{n-1} \sigma^{2}\right]+\operatorname{Var}\left[X_{n-1} \mu\right]=\sigma^{2} \mu^{n-1}+\mu^{2} \operatorname{Var}\left[X_{n-1}\right] \\
& =\sigma^{2} \mu^{n-1}+\mu^{2}\left(\sigma^{2} \mu^{n-2}+\mu^{2} \operatorname{Var}\left[X_{n-2}\right]\right) \\
& =\sigma^{2}\left(\mu^{n-1}+\mu^{n}\right)+\mu^{4} \operatorname{Var}\left[X_{n-2}\right] \\
& =\cdots \\
& =\sigma^{2}\left(\mu^{n-1}+\mu^{n}+\cdots \mu^{2 n-2}\right)+\mu^{2 n} \operatorname{Var}\left[X_{0}\right] \\
& =\sigma^{2}\left(\mu^{n-1}+\mu^{n}+\cdots \mu^{2 n-2}\right)
\end{aligned}
$$

Hence, we get:

$$
\operatorname{Var}\left[X_{n}\right]= \begin{cases}\sigma^{2} \mu^{n-1}\left(\frac{1-\mu^{n}}{1-\mu}\right), & \text { if } \mu \neq 1 \\ n \sigma^{2}, & \text { if } \mu=1\end{cases}
$$

Chapter 4.7 Branching Processes (cont.)

We then consider the probability that the population eventually dies out:

$$
\pi_{0}=\lim _{n \rightarrow \infty} P\left(X_{n}=0 \mid X_{0}=1\right)
$$

We first note that:

$$
\begin{aligned}
\mu^{n} & =E\left[X_{n}\right]=E\left[X_{n} \mid X_{0}=1\right]=\sum_{j=1}^{\infty} j \cdot P\left(X_{n}=j \mid X_{0}=1\right) \\
& \geq \sum_{j=1}^{\infty} 1 \cdot P\left(X_{n}=j \mid X_{0}=1\right) \\
& =P\left(X_{n} \geq 1 \mid X_{0}=1\right)=1-P\left(X_{n}=0 \mid X_{0}=1\right)
\end{aligned}
$$

Hence, it follows that if $\mu<1$, then $\pi_{0}=1$, since:

$$
1 \geq \pi_{0}=\lim _{n \rightarrow \infty} P\left(X_{n}=0 \mid X_{0}=1\right) \geq 1-\lim _{n \rightarrow \infty} \mu^{n}=1-0=1
$$

Chapter 4.7 Branching Processes (cont.)

In general we have:

$$
\begin{align*}
\pi_{0} & =P(\text { The population dies out }) \tag{1}\\
& =\sum_{j=0}^{\infty} P\left(\text { The population dies out } \mid X_{1}=j\right) P_{j} \\
& =\sum_{j=0}^{\infty} \pi_{0}^{j} P_{j}
\end{align*}
$$

It can be shown that π_{0} is the smallest positive number that satisfies (1).
NOTE: Since $\sum_{j=0}^{\infty} P_{j}=1$, we see that $\pi_{0}=1$ is one solution to (1).

Chapter 4.7 Branching Processes (cont.)

We now introduce the following functions:

$$
\phi(z)=\sum_{j=0}^{\infty} z^{j} P_{j}, \quad \ell(z)=z
$$

and note that a solution z to the equation (1) is found by solving $\phi(z)=\ell(z)$.
We observe that:

$$
\begin{aligned}
& \phi(0)=\sum_{j=0}^{\infty} 0^{j} P_{j}=P_{0}>0, \quad \phi(1)=\sum_{j=0}^{\infty} 1^{j} P_{j}=1, \\
& \phi^{\prime}(z)=\sum_{j=1}^{\infty} j \cdot z^{j-1} P_{j}, \quad \phi^{\prime}(1)=\sum_{j=1}^{\infty} j P_{j}=\mu, \\
& \phi^{\prime \prime}(z)=\sum_{j=2}^{\infty} j(j-1) \cdot z^{j-1} P_{j}, \quad \phi^{\prime \prime}(z)>0 \text { for all } z>0 .
\end{aligned}
$$

Chapter 4.7 Branching Processes (cont.)

