STK2130 - Week 9

A. B. Huseby

Department of Mathematics University of Oslo, Norway

э

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities P_{ij} and stationary probabilities π_i , $i, j \in S$.

Then let *n* be so large that we have reached a stationary state, i.e. $P_{ii}^n \approx \pi_j$.

We then consider the backwards chain $X_n, X_{n-1}, X_{n-2}, \ldots$

The backwards chain is also a Markov chain with transitions probabilities Q_{ij} , $i, j \in S$ given by:

$$Q_{ij} = P(X_m = j \mid X_{m+1} = i) = \frac{P(X_m = j \cap X_{m+1} = i)}{P(X_{m+1} = i)}$$

$$=\frac{P(X_m=j)P(X_{m+1}=i \mid X_m=j)}{P(X_{m+1}=i)}=\frac{\pi_j P_{ji}}{\pi_i}.$$

3

イロト イヨト イヨト イヨト

Time Reversible Markov Chains (cont.)

We say that $\{X_n\}$ is time reversible if $Q_{ij} = P_{ij}$ for all $i, j \in S$. Hence, $\{X_n\}$ is time reversible if and only if:

$$rac{\pi_j P_{ji}}{\pi_i} = P_{ij}, \quad ext{ for all } i,j \in \mathcal{S}.$$

or equivalently if and only if:

$$\pi_i P_{ij} = \pi_j P_{ji}, \quad \text{ for all } i, j \in \mathcal{S}.$$

Doubly stochastic transition matrices

Let *P* be the transition probability matrix of a Markov chain $\{X_n\}$ with state space S where $|S| = n < \infty$. We then know that:

$$\sum_{j\in\mathcal{S}} P_{ij} \cdot 1 = 1, \quad ext{ for all } i\in\mathcal{S}.$$

If $\boldsymbol{e} = (1, ..., 1)$ is an *n*-dimensional vector, we can rewrite this as:

$$Pe^T = e^T$$
.

We say that **P** is doubly stochastic if we also have:

$$\sum_{i\in\mathcal{S}} P_{ij} \cdot 1 = 1, \quad \text{ for all } j\in\mathcal{S}.$$

In matrix notation this condition can be expressed as:

A. B. Huseby (Univ. of Oslo)

・ロト ・四ト ・ヨト・

Doubly stochastic transition matrices (cont.)

Proposition

Let **P** be the transition probability matrix of a Markov chain $\{X_n\}$ with state space S where $|S| = n < \infty$. Then **P** is doubly stochastic if and only if the stationary distribution is uniform, i.e.: $\pi = \frac{1}{n}e$.

PROOF:

P is doubly stochastic eP = e $1 \frac{1}{n}eP = \frac{1}{n}e$ $\pi P = \pi$ 0

The stationary distribution is uniform

A. B. Huseby (Univ. of Oslo)

STK2130 - Week 9

Doubly stochastic transition matrices (cont.)

Proposition

Let **P** be the transition probability matrix of a Markov chain $\{X_n\}$ with state space S where $|S| = n < \infty$. Assume that **P** is doubly stochastic. Then the Markov chain is time reversible if and only if **P** is symmetric.

PROOF: Since **P** is doubly stochastic $\pi_i = \frac{1}{n}$ for all $i \in S$. Hence, we get:

$$Q_{ij} = rac{\pi_j P_{ji}}{\pi_i} = rac{rac{1}{n} P_{ji}}{rac{1}{n}} = P_{ji} \quad i, j \in \mathcal{S}$$

Thus, $\boldsymbol{Q} = \boldsymbol{P}$ if and only if $P_{ji} = P_{ij}$ for all $i, j \in S$.

That is, $\boldsymbol{Q} = \boldsymbol{P}$ if and only if \boldsymbol{P} is symmetric.

A (10) A (10)

Let *P* be the transition probability matrix of a Markov chain $\{X_n\}$ with state space $S = \{0, 1, 2\}$, where:

$$\boldsymbol{P} = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.4 & 0.2 & 0.4 \\ 0.4 & 0.4 & 0.2 \end{bmatrix}$$

Since **P** is doubly stochastic and symmetric, the Markov chain is time reversible.

Let *P* be the transition probability matrix of a Markov chain $\{X_n\}$ with state space $S = \{0, 1, 2\}$, where:

$$\boldsymbol{P} = \left[\begin{array}{rrrr} 0.0 & 0.1 & 0.9 \\ 0.9 & 0.0 & 0.1 \\ 0.1 & 0.9 & 0.0 \end{array} \right]$$

Since **P** is doubly stochastic and not symmetric, the Markov chain is not time reversible.

