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Periodic Markov chains

We recall that a Markov chain {X,} is said to be periodic if it can only return
to a state in a multiple of d > 1 steps.

EXAMPLE: Assume that {X,,} has state space S = {0, 1}, and transition
matrix: 0 1

P= [ 10 }
Assuming that X, = 0, it follows that:

X — 0, ifniseven
"7 1, ifnisodd

Thus, this chain can return to a state (0 or 1) in a multiple of 2 steps.

QUESTION: Does periodicity only occur when the chain is deterministic?
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Periodic Markov chains (cont.)

EXAMPLE 1: Assume that {X,} has state space S = {0, 1,2}, and transition

matrix:
0.0 1.0 0.0
P=| 05 00 05
0.0 1.0 0.0

Assuming that X, = 1, the chain will return to this state forn=2,4,6, .. ..
Thus, the chain is periodic but not deterministic.

1.0 0.5
0.5 1.0
Figure: A non-deterministic periodic Markov chain
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Periodic Markov chains (cont.)

EXAMPLE 2. One-dimensional random walk. If X, = 0, then X, is evenif nis
even, and odd if nis odd. The chain can only return to state 0 in an even
number of steps. Thus, this chain is periodic but not deterministic.

p p p P
q q q q

Figure: A one-dimensional random walk
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Periodic Markov chains (cont.)

EXAMPLE 3: Assume that {X,} has state space S = {0,1,2,3,4}, and

transition matrix:
0.0 1.0 00 0.0 0.0

0.0 00 1.0 0.0 0.0
P=|05 00 00 00 05
0.0 00 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0

Assuming that Xy = 2, the chain will return to this state for n = 3,6,9, .. ..

Thus, the chain is periodic but not deterministic.

Figure: A non-deterministic periodic Markov chain
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Chapter 4.7 Branching Processes

Population with Xj individuals, each able to produce offspring of the same
kind during its lifetime.

P; = P(An individual produces j new offspring), j=0,1,2,...

ASSUMPTIONS: Py > 0and P; < 1forj=0,1,2,...
X, = Population size in the nth generation., n=0,1,2,...
1 0 0O O
Py P; P, P;

P=| P2 2P,.P
PS 3P2.P
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Chapter 4.7 Branching Processes (cont.)

NOTE:

@ Since Pyy = 1, then 0 is a recurrent state.
@ Since Py > 0, it follows that Py = P > 0.
Hence, state j is transient for all j > 0.

@ Any finite set of transient states {1,2, ..., n} will be visited only a finite
number of times.

Hence, since P, > 0, the population size converges to 0 or co with
probability 1.
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Chapter 4.7 Branching Processes (cont.)

Assume that X, = 1, and let i and o denote respectively the mean and the
variance of the number of offspring of an individual. Then:

j=0
o? = (j— PP
j=0
We also let Z; be the number of offspring from individual r in the (n — 1)st

generation. Hence:

Xn—1

Xn = Z Zr
r=1
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Chapter 4.7 Branching Processes (cont.)

E[Xn] = E[E[Xn | Xa—1]]
Xn—1

= E[E[Z Z | Xn—1]]

r=1
= E[Xn-1p] = pE[Xp—1]
Since we have assumed that Xy = 1, it follows by induction that:

E[Xq] = 1"

To find Var[X,;] we use that:
Var[X,| = E[Var(X, | Xp—1)] + Var[E(Xn | Xn—1)]

Xn—1 Xn—1
= ENar(D>_ Z | Xo—1)] + Var[E(D_ Z | Xo—1)]
r=1 r=1
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Chapter 4.7 Branching Processes (cont.)

Xn_1 Xn—1
= E[Var(} _ Z, | Xo_1)] + Var[E(D  Z | Xp1)]

r=1 r=1

= E[Xy_102] + Var[Xn_1p] = o2u™" + 12 Var[X,_4]
_ 0_2un—1 + MZ(O,ZMn—Z + ‘u2 Var[Xn—Z])
= o®(u" " + 1) + p* Var[X, o]

_ J2(Mn—1 + "+ "uzn—2) + Mzn Var[Xp]

— 0,2(an1 +un 4. "u2n72)
Hence, we get:

vapg) = | 7R, A
" no?, if =1
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Chapter 4.7 Branching Processes (cont.)
We then consider the probability that the population eventually dies out:

0—|Im P( |X0—1)

We first note that:

p'=EXa) = E[Xp [ Xo=11=> j-P(Xa=j| Xo=1)
j=1
> 1-PXn=Jj|Xo=1)
j=1
=PXp 21 Xo=1)=1-P(X,=0| Xo=1)

Hence, it follows that if © < 1, then mg = 1, since:

1>m = lim P(X,=0]Xo=1)>1— lm p"=1-0=1.
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Chapter 4.7 Branching Processes (cont.)

