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Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities P; and
stationary probabilities 7, i,j € S.

Then let n be so large that we have reached a stationary state, i.e. P}/ ~ ;.

We then consider the backwards chain X,, X,_1, Xn—_o, ...

The backwards chain is also a Markov chain with transitions probabilities Qj,
i,j € S given by:
P(Xmat = 1)

PXm = )PXmi1 = 1| X =J) _ 1Py
P(Xme1 = 1) m
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Time Reversible Markov Chains (cont.)

We say that { X} is time reversible if Q; = Pjforall i,j € S.

Hence, {X,} is time reversible if and only if:

B _ P;, foralli,jeS.
i

or equivalently if and only if:

7T,'P,'j = 7TjP/',', foralli,jeS.
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Doubly stochastic transition matrices

Let P be the transition probability matrix of a Markov chain {X,} with state
space S where |S| = n < co. We then know that:

Zpi/..1 =1, forallies.
jes

If e=(1,...,1)is an n-dimensional vector, we can rewrite this as:

Pe’ =e’.

We say that P is doubly stochastic if we also have:

> Pj-1=1, foralljes.
iesS

In matrix notation this condition can be expressed as:

eP=e.
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Doubly stochastic transition matrices (cont.)

Proposition

Let P be the transition probability matrix of a Markov chain {X,} with state

space S where |S| = n < co. Then P is doubly stochastic if and only if the
stationary distribution is uniform, i.e.: = = %e.

PROOF:

P is doubly stochastic

The stationary distribution is uniform
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Doubly stochastic transition matrices (cont.)

Proposition

Let P be the transition probability matrix of a Markov chain {X,} with state
space S where |S| = n < oco. Assume that P is doubly stochastic. Then the
Markov chain is time reversible if and only if P is symmetric.

PROOF: Since P is doubly stochastic 7; = ‘5 for all i € S. Hence, we get:

P ip. o
Q=" 5t _p jjes

T

3=

Thus, @ = Pifandonly if P; = Pjforalli,j € S.

That is, @ = P if and only if P is symmetric.

A. B. Huseby (Univ. of Oslo) STK2130 — Week 9 6/38



Example

Let P be the transition probability matrix of a Markov chain {X,} with state
space S = {0, 1,2}, where:

04 02 04

02 04 04
P=
04 04 02

Since P is doubly stochastic and symmetric, the Markov chain is time
reversible.
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Example

Let P be the transition probability matrix of a Markov chain {X,} with state
space S = {0, 1,2}, where:

0.0 0.1 09
P=]09 00 0.1
0.1 09 0.0

Since P is doubly stochastic and not symmetric, the Markov chain is not time
reversible.
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Time Reversible Markov Chains (cont.)

Theorem (4.2)

A stationary Markov chain for which P; = 0 whenever P; = 0 is time
reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if:

PiiPi iy - Pii = PiiPici_y -+ Pivi

for all states i, iy, ... ik, k=1,2,....
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Time Reversible Markov Chains (cont.)

Proposition (4.9)

Consider an irreducible Markov chain with transition probability matrix P and
state space S. If we can find a stationary distribution = on S, and a transition
probability matrix Q such that:

7T,'P,‘l':7TjC)j,', foralli,jeS,

then Q is the transition probability matrix of the reversed chain, and = is the
stationary distribution for both the original and reversed chain.

PROOF: The result is an immediate consequence of the previously
established formula:
Q=" foranijes
T
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Example 4.40

Let L denote the lifetime of a type of light bulb, and assume that the
distribution of L in days is:
PlL=)=p;, i=1,2,...

We have an infinite supply of light bulb of this kind, with lifetimes Ly, Lo, . ..
being independent and with the same distribution as L. Each time a bulb fails,
it is replaced by a new one the next day.

Xn = The age of the light bulb atday n, n=1,2,...

Then {X,} is a Markov chain with state space S = {1,2,...} and with
transition probabilities:

i) Pi .
S = =5— Piyi=1-PFy, i=12,...
I) Z]:ij INES ]
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Example 4.40 (cont.)

We then claim that the reversed chain has transition probabilities:

Qii—1=1, i>1
Qu=PL=i)=p, i>1

To show this we need to find a stationary distribution 7, 72, . .. such that:

7T,‘P,'j=7Tiji7 i,j=1,2,...

We start out by letting j = 1 and determine 71, 72, . .. such that:

P(L=i .
miPi1 = Wiﬁ =m Qi =mP(L=1).
This is equivalent to:
mi =mP(L>1)
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Example 4.40 (cont.)