CASE 1. $\phi^{\prime}(1)=\mu<1$

In this case $\phi(z)=\ell(z)$ for $z=1$ and some $z>1$.
The smallest positive number that satisfies (1) is $\pi_{0}=1$.

Chapter 4.7 Branching Processes (cont.)

CASE 1. $\phi^{\prime}(1)=\mu>1$

In this case $\phi(z)=\ell(z)$ for $z=1$ and some $0<z<1$.
The smallest positive number that satisfies (1) is $\pi_{0}<1$.

Chapter 4.7 Branching Processes (cont.)

CASE 1. $\phi^{\prime}(1)=\mu=1$

In this case $\phi(z)=\ell(z)$ for $z=1$ only.
The only positive number that satisfies (1) is $\pi_{0}=1$.

Chapter 4.7 Branching Processes (cont.)

CONCLUSION:

- If $\mu \leq 1$, then $\pi_{0}=P$ (The population dies out $)=1$.
- If $\mu>1$, then $\pi_{0}=P$ (The population dies out $)<1$.

Example 4.34

Assume that $P_{0}=\frac{1}{2}, P_{1}=\frac{1}{4}$ and $P_{2}=\frac{1}{4}$. Find π_{0}.
SOLUTION:

$$
\begin{aligned}
\mu & =0 \cdot P_{0}+1 \cdot P_{1}+2 \cdot P_{2} \\
& =0 \cdot \frac{1}{2}+1 \cdot \frac{1}{4}+2 \cdot \frac{1}{4}=\frac{3}{4}<1 .
\end{aligned}
$$

Hence, we must have $\pi_{0}=1$.

Example 4.35

Assume that $P_{0}=\frac{1}{4}, P_{1}=\frac{1}{4}$ and $P_{2}=\frac{1}{2}$. Find π_{0}.

SOLUTION:

$$
\begin{aligned}
\mu & =0 \cdot P_{0}+1 \cdot P_{1}+2 \cdot P_{2} \\
& =0 \cdot \frac{1}{4}+1 \cdot \frac{1}{4}+2 \cdot \frac{1}{2}=\frac{5}{4}>1 .
\end{aligned}
$$

In order to find π_{0} we solve (1), which in this case becomes:

$$
\pi_{0}=\pi_{0}^{0} P_{0}+\pi_{0}^{1} P_{1}+\pi_{0}^{2} P_{2}=\frac{1}{4}+\frac{1}{4} \pi_{0}+\frac{1}{2} \pi_{0}^{2} .
$$

or equivalently:

$$
2 \pi_{0}^{2}-3 \pi_{0}+1=2\left(\pi_{0}-1\right)\left(\pi_{0}-\frac{1}{2}\right)=0
$$

Hence, the smallest positive number that satisfies (1) is $\pi_{0}=\frac{1}{2}$.

Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities $P_{i j}$ and stationary probabilities $\pi_{i}, i, j \in \mathcal{S}$.

Then let n be so large that we have reached a stationary state, i.e. $P_{i j}^{n} \approx \pi_{j}$.
We then consider the backwards chain $X_{n}, X_{n-1}, X_{n-2}, \ldots$
The backwards chain is also a Markov chain with transitions probabilities $Q_{i j}$, $i, j \in \mathcal{S}$ given by:

$$
\begin{aligned}
Q_{i j} & =P\left(X_{m}=j \mid X_{m+1}=i\right)=\frac{P\left(X_{m}=j \cap X_{m+1}=i\right)}{P\left(X_{m+1}=i\right)} \\
& =\frac{P\left(X_{m}=j\right) P\left(X_{m+1}=i \mid X_{m}=j\right)}{P\left(X_{m+1}=i\right)}=\frac{\pi_{j} P_{j i}}{\pi_{i}}
\end{aligned}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

