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Periodic Markov chains

We recall that a Markov chain {Xn} is said to be periodic if it can only return
to a state in a multiple of d > 1 steps.

EXAMPLE: Assume that {Xn} has state space S = {0,1}, and transition
matrix:

P =

[
0 1
1 0

]
Assuming that X0 = 0, it follows that:

Xn =

{
0, if n is even
1, if n is odd

Thus, this chain can return to a state (0 or 1) in a multiple of 2 steps.

QUESTION: Does periodicity only occur when the chain is deterministic?
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Periodic Markov chains (cont.)

EXAMPLE 1: Assume that {Xn} has state space S = {0,1,2}, and transition
matrix:

P =

 0.0 1.0 0.0
0.5 0.0 0.5
0.0 1.0 0.0


Assuming that X0 = 1, the chain will return to this state for n = 2,4,6, . . ..
Thus, the chain is periodic but not deterministic.
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Figure: A non-deterministic periodic Markov chain
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Periodic Markov chains (cont.)

EXAMPLE 2. One-dimensional random walk. If X0 = 0, then Xn is even if n is
even, and odd if n is odd. The chain can only return to state 0 in an even
number of steps. Thus, this chain is periodic but not deterministic.
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Figure: A one-dimensional random walk
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Periodic Markov chains (cont.)
EXAMPLE 3: Assume that {Xn} has state space S = {0,1,2,3,4}, and
transition matrix:

P =


0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.5 0.0 0.0 0.0 0.5
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0


Assuming that X0 = 2, the chain will return to this state for n = 3,6,9, . . ..
Thus, the chain is periodic but not deterministic.

2

1

0

4

3

Figure: A non-deterministic periodic Markov chain
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Chapter 4.7 Branching Processes

Population with X0 individuals, each able to produce offspring of the same
kind during its lifetime.

Pj = P(An individual produces j new offspring), j = 0,1,2, . . .

ASSUMPTIONS: P0 > 0 and Pj < 1 for j = 0,1,2, . . .

Xn = Population size in the nth generation., n = 0,1,2, . . .

P =


1 0 0 0 · · ·
P0 P1 P2 P3 · · ·
P2

0 2P0 · P1 · · · · · · · · ·
P3

0 3P2
0 · P1 · · · · · · · · ·

· · · · · · · · · · · · · · ·
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Chapter 4.7 Branching Processes (cont.)

NOTE:

Since P00 = 1, then 0 is a recurrent state.

Since P0 > 0, it follows that Pj0 = P j
0 > 0.

Hence, state j is transient for all j > 0.

Any finite set of transient states {1,2, . . . ,n} will be visited only a finite
number of times.

Hence, since P0 > 0, the population size converges to 0 or∞ with
probability 1.
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Chapter 4.7 Branching Processes (cont.)

Assume that X0 = 1, and let µ and σ2 denote respectively the mean and the
variance of the number of offspring of an individual. Then:

µ =
∞∑
j=0

jPj ,

σ2 =
∞∑
j=0

(j − µ)2Pj .

We also let Zr be the number of offspring from individual r in the (n − 1)st
generation. Hence:

Xn =

Xn−1∑
r=1

Zr
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Chapter 4.7 Branching Processes (cont.)

E [Xn] = E [E [Xn | Xn−1]]

= E [E [

Xn−1∑
r=1

Zr | Xn−1]]

= E [Xn−1µ] = µE [Xn−1]

Since we have assumed that X0 = 1, it follows by induction that:

E [Xn] = µn.

To find Var[Xn] we use that:

Var[Xn] = E [Var(Xn | Xn−1)] + Var[E(Xn | Xn−1)]

= E [Var(
Xn−1∑
r=1

Zr | Xn−1)] + Var[E(

Xn−1∑
r=1

Zr | Xn−1)]
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Chapter 4.7 Branching Processes (cont.)