Summing over all j and using that the 7;-s add up to 1, we get:

1 :iﬂi:ﬂ1iP(LZ I)
i—1 i—1
=Ty ZZP/’ZM ZZP/’/(/Z i)

i=1 jfi =1 j=1

_7T1ZZP/ /<!)—7T1ZP/ZI(/<!

/1/1

:7T1Zp/-j:7r1E[L].

j=1
Hence, it follows that my = (E[L])~", and thus:
P(L> )
j = > = R
Uy 7T1P(L ) E[L] ) 1327
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Example 4.40 (cont.)

We note that if j > 1, we have P;j = Q; = 0 for j # i + 1. Hence, it remains to
verify that:

W;P,}':W/jS, i:1,2,..., j=i+1.

Using the expressions for 71, w2, ... and that Q;1; = 1 for i > 1, this is
equivalent to:

PL20) (, PL=0)) _PL>i+1)
E[L] <_P(L2i)) E[L]

By simplifying this equation we get:
P(L>i)—P(L=i)=P(L>i+1)

which is trivially true.
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Chapter 4.9 Markov Chain Monte Carlo Methods

Let Z be a discrete random variable with a state space S, and assume that:

b;

PZ=i)=m =3,

ies.

We assume that b; is known for all i € S.
Since the probabilities must add up to 1, we obviously have:
b/’ -1
Z 5= B Z bi =1,
ieS ieS
Hence, it follows that the normalizing constant B is given by:
B=> b
ies
Thus, in principle B is known as well. However, if |S| is large, calculating B
may be a time-consuming task.
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MCMC Methods (cont.)

EXAMPLE: Let T and Z be two discrete random variables with state spaces
T and S respectively. We assume that the marginal distribution of Z and the
conditional distribution of T given Z are known.

The conditional distribution of Z given T is then:

P(Z=0P(T=tzZ=1i)  bi(t)

A _ = , eS8, teT,
Yies PZ=)DP(T=tzZ=]) B(1)

P(Z=iT=t=

where we have introduced:

bi(t) = P(Z=0)P(T=1Z=1i), ieS teT,

B(t)y=> PZ=)P(T=4Z=j)=P(T=t), teT.

jes

If |S| is large, we may want to avoid calculating B(t).
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MCMC Methods (cont.)

PROBLEM: Construct a Markov chain {X,} with state space S and stationary
distribution equal to the distribution of Z.

SOLUTION (Hastings-Metropolis): Let Q be any given irreducible Markov
chain transition probability matrix on S, and define:

b; Qji -
1 .
Qjj = mm(b,-Q,-,-’ ), i,jes

We then let the transition probability matrix of {X,}, denoted P, be defined as
follows:

Pj = Qjay, i+# ],

Pi=1- Z QUOé,j, ieS
Veall
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MCMC Methods (cont.)

We then claim that {X,} is time reversible and have a stationary distribution
equal to the distribution of Z.

To show this it is sufficient to verify that:
miPy = mjP;, foralli,jeS. (1)

Since (1) is trivially satisfied for i = j, we focus on the case where i # j, where
(1) can be expressed as:

b; b; .,
Eloijaij = Elojiaji, i ()
By eliminating B from these equations and inserting the expression for «;; we
get:
e . biQy .
b,o,,.m.n<biofl;,1):b,cp,,.m.n(bj'_d{iJ), i 3)
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MCMC Methods (cont.)

CASE 1: b,'Q,'j < ijji
In this case oy = 1 while a;; = (b;Qj;)/(b;Qj), and hence, (3) simplifies to:

biQ; = b;Q;i - (biQy) /(b;Qji), 1 #J. (4)

CASE 2: b;Q; > b;Qji
In this case o = (b;Q;i)/(biQ;) while a; = 1, and hence, (3) simplifies to:
biQj - (5;Q)/(b:Qy) = bQji, 1. (5)

Since obviously both (4) and (5) hold true, we conclude that (1) holds true as
well.
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MCMC Methods (cont.)

We recall that:
Pj = Qjoys, 1 # ],

Pii =1 *ZQijoz,-j, ieS
J#i
Assume that X, = i. Then X1 can be generated using the following
two-step Monte Carlo simulation procedure:
STEP 1. Generate J € S suchthat P(J =j) = Q;,j € S.