We say that $\left\{X_{n}\right\}$ is time reversible if $Q_{i j}=P_{i j}$ for all $i, j \in \mathcal{S}$. Hence, $\left\{X_{n}\right\}$ is time reversible if and only if:

$$
\frac{\pi_{j} P_{j i}}{\pi_{i}}=P_{i j}, \quad \text { for all } i, j \in \mathcal{S} .
$$

or equivalently if and only if:

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad \text { for all } i, j \in \mathcal{S}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

Assume that we can find non-negative numbers $x_{i}, i \in \mathcal{S}$ such that:

$$
\begin{equation*}
x_{i} P_{i j}=x_{j} P_{j i}, \quad \text { for all } i, j \in \mathcal{S}, \quad \text { and } \sum_{i \in \mathcal{S}} x_{i}=1 \tag{2}
\end{equation*}
$$

Then the Markov chain is time reversible.
PROOF: If $x_{i}, i \in \mathcal{S}$ satisfy (2), then it follows that:

$$
\begin{equation*}
\sum_{i \in \mathcal{S}} x_{i} P_{i j}=x_{j} \sum_{i \in \mathcal{S}} P_{j i}=x_{j}, \quad \text { for all } j \in \mathcal{S} \quad \text { and } \sum_{i \in \mathcal{S}} x_{i}=1 \tag{3}
\end{equation*}
$$

We have proved that the equations (3) have the unique solution:

$$
x_{i}=\pi_{i}, \quad \text { for all } i \in \mathcal{S},
$$

which completes the proof.

Example 4.37

Consider a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1, \ldots, M\}$ and transition probabilities:

$$
\begin{aligned}
P_{i, i+1} & =\alpha_{i}=1-P_{i, i-1}, \quad i=1, \ldots, M-1, \\
P_{0,1} & =\alpha_{0}=1-P_{0,0}, \\
P_{M, M} & =\alpha_{M}=1-P_{M, M-1}
\end{aligned}
$$

In matrix form we have

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
1-\alpha_{0} & \alpha_{0} & 0 & 0 & \ldots & 0 & 0 & 0 \\
1-\alpha_{1} & 0 & \alpha_{1} & 0 & \ldots & 0 & 0 & 0 \\
0 & 1-\alpha_{2} & 0 & \alpha_{2} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & \alpha_{M-2} & 0 \\
0 & 0 & 0 & 0 & \ldots & 1-\alpha_{M-1} & 0 & \alpha_{M-1} \\
0 & 0 & 0 & 0 & \ldots & 0 & 1-\alpha_{M} & \alpha_{M}
\end{array}\right]
$$

Example 4.37 (cont.)

In this case the long run rate of transitions from i to $i+1$ must be equal to the long run rate of transitions from $i+1$ to i. From this it can be shown that:

$$
\pi_{i} P_{i, i+1}=\pi_{i+1} P_{i+1, i}, \quad i=0,1, \ldots,(M-1) .
$$

That is, the Markov chain is time reversible.
In order to find the stationary probabilities we solve the following equations:

$$
\begin{aligned}
& \pi_{0} \alpha_{0}=\pi_{1}\left(1-\alpha_{1}\right), \\
& \pi_{1} \alpha_{1}=\pi_{2}\left(1-\alpha_{2}\right), \\
& \vdots \\
& \pi_{M-1} \alpha_{M-1}=\pi_{M}\left(1-\alpha_{M}\right)
\end{aligned}
$$

Example 4.37 (cont.)

Hence, we get:

$$
\begin{aligned}
\pi_{1} & =\frac{\alpha_{0}}{1-\alpha_{1}} \pi_{0}, \\
\pi_{2} & =\frac{\alpha_{1}}{1-\alpha_{2}} \pi_{1}=\frac{\alpha_{1} \alpha_{0}}{\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0}, \\
& \vdots \\
\pi_{M} & =\frac{\alpha_{M-1}}{1-\alpha_{M}} \pi_{M-1}=\frac{\alpha_{M-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{M}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0} .
\end{aligned}
$$

Example 4.37 (cont.)