= E [Var(
Xn−1∑
r=1

Zr | Xn−1)] + Var[E(

Xn−1∑
r=1

Zr | Xn−1)]

= E [Xn−1σ
2] + Var[Xn−1µ] = σ2µn−1 + µ2 Var[Xn−1]

= σ2µn−1 + µ2(σ2µn−2 + µ2 Var[Xn−2])

= σ2(µn−1 + µn) + µ4 Var[Xn−2]

= · · ·

= σ2(µn−1 + µn + · · ·µ2n−2) + µ2n Var[X0]

= σ2(µn−1 + µn + · · ·µ2n−2)

Hence, we get:

Var[Xn] =

{
σ2µn−1( 1−µn

1−µ ), if µ 6= 1
nσ2, if µ = 1
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Chapter 4.7 Branching Processes (cont.)
We then consider the probability that the population eventually dies out:

π0 = lim
n→∞

P(Xn = 0 | X0 = 1)

We first note that:

µn = E [Xn] = E [Xn | X0 = 1] =
∞∑
j=1

j · P(Xn = j | X0 = 1)

≥
∞∑
j=1

1 · P(Xn = j | X0 = 1)

= P(Xn ≥ 1|X0 = 1) = 1− P(Xn = 0 | X0 = 1)

Hence, it follows that if µ < 1, then π0 = 1, since:

1 ≥ π0 = lim
n→∞

P(Xn = 0 | X0 = 1) ≥ 1− lim
n→∞

µn = 1− 0 = 1.
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Chapter 4.7 Branching Processes (cont.)

In general we have:

π0 = P(The population dies out) (1)

=
∞∑
j=0

P(The population dies out | X1 = j)Pj

=
∞∑
j=0

πj
0Pj

It can be shown that π0 is the smallest positive number that satisfies (1).

NOTE: Since
∑∞

j=0 Pj = 1, we see that π0 = 1 is one solution to (1).
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Chapter 4.7 Branching Processes (cont.)
We now introduce the following functions:

φ(z) =
∞∑
j=0

z jPj , `(z) = z,

and note that a solution z to the equation (1) is found by solving φ(z) = `(z).

We observe that:

φ(0) =
∞∑
j=0

0jPj = P0 > 0, φ(1) =
∞∑
j=0

1jPj = 1,

φ′(z) =
∞∑
j=1

j · z j−1Pj , φ′(1) =
∞∑
j=1

jPj = µ,

φ′′(z) =
∞∑
j=2

j(j − 1) · z j−1Pj , φ′′(z) > 0 for all z > 0.
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Chapter 4.7 Branching Processes (cont.)

CASE 1. φ′(1) = µ < 1

1 z

1

l(z)
φ(z)

In this case φ(z) = `(z) for z = 1 and some z > 1.

The smallest positive number that satisfies (1) is π0 = 1.
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Chapter 4.7 Branching Processes (cont.)

CASE 1. φ′(1) = µ > 1

1 z

1

l(z)φ(z)

In this case φ(z) = `(z) for z = 1 and some 0 < z < 1.

The smallest positive number that satisfies (1) is π0 < 1.
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Chapter 4.7 Branching Processes (cont.)

CASE 1. φ′(1) = µ = 1

1 z

1

l(z)φ(z)

In this case φ(z) = `(z) for z = 1 only.

The only positive number that satisfies (1) is π0 = 1.
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Chapter 4.7 Branching Processes (cont.)

CONCLUSION:

If µ ≤ 1, then π0 = P(The population dies out) = 1.

If µ > 1, then π0 = P(The population dies out) < 1.
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Example 4.34

Assume that P0 = 1
2 , P1 = 1

4 and P2 = 1
4 . Find π0.

SOLUTION:

µ = 0 · P0 + 1 · P1 + 2 · P2

= 0 · 1
2 + 1 · 1

4 + 2 · 1
4 = 3

4 < 1.

Hence, we must have π0 = 1.
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Example 4.35

Assume that P0 = 1
4 , P1 = 1

4 and P2 = 1
2 . Find π0.

SOLUTION:

µ = 0 · P0 + 1 · P1 + 2 · P2

= 0 · 1
4 + 1 · 1

4 + 2 · 1
2 = 5

4 > 1.

In order to find π0 we solve (1), which in this case becomes:

π0 = π0
0P0 + π1

0P1 + π2
0P2 = 1

4 + 1
4π0 +

1
2π

2
0 .

or equivalently:

2π2
0 − 3π0 + 1 = 2(π0 − 1)(π0 − 1

2 ) = 0

Hence, the smallest positive number that satisfies (1) is π0 = 1
2 .
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Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities Pij and
stationary probabilities πi , i , j ∈ S.