3

イロン イ理 とく ヨン イヨン

Time Reversible Markov Chains (cont.)

Theorem (4.2)

A stationary Markov chain for which $P_{ij} = 0$ whenever $P_{ji} = 0$ is time reversible if and only if starting in state *i*, any path back to *i* has the same probability as the reversed path. That is, if:

$$P_{i,i_1}P_{i_1,i_2}\cdots P_{i_k,i}=P_{i,i_k}P_{i_k,i_{k-1}}\cdots P_{i_1,i_k}$$

for all states $i, i_1, ..., i_k$, k = 1, 2, ...

Time Reversible Markov Chains (cont.)

Proposition (4.9)

Consider an irreducible Markov chain with transition probability matrix **P** and state space S. If we can find a stationary distribution π on S, and a transition probability matrix **Q** such that:

$$\pi_i P_{ij} = \pi_j Q_{ji}, \quad \text{ for all } i, j \in \mathcal{S},$$

then **Q** is the transition probability matrix of the reversed chain, and π is the stationary distribution for both the original and reversed chain.

PROOF: The result is an immediate consequence of the previously established formula:

$$Q_{ji} = rac{\pi_i P_{ij}}{\pi_j}, \quad ext{ for all } i, j \in \mathcal{S}.$$

Example 4.40

Let *L* denote the lifetime of a type of light bulb, and assume that the distribution of *L* in days is:

$$P(L=i) = p_i, i = 1, 2, ...$$

We have an infinite supply of light bulb of this kind, with lifetimes $L_1, L_2, ...$ being independent and with the same distribution as *L*. Each time a bulb fails, it is replaced by a new one the next day.

 X_n = The age of the light bulb at day n, n = 1, 2, ...

Then {*X_n*} is a Markov chain with state space $S = \{1, 2, ...\}$ and with transition probabilities:

$$P_{i,1} = rac{P(L=i)}{P(L\geq i)} = rac{p_i}{\sum_{j=i}^{\infty} p_j}, \quad P_{i,i+1} = 1 - P_{i,1}, \quad i = 1, 2, \dots$$

3

Example 4.40 (cont.)

We then claim that the reversed chain has transition probabilities:

$$Q_{i,i-1} = 1, \quad i > 1$$

 $Q_{1,i} = P(L = i) = p_i, \quad i \ge 1$

To show this we need to find a stationary distribution π_1, π_2, \ldots such that:

$$\pi_i \boldsymbol{P}_{ij} = \pi_j \boldsymbol{Q}_{ji}, \quad i, j = 1, 2, \dots$$

We start out by letting j = 1 and determine π_1, π_2, \ldots such that:

$$\pi_i P_{i,1} = \pi_i \frac{P(L=i)}{P(L\geq i)} = \pi_1 Q_{1,i} = \pi_1 P(L=i).$$

This is equivalent to:

$$\pi_i = \pi_1 P(L \ge i)$$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Example 4.40 (cont.)

Summing over all *i* and using that the π_i -s add up to 1, we get:

$$1 = \sum_{i=1}^{\infty} \pi_i = \pi_1 \sum_{i=1}^{\infty} P(L \ge i)$$

= $\pi_1 \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} p_j = \pi_1 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_j l(j \ge i)$
= $\pi_1 \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} p_j l(i \le j) = \pi_1 \sum_{j=1}^{\infty} p_j \sum_{i=1}^{\infty} l(i \le j)$
= $\pi_1 \sum_{j=1}^{\infty} p_j \cdot j = \pi_1 E[L].$

Hence, it follows that $\pi_1 = (E[L])^{-1}$, and thus:

$$\pi_i = \pi_1 P(L \ge i) = \frac{P(L \ge i)}{E[L]}, \quad i = 1, 2, \dots$$

< □ > < 同 > < 回 > < 回 > .

Example 4.40 (cont.)

We note that if j > 1, we have $P_{ij} = Q_{ji} = 0$ for $j \neq i + 1$. Hence, it remains to verify that:

$$\pi_i P_{ij} = \pi_j Q_{ji}, \quad i = 1, 2, \dots, \quad j = i + 1.$$

Using the expressions for π_1, π_2, \ldots and that $Q_{i+1,i} = 1$ for i > 1, this is equivalent to:

$$\frac{P(L \ge i)}{E[L]} \left(1 - \frac{P(L = i)}{P(L \ge i)}\right) = \frac{P(L \ge i + 1)}{E[L]}$$

By simplifying this equation we get:

$$P(L \ge i) - P(L = i) = P(L \ge i + 1)$$

which is trivially true.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Chapter 4.9 Markov Chain Monte Carlo Methods

Let Z be a discrete random variable with a state space S, and assume that:

$$P(Z=i)=\pi_i=rac{b_i}{B},\quad i\in\mathcal{S}.$$

We assume that b_i is known for all $i \in S$.