We then use that $\sum_{j=0}^{M} \pi_{j}=1$ and get:

$$
\pi_{0}\left[1+\sum_{j=1}^{M} \frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)}\right]=1
$$

From this it follows that:

$$
\pi_{0}=\left[1+\sum_{j=1}^{M} \frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)}\right]^{-1}
$$

and that:

$$
\pi_{j}=\frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0}, \quad j=1, \ldots, M .
$$

Example 4.37 (cont.)

Assume in particular that $\alpha_{j}=\alpha, j=0,1, \ldots, M$ and let $\beta=\alpha /(1-\alpha)$.
We then get:

$$
\begin{aligned}
\pi_{0} & =\left[1+\sum_{j=1}^{M} \frac{\alpha^{j}}{(1-\alpha)^{j}}\right]^{-1} \\
& =\left[\frac{1-\beta^{M+1}}{1-\beta}\right]^{-1}=\frac{1-\beta}{1-\beta^{M+1}},
\end{aligned}
$$

and:

$$
\pi_{j}=\frac{\beta^{j}(1-\beta)}{1-\beta^{M+1}}, \quad j=1, \ldots, M
$$

Example 4.37 (cont.)

SPECIAL CASE: Two urns with a total of M items (molecules). At each step one item is sampled from the total population and moved from this urn to the other.

$$
X_{n}=\text { The number of items in urn } 1 \text { at the } n \text {th step. }
$$

In this case we get:

$$
\alpha_{j}=\frac{M-j}{M}, \quad\left(1-\alpha_{j}\right)=\frac{j}{M}, \quad j=0,1, \ldots, M .
$$

NOTE: $\alpha_{0}=1$ and $\alpha_{M}=0$.

Example 4.37 (cont.)

Hence, we get:

$$
\begin{aligned}
\pi_{0} & =\left[1+\sum_{j=1}^{M} \frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)}\right]^{-1} \\
& =\left[1+\sum_{j=1}^{M} \frac{(M-j+1) \cdots(M-1) M}{j(j-1) \cdots 2 \cdot 1}\right]^{-1} \\
& =\left[\sum_{j=0}^{M}\binom{M}{j}\right]^{-1}=\left[\sum_{j=0}^{M}\binom{M}{j} \cdot 1^{j} \cdot 1^{M-j}\right]^{-1} \\
& =\left[(1+1)^{M}\right]^{-1}=\left(\frac{1}{2}\right)^{M}
\end{aligned}
$$

Example 4.37 (cont.)

Furthermore, we get:

$$
\begin{aligned}
\pi_{j} & =\frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0} \\
& =\frac{(M-j+1) \cdots(M-1) M}{j(j-1) \cdots 2 \cdot 1} \pi_{0} \\
& =\binom{M}{j}\left(\frac{1}{2}\right)^{M}, \quad j=0,1,2, \ldots, M .
\end{aligned}
$$

NOTE: This implies that $X_{n} \sim \operatorname{Bin}\left(M, \frac{1}{2}\right)$ when n is large.

Example 4.38

Undirected graph with weighted edges.

Example 4.38 (cont.)

The nodes represent states of a Markov chain with state space \mathcal{S}.
Thus, we define:

$$
X_{n}=\text { The node where the process is at step } n, \quad n=0,1,2, \ldots
$$

We then introduce weights:
$w_{i j}=$ The weight associated with the edge between node i and $j, \quad i, j \in \mathcal{S}$. and let:

$$
P_{i j}=\frac{w_{i j}}{\sum_{k \in \mathcal{S}} w_{i k}}, \quad i, j \in \mathcal{S} .
$$

Example 4.38 (cont.)

The time reversibility equations:

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad i, j \in \mathcal{S}
$$

then become:

$$
{ }^{\pi_{i}} \frac{w_{i j}}{\sum_{k \in \mathcal{S}} w_{i k}}=\pi_{j} \frac{w_{j i}}{\sum_{k \in \mathcal{S}} w_{j k}}, \quad i, j \in \mathcal{S}
$$

Since $w_{i j}=w_{j i}$, the equations simplify to:

$$
\frac{\pi_{i}}{\sum_{k \in \mathcal{S}} w_{i k}}=\frac{\pi_{j}}{\sum_{k \in \mathcal{S}} w_{j k}}, \quad i, j \in \mathcal{S}
$$

which equivalent to:

$$
\frac{\pi_{i}}{\sum_{k \in \mathcal{S}} w_{i k}}=c, \quad i \in \mathcal{S}
$$

Example 4.38 (cont.)