Then let n be so large that we have reached a stationary state, i.e. Pn
ij ≈ πj .

We then consider the backwards chain Xn,Xn−1,Xn−2, . . .

The backwards chain is also a Markov chain with transitions probabilities Qij ,
i , j ∈ S given by:

Qij = P(Xm = j | Xm+1 = i) =
P(Xm = j ∩ Xm+1 = i)

P(Xm+1 = i)

=
P(Xm = j)P(Xm+1 = i | Xm = j)

P(Xm+1 = i)
=
πjPji

πi
.
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We say that {Xn} is time reversible if Qij = Pij for all i , j ∈ S.

Hence, {Xn} is time reversible if and only if:

πjPji

πi
= Pij , for all i , j ∈ S.

or equivalently if and only if:

πiPij = πjPji , for all i , j ∈ S.
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Assume that we can find non-negative numbers xi , i ∈ S such that:

xiPij = xjPji , for all i , j ∈ S, and
∑
i∈S

xi = 1. (2)

Then the Markov chain is time reversible.

PROOF: If xi , i ∈ S satisfy (2), then it follows that:∑
i∈S

xiPij = xj

∑
i∈S

Pji = xj , for all j ∈ S and
∑
i∈S

xi = 1. (3)

We have proved that the equations (3) have the unique solution:

xi = πi , for all i ∈ S,

which completes the proof.
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Example 4.37
Consider a Markov chain {Xn} with state space S = {0,1, . . . ,M} and
transition probabilities:

Pi,i+1 = αi = 1− Pi,i−1, i = 1, . . . ,M − 1,

P0,1 = α0 = 1− P0,0,

PM,M = αM = 1− PM,M−1

In matrix form we have

P =



1− α0 α0 0 0 . . . 0 0 0
1− α1 0 α1 0 . . . 0 0 0

0 1− α2 0 α2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 αM−2 0
0 0 0 0 . . . 1− αM−1 0 αM−1
0 0 0 0 . . . 0 1− αM αM
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Example 4.37 (cont.)

In this case the long run rate of transitions from i to i + 1 must be equal to the
long run rate of transitions from i + 1 to i . From this it can be shown that:

πiPi,i+1 = πi+1Pi+1,i , i = 0,1, . . . , (M − 1).

That is, the Markov chain is time reversible.

In order to find the stationary probabilities we solve the following equations:

π0α0 = π1(1− α1),

π1α1 = π2(1− α2),

...
πM−1αM−1 = πM(1− αM)
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Example 4.37 (cont.)

Hence, we get:

π1 =
α0

1− α1
π0,

π2 =
α1

1− α2
π1 =

α1α0

(1− α2)(1− α1)
π0,

...

πM =
αM−1

1− αM
πM−1 =

αM−1 · · ·α1α0

(1− αM) · · · (1− α2)(1− α1)
π0.
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Example 4.37 (cont.)
We then use that

∑M
j=0 πj = 1 and get:

π0

1 +
M∑

j=1

αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)

 = 1

From this it follows that:

π0 =

1 +
M∑

j=1

αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)

−1

and that:

πj =
αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)
π0, j = 1, . . . ,M.
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Example 4.37 (cont.)

Assume in particular that αj = α, j = 0,1, . . . ,M and let β = α/(1− α).

We then get:

π0 =

1 +
M∑

j=1

αj

(1− α)j

−1

=

[
1− βM+1

1− β

]−1

=
1− β

1− βM+1 ,

and:

πj =
β j(1− β)
1− βM+1 , j = 1, . . . ,M.
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Example 4.37 (cont.)

SPECIAL CASE: Two urns with a total of M items (molecules). At each step
one item is sampled from the total population and moved from this urn to the
other.

Xn = The number of items in urn 1 at the nth step.

In this case we get:

αj =
M − j

M
, (1− αj) =

j
M
, j = 0,1, . . . ,M.

NOTE: α0 = 1 and αM = 0.
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Example 4.37 (cont.)