In general we have:

mo = P(The population dies out) (1)

P(The population dies out | X; = j)P;

Sl

s I8

-
I
o

'Dj

It can be shown that 7 is the smallest positive number that satisfies (1).

NOTE: Since - =, P; = 1, we see that 7o = 1 is one solution to (1).
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Chapter 4.7 Branching Processes (cont.)

We now introduce the following functions:
$(2)=) 2P, Uz)=2z
j=0

and note that a solution z to the equation (1) is found by solving ¢(z) = ¢(z).

We observe that:

$(0)= 0P =P >0, ¢(1)=> VP =1,
j=0 j=0

(2= j-Z7F d() =D jP=un
j=1 j=1

¢"(2)=>_j(i—-1)-Z7'P,  ¢"(z)>0forallz>0.
=2
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Chapter 4.7 Branching Processes (cont.)

CASE 1. ¢/(1) = < 1

A

Ny

In this case ¢(z) = ¢(z) for z=1 and some z > 1.

The smallest positive number that satisfies (1) is 7o = 1.
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Chapter 4.7 Branching Processes (cont.)

CASE 1. ¢/(1) = u > 1

A

z

In this case ¢(z) = ¢(z) forz=1and some 0 < z < 1.

The smallest positive number that satisfies (1) is 7o < 1.
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Chapter 4.7 Branching Processes (cont.)
CASE 1. ¢/(1) = p =1

A

Ny

In this case ¢(z) = £(z) for z =1 only.

The only positive number that satisfies (1) is 7o = 1.
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Chapter 4.7 Branching Processes (cont.)

CONCLUSION:

@ If u <1, then mp = P(The population dies out) = 1.

@ If 4 > 1, then mg = P(The population dies out) < 1.
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Example 4.34

Assume that Py = 1, Py = 1 and P, = }. Find .
SOLUTION:

=
I
o

P0—|-1-P1+2'P2

I
o

1 1 1 3
§+1'_+2'_ S <1
Hence, we must Ilave70 =1.
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Example 4.35
Assume that Py = 1, Py = } and P, = }. Find mo.
SOLUTION:
p=0-Po+1-P+2-P
=0-;+1-1+2.1=2>1.

In order to find w9 we solve (1), which in this case becomes:
Ty = 7r8Po + 7r(1,F’1 + 7T(2,P2 = ‘1‘ + ‘1‘71'0 + %77(2).
or equivalently:
2m5 —3mo+1=2(m0 — 1)(mo — 3) =0
Hence, the smallest positive number that satisfies (1) is 7o = 3.
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Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities P; and
stationary probabilities 7, i,j € S.

Then let nbe so large that we have reached a stationary state, i.e. Pj ~ ;.

We then consider the backwards chain X,, X,_1, Xp_2, ...

The backwards chain is also a Markov chain with transitions probabilities Qj,
i,j € S given by:

O’/ = P(Xm :j | Xm+1 = I) = P(Xm+1 — I)

PO =P =i [ Xn=J) _ TPy

P(Xme1 = 1) i
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We say that { X} is time reversible if Q; = Pjforall i,j € S.

Hence, {X,} is time reversible if and only if:

P [
T _ p; forallijeS.
T

or equivalently if and only if:

7T,'P,'j = 7TjP/',', foralli,j e S.
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Assume that we can find non-negative numbers x;, i € S such that:

XiPj=xP;, forallijesS, and) x=1. 2)
ieS

Then the Markov chain is time reversible.

PROOF: If x;, i € S satisfy (2), then it follows that:

d xPj=xY Pi=x, foralljeS and ) x=1. 3)
ieS ieS ieS
We have proved that the equations (3) have the unique solution:
xi=m;, forallies,
which completes the proof.
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Example 4.37

Consider a Markov chain {X,} with state space S = {0,1,..., M} and
transition probabilities:

Piiy1 =ai=1-=Pjjy, i=1,....M-1,
Pojg=a0=1-"Fop,
Pum =am=1— Puuy-1

In matrix form we have

_1—a0 (&%) 0 0 0 0 0
1— oy 0 ar 0 ... 0 0 0
0 1—ar 0 ax ... 0 0 0
P=| SR : :
0 0 0 O 0 ap_z 0
0 0 0 O 1— ay_1 0 M1
| 0 0 0O O 0 1—ay am |
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Example 4.37 (cont.)

In this case the long run rate of transitions from i to i + 1 must be equal to the
long run rate of transitions from i 4+ 1 to /. From this it can be shown that:

TPt = Tig1 Pigaiy 1=0,1,...,(M—1).