Alternatively, these equations can be written as:

$$
\pi_{i}=c \sum_{k \in \mathcal{S}} w_{i k}, \quad i \in \mathcal{S}
$$

Summing over all i we get:

$$
\sum_{i \in \mathcal{S}} \pi_{i}=c \sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{S}} w_{i k}=1
$$

Hence,

$$
c=\left[\sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{S}} w_{i k}\right]^{-1}
$$

Thus, we get the stationary probabilities:

$$
\pi_{i}=\frac{\sum_{k \in \mathcal{S}} w_{i k}}{\sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{S}} w_{i k}}, \quad i \in \mathcal{S}
$$

Example 4.38 (cont.)

In this graph we get:

$$
\pi_{1}=\frac{6}{32}, \quad \pi_{2}=\frac{3}{32}, \quad \pi_{3}=\frac{6}{32}, \quad \pi_{4}=\frac{5}{32}, \quad \pi_{5}=\frac{12}{32} .
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

We recall that the time reversibility equations implies that:

$$
\begin{aligned}
x_{i} P_{i j} & =x_{j} P_{j i} \\
x_{k} P_{k j} & =x_{j} P_{j k}
\end{aligned}
$$

Assuming that $P_{i j} P_{j k}>0$ these equations imply that:

$$
\begin{aligned}
x_{i} & =x_{j} \frac{P_{j i}}{P_{i j}} \\
x_{j} & =x_{k} \frac{P_{k j}}{P_{j k}}
\end{aligned}
$$

Hence,

$$
\frac{x_{i}}{x_{k}}=\frac{P_{k j} P_{j i}}{P_{i j} P_{j k}}
$$

At the same time the time reversibility equations implies that:

$$
\frac{x_{i}}{x_{k}}=\frac{P_{k i}}{P_{i k}}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

Thus, for a valid solution to the time reversibility equations we must have that:

$$
\frac{P_{k j} P_{j i}}{P_{i j} P_{j k}}=\frac{P_{k i}}{P_{i k}}
$$

or equivalently:

$$
P_{i k} P_{k j} P_{j i}=P_{i j} P_{j k} P_{k i}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem

A stationary Markov chain for which $P_{i j}=0$ whenever $P_{j i}=0$ is time reversible if and only if starting in state i, any path back to i has the same probability as the reversed path. That is, if:

$$
P_{i, i_{1}} P_{i_{1}, i_{2}} \cdots P_{i_{k}, i}=P_{i, i_{k}} P_{i_{k}, i_{k-1}} \cdots P_{i_{1}, i}
$$

for all states $i, i_{1}, \ldots, i_{k}, k=1,2, \ldots$.
PROOF: That this condition is necessary essentially follows from the argument above. We thus focus on proving sufficiency.
We fix i and j and write the condition in the theorem as:

$$
P_{i, i_{1}} P_{i_{1}, i_{2}} \cdots P_{i_{k}, j} P_{j, i}=P_{i, j} P_{j, i_{k}} P_{i_{k}, i_{k-1}} \cdots P_{i_{1}, i}
$$

By summing over all paths of length $k+1$ we get that:

$$
P_{i j}^{k+1} P_{j i}=P_{i j} P_{j i}^{k+1}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

We then sum over k from 1 to m and divide by m :

$$
\frac{P_{j i} \sum_{k=1}^{m} P_{i j}^{k+1}}{m}=\frac{P_{i j} \sum_{k=1}^{m} P_{j i}^{k+1}}{m}
$$

By letting $m \rightarrow \infty$ this implies that:

$$
P_{j i} \pi_{j}=P_{i j} \pi_{i}
$$

Hence, we conclude that the chain is time reversible.