Hence, we get:

π0 =

1 +
M∑

j=1

αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)

−1

=

1 +
M∑

j=1

(M − j + 1) · · · (M − 1)M
j(j − 1) · · · 2 · 1

−1

=

 M∑
j=0

(
M
j

)−1

=

 M∑
j=0

(
M
j

)
· 1j · 1M−j

−1

=
[
(1 + 1)M]−1

=

(
1
2

)M
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Example 4.37 (cont.)

Furthermore, we get:

πj =
αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)
π0

=
(M − j + 1) · · · (M − 1)M

j(j − 1) · · · 2 · 1
π0

=

(
M
j

)(
1
2

)M

, j = 0,1,2, . . . ,M.

NOTE: This implies that Xn ∼ Bin(M, 1
2 ) when n is large.
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Example 4.38

Undirected graph with weighted edges.

1 2

3 5 4

1
2
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Example 4.38 (cont.)

The nodes represent states of a Markov chain with state space S.

Thus, we define:

Xn = The node where the process is at step n, n = 0,1,2, . . .

We then introduce weights:

wij = The weight associated with the edge between node i and j , i , j ∈ S.

and let:

Pij =
wij∑

k∈S wik
, i , j ∈ S.
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Example 4.38 (cont.)
The time reversibility equations:

πiPij = πjPji , i , j ∈ S

then become:

πi
wij∑

k∈S wik
= πj

wji∑
k∈S wjk

, i , j ∈ S

Since wij = wji , the equations simplify to:

πi∑
k∈S wik

=
πj∑

k∈S wjk
, i , j ∈ S

which equivalent to:

πi∑
k∈S wik

= c, i ∈ S
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Example 4.38 (cont.)
Alternatively, these equations can be written as:

πi = c
∑
k∈S

wik , i ∈ S

Summing over all i we get:∑
i∈S

πi = c
∑
i∈S

∑
k∈S

wik = 1.

Hence,

c =

[∑
i∈S

∑
k∈S

wik

]−1

Thus, we get the stationary probabilities:

πi =

∑
k∈S wik∑

i∈S
∑

k∈S wik
, i ∈ S
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Example 4.38 (cont.)

1 2

3 5 4

1
2

6 4

3

In this graph we get:

π1 = 6
32 , π2 = 3

32 , π3 = 6
32 , π4 = 5

32 , π5 = 12
32 .
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Chapter 4.8 Time Reversible Markov Chains (cont.)
We recall that the time reversibility equations implies that:

xiPij = xjPji

xk Pkj = xjPjk

Assuming that PijPjk > 0 these equations imply that:

xi = xj
Pji

Pij

xj = xk
Pkj

Pjk

Hence,
xi

xk
=

PkjPji

PijPjk

At the same time the time reversibility equations implies that:

xi

xk
=

Pki

Pik
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Thus, for a valid solution to the time reversibility equations we must have that:

PkjPji

PijPjk
=

Pki

Pik

or equivalently:

Pik PkjPji = PijPjk Pki .
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem
A stationary Markov chain for which Pij = 0 whenever Pji = 0 is time
reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if:

Pi,i1Pi1,i2 · · ·Pik ,i = Pi,ik Pik ,ik−1 · · ·Pi1,i

for all states i , i1, . . . , ik , k = 1,2, . . ..

PROOF: That this condition is necessary essentially follows from the
argument above. We thus focus on proving sufficiency.

We fix i and j and write the condition in the theorem as:

Pi,i1Pi1,i2 · · ·Pik ,jPj,i = Pi,jPj,ik Pik ,ik−1 · · ·Pi1,i

By summing over all paths of length k + 1 we get that:

Pk+1
ij Pji = PijPk+1

ji

A. B. Huseby (Univ. of Oslo) STK2130 – Week 8 38 / 39



Chapter 4.8 Time Reversible Markov Chains (cont.)

We then sum over k from 1 to m and divide by m:

Pji
∑m

k=1 Pk+1
ij

m
=

Pij
∑m

k=1 Pk+1
ji

m

By letting m→∞ this implies that:

Pjiπj = Pijπi

Hence, we conclude that the chain is time reversible.
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