STEP 2. Generate B € {0,1} such that P(B=1| J =) = aj;, and let:

Xop1=B-j+(1=B)-i

Thus, a transition from state J to state j where i # j happens if and only if
J =jand B = 1. If not, the process stays in state /.
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MCMC Methods (cont.)

The Monte Carlo simulation procedure can be used to estimate some
unknown parameter in the distribution of Z, e.g.:

0 = E[h(2)] = > _ h(i)P(Z = i),

ieS

where h is some function of interest, and the normalizing constant B of the
distribution of Z is too time-consuming to calculate.

By simulating the Markov chain {X,}, having a stationary distribution which is
equal to the distribution of Z, we may estimate 6 by:

n
On=1>" h(Xm).
m=1
By the law of large numbers it follows that 8, — 6 when n — cc.
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MCMC Methods (cont.)

NOTE: Xj, Xz, . .. are not independent samples.
Moreover, the chain may converge slowly towards its stationary distribution.
Both these issues tend to have a negative effect on the convergence rate of

the estimator 4.

If many of the «j;-s are small, the Markov chain tends to get stuck for a long
time before eventually transiting to another state. In such cases the estimator
6, will converge very slowly.
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MCMC Methods (cont.)

For optimal performance, i.e., fast convergence, the matrix Q should ideally
be chosen so that:

b,Q,/ = ijjia for all i,j €S.

Then it follows that:

e .
i = min ,1)1 =1, foralli,jes.
w=m <b,-Q,-,- ) "

Hence, Q = P, i.e., Qs itself the transition probability matrix of {X,}.

Finding the optimal matrix Q implies finding a transition probability matrix with
a stationary distribution which is equal to the distribution of Z. In real-life
applications, this can be difficult.

Instead we may think of Q as our best guess, while the «j;-s are correction
factors which are used to generate a Markov chain with the correct stationary
distribution.
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Gibbs sampling

Assume that Z = (£, ..., Z;) is a discrete random vector with values in S
where:

P(Z=2z)=p(z)=9g(z)/B, forallzesS,

where the g(z) is known for all z € S and B is an unknown normalizing
constant.

We then consider the first step of the Hastings-Metropolis algorithm, and
assume that X, = z = (21, ..., z;). The candidate for the next state, X1, is
generated as follows:

1. Generate K = k uniformly from the set {1,...,r}.

2. Generate Zx = z conditionalon Z; = z;,i=1,...,(k—1),(k+1)...,r.
The resulting candidate for the next state, denoted y, is then:
Y=(Z1,. ., Zk-1,2,Zks1, ..., Zr)
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Gibbs sampling (cont.)

This implies that we have the following transition probabilities:
Qzy =1P(Zk=2|Z = z,i # k)

__9w)/B _ 9(y)
r->,9y)/B r->,9y)

By the same type of argument, we also have:

_9(2)
S S 2}

However, since 3, g(y) = >_, 9(2), this implies that:

9(2)Qzy =9(y)Qy z, forallz,yeS.

Hence, azy = 1forall z,y € S, and thus, Q is an optimal transition
probability matrix.

A. B. Huseby (Univ. of Oslo) STK2130 — Week 9 25/38



IR
Chapter 5

The Exponential Distribution and the Poisson Process
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Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution
with parameter A > 0, denoted as X ~ exp()), if its probability density
function is given by:

xe~™ x>0
f(x) =
0 x<0
If X ~ exp()), then the cdf of X is given by:

X 1—-e™ x>0
F(x)=P(X <x) :/ f(t)dt =
0 0 x<0
Moreover, the ccdf of X is given by:
_ e ™ x>0
F(xX)=P(X>x)=1-F(x) =
1 x <0
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The Exponential Distribution (cont.)

The exponential distribution is a special case of the gamma distribution with

parameters o > 0 and A\ > 0, denoted as X ~ gamma(«, \) with probability
density function:

%Xa—1e—)\x x>0
f(x) = “
0 x<0

where I'(«), defined for all « > 0, is the gamma function given by:

Me) = /Oooxa“e‘*dxv r(m=(n-1), n=1.2

PN~

By substituting u = Ax and du = Adx, we find that:

o0 1 o0
fxdx:—/ u* e Ydu=1.
|, res=5 |

Thus, f(x) is indeed a proper probability density.
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The Exponential Distribution (cont.)

Assume that X ~ exp()\), and let p > —1. We then have:
E[XP] = / xPf(x)dx = / AxPe~ dx
0 0

I'(p + 1) / AP (P11 g=Ax gy
Fp+1)

_T(p+1)
==
In particular:
e @-1r A 2 FB)  B-1)1 2
EXl=nr =" =x =% =% =%

Var[X] = E[X?] — (E[X])? = b viabv:
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The Exponential Distribution (cont.)