That is, the Markov chain is time reversible.

In order to find the stationary probabilities we solve the following equations:
moao = m(1 — o),

T = 71'2(1 — Oég),

mm—1am—1 = (1 — am)
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Example 4.37 (cont.)

Hence, we get:

g
™ = 7o,
1—0[1
Qq Q1O
o — —— T4 — i
2T (—a) (I —aq)
T = ap— Tieq = apm—1 -1 Qo
T—aw = (T—am) (1 —a2)(1 —a1)

0
A. B. Huseby (Univ. of Oslo)

STK2130 — Week 8



——
Example 4.37 (cont.)

We then use that Zino mj = 1 and get:

and that:
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Example 4.37 (cont.)

Assume in particular that a; = a, j = 0,1,..., M and let 8 = a/(1 — «).

We then get:

- 1
1 S
T — +j=Z1(1—Oé)/

'1_5M+1 -1 1_6
__1_/3] :1_I3M+1’

and:

i1-8)
’/Tj:_IB(_—IBMf?, j=1,,M
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Example 4.37 (cont.)

SPECIAL CASE: Two urns with a total of M items (molecules). At each step

one item is sampled from the total population and moved from this urn to the
other.

X, = The number of items in urn 1 at the nth step.

In this case we get:
M—j j .
ajz—l, (1—0[/)2,{—/, j:0,1,...,M.

NOTE: ag =1 and ay = 0.
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Example 4.37 (cont.)

Hence, we get:

- 1
M
_ aj_1...a1a0
- 1+Z(1—a/)"'(1—042)(1—041)]

> T2

“e = (3)
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Example 4.37 (cont.)

Furthermore, we get:

Q1 aq10Q .
(T =a)- (= az)(1 —ar)

Mg (MM

G-1-2-1

M
_ (’;”) (%) , j=0,1,2,...,M.

NOTE: This implies that X, ~ Bin(M, }) when nis large.

T =
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Example 4.38

Undirected graph with weighted edges.

A. B. Huseby (Univ. of Oslo) STK2130 — Week 8 31/39



——
Example 4.38 (cont.)

The nodes represent states of a Markov chain with state space S.

Thus, we define:

X, = The node where the processisatstepn, n=0,1,2,...

We then introduce weights:

w; = The weight associated with the edge between node iandj, i,je S.

and let:

Wi

Pj=
I 9
> kes Wik

i,jes.
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Example 4.38 (cont.)

The time reversibility equations:
7T,‘P,'/ = 7T/'Pj,', i,j €S

then become:

Wij i ..
T =T , I,J€ S
Zkes Wik Zkes Wik
Since wj; = wj;, the equations simplify to:
T T ..
L ijes

> kes Wik B > kes Wik

which equivalent to:
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Example 4.38 (cont.)

Alternatively, these equations can be written as:
F/ZCZW,‘/(, ieS
keS
Summing over all i we get:
Sr=eX S w=t
ieS i€S kes

Hence,

-S|

i€S keS

Thus, we get the stationary probabilities:

> kes Wik

a Zies Zkes Wik’

A. B. Huseby (Univ. of Oslo) STK2130 — Week 8 34/39

ieS

i



IS
Example 4.38 (cont.)

In this graph we get:

6
™ = 32 2

T4
A. B. Huseby (Univ. of Oslo)
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We recall that the time reversibility equations implies that:
XiPj = x;Pj
X Pig = X; Pk
Assuming that P;Py > 0 these equations imply that:

P..
JI
Xj = Xj—=-
jPij
'/ k Fﬁk
Hence,
X _ PqPji
X PPy
At the same time the time reversibility equations implies that:
X _ Pu
Xk P
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Thus, for a valid solution to the time reversibility equations we must have that:

Pufs _ P

PiPi  Pi

or equivalently:

Pix Py Pji = Pij PPy
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem

A stationary Markov chain for which P = 0 whenever Pj; = 0 is time
reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if:

Piii Piy iy - Pici = PiiPici -

P

ik

for all states i, iy, ... ik, k=1,2,....

PROOF: That this condition is necessary essentially follows from the
argument above. We thus focus on proving sufficiency.

We fix i and j and write the condition in the theorem as:
PiiPie - PicjPii = PijPicPici - Pii
By summing over all paths of length k + 1 we get that:

k+1p. _ p. pk+1
P Pii = PP
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We then sum over k from 1 to m and divide by m:

M Pk M pk
Pi > ke Pij _ P> ke Pji
m m

By letting m — oo this implies that:

Pj,‘ﬂ'j = P,-,-7r,-

Hence, we conclude that the chain is time reversible.
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