Assume that X ~ gamma(«, \). Then the moment generating function of X is
given by:

_ X1 _ > tx A a—1—Ax
Mi(t) = Ele ]_/0 LA

A —1 4—(A=t)x
= x*"'e ax
/o M(a)

A% /Oo (A =D st —(—tx
= x“"'e ax
A=0>Jo (o)
)\Oé

= for all A
O orall t <

In particular, if X ~ exp(\), we have:

Mx(t) = )\L—t’ forall t < A.
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The Exponential Distribution (cont.)

Proposition (5.1)

Assume that Xi, ..., X, are independent and X; ~ exp(\), i =1,...,n, and
let:

Y=Xi+ -+ X,

Then Y ~ gamma(n, \).

PROOF: Using moment generating functions we get:
My (1) = E[e"] = E[e% 4] = My, (1) - My, (1)

A AT
A=t A=t (A=t

Hence, Y ~ gamma(n, \).
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The Exponential Distribution (cont.)

Proposition 5.1 is a special case of the following more general result:

Proposition (5.1b)

Assume that X, ..., X, are independent and X; ~ gamma(«aj, \), i=1,...,n,
and let:

Y =X+ + X,

Then Y ~ gamma(a, \), where a = >_1, a;.

PROOF: Using moment generating functions we get:
My (1) = E[e"] = E[e%* ) = My, (1) - My, (1

A P
A=t (A=t (A—t)

Hence, Y ~ gamma(a, \).
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The Exponential Distribution (cont.)

A random variable X is said to be memoryless if:
PX>s+tX>t)=PX—-t>s|X>t)=P(X >s), foralls,t>D0.
Thus, X is memoryless if (X — t)|(X > t) has the same distribution as X.

If X ~ exp()), we have:

PX>s+tNnX>1)
P(X >1)
P(X >s+1)
P(X > t)
e—>\(3+t)

== = e =P(X>s)

P(X>s+tX>1t)=

Hence, we conclude that X is memoryless.
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Example 5.2

The amount of time one spends in a bank, denoted X, is exponentially
distributed with mean ten minutes. That is, X ~ exp(\) = exp(f—o).

PROBLEM 1: What is the probability that a customer will spend more than
fifteen minutes in the bank?

SOLUTION:

P(X > 15) = e 15" = ¢715/10 ~ 0.223

PROBLEM 2: What is the probability that a customer will spend more than
fifteen minutes in the bank given that she is still in the bank after ten minutes?

SOLUTION:

P(X > 15| X > 10) = e (157102 — ¢=5/10 0 607
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The Exponential Distribution (cont.)

Assume that Xi, X> are independent and that X; ~ exp();), i = 1,2. We want
to calculate the probability of the event that X; < Xz.

P(X1 < Xg) :/ P(X1 < Xg‘X1 = X))\1 eiMXdX
0
:/ P(X> > x)\je~M*dx
0

- /Oo e 2 \je ¥ ax
0
RYEDY

N A+

/ (/\1 + /\2)6_()\1+>\2)de
0
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The Exponential Distribution (cont.)

Assume that Xi, ..., X, are independent and that X; ~ exp(\;),i=1,...,n.

P(min X; > x) = ﬂX>x

1<i<n

n
= H P(X; > x)  (by independence)

=1

— e—(ZL Ai)x

Thus, we have shown that miny<j<, X; ~ exp(>"7_; A).
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The Exponential Distribution (cont.)

The following result combines the two previous results:

Assume that Xj, ..., X, are independent and that X; ~ exp(\;),i=1,...,n.

We want to calculate the probability that X; is the smallest of all the variables,
i.e., that X; < X; for all j # /.

P(()Xi < X)) = P(X; < min X;)

J#i
_ Ai . X A\
m, since minj; X; ~ exp(Z#,. j)
DYDY
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The Exponential Distribution (cont.)

Proposition (5.2)

Assume that Xi, ..., X, are independent and that X; ~ exp(\;), i=1,...,n.
Then min; X; ~ exp(zf’=1 Ai). Moreover, min; X; and the rank order of
Xi,..., Xy are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

P(Xi, < - <X, | 1r<niian,- > 1)

n
= P(X, << X, | )X >1)
i=1

n
=P(X, —t<--<X,—t|[Xi>1)

i=1

=P <---<X;)
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