Since the probabilities must add up to 1, we obviously have:

$$\sum_{i\in\mathcal{S}}rac{b_i}{B}=B^{-1}\sum_{i\in\mathcal{S}}b_i=1,$$

Hence, it follows that the normalizing constant *B* is given by:

$$B=\sum_{i\in\mathcal{S}}b_i.$$

Thus, in principle *B* is known as well. However, if |S| is large, calculating *B* may be a time-consuming task.

A. B. Huseby (Univ. of Oslo)

EXAMPLE: Let T and Z be two discrete random variables with state spaces T and S respectively. We assume that the marginal distribution of Z and the conditional distribution of T given Z are known.

The conditional distribution of Z given T is then:

$$\mathsf{P}(Z=i|T=t) = \frac{\mathsf{P}(Z=i)\mathsf{P}(T=t|Z=i)}{\sum_{j\in\mathcal{S}}\mathsf{P}(Z=j)\mathsf{P}(T=t|Z=j)} = \frac{b_i(t)}{B(t)}, \quad i\in\mathcal{S}, \ t\in\mathcal{T},$$

where we have introduced:

$$b_i(t) = P(Z = i)P(T = t | Z = i), \quad i \in \mathcal{S}, t \in \mathcal{T},$$
$$B(t) = \sum_{j \in \mathcal{S}} P(Z = j)P(T = t | Z = j) = P(T = t), \quad t \in \mathcal{T}.$$

If |S| is large, we may want to avoid calculating B(t).

A. B. Huseby (Univ. of Oslo)

< 回 > < 回 > < 回 > -

PROBLEM: Construct a Markov chain $\{X_n\}$ with state space S and stationary distribution equal to the distribution of Z.

SOLUTION (Hastings-Metropolis): Let Q be any given irreducible Markov chain transition probability matrix on S, and define:

$$\alpha_{ij} = \min\left(\frac{b_j Q_{ji}}{b_i Q_{ij}}, \mathbf{1}\right), \quad i, j \in \mathcal{S}.$$

We then let the transition probability matrix of $\{X_n\}$, denoted **P**, be defined as follows:

$$egin{aligned} & P_{ij} = \mathcal{Q}_{ij} lpha_{ij}, \quad i
eq j, \ & P_{ii} = 1 - \sum_{j
eq i} \mathcal{Q}_{ij} lpha_{ij}, \quad i \in \mathcal{S} \end{aligned}$$

<ロ> <問> <問> < 回> < 回> 、

We then claim that $\{X_n\}$ is time reversible and have a stationary distribution equal to the distribution of *Z*.

To show this it is sufficient to verify that:

$$\pi_i \boldsymbol{P}_{ij} = \pi_j \boldsymbol{P}_{ji}, \quad \text{for all } i, j \in \mathcal{S}.$$
(1)

Since (1) is trivially satisfied for i = j, we focus on the case where $i \neq j$, where (1) can be expressed as:

$$\frac{b_i}{B}Q_{ij}\alpha_{ij} = \frac{b_j}{B}Q_{ji}\alpha_{ji}, \quad i \neq j.$$
(2)

イロト 不得 トイヨト イヨト

By eliminating *B* from these equations and inserting the expression for α_{ij} we get:

$$b_i Q_{ij} \cdot \min\left(\frac{b_j Q_{ji}}{b_i Q_{ij}}, 1\right) = b_j Q_{ji} \cdot \min\left(\frac{b_i Q_{ij}}{b_j Q_{ji}}, 1\right), \quad i \neq j.$$
(3)

CASE 1: $b_i Q_{ij} \leq b_j Q_{ji}$

In this case $\alpha_{ij} = 1$ while $\alpha_{ji} = (b_i Q_{ij})/(b_j Q_{ji})$, and hence, (3) simplifies to:

$$b_i Q_{ij} = b_j Q_{ji} \cdot (b_i Q_{ij}) / (b_j Q_{ji}), \quad i \neq j.$$
(4)

CASE 2: $b_i Q_{ij} \ge b_j Q_{ji}$

In this case $\alpha_{ij} = (b_j Q_{ji})/(b_i Q_{ij})$ while $\alpha_{ji} = 1$, and hence, (3) simplifies to:

$$b_i Q_{ij} \cdot (b_j Q_{ji}) / (b_i Q_{ij}) = b_j Q_{ji}, \quad i \neq j.$$
(5)

Since obviously both (4) and (5) hold true, we conclude that (1) holds true as well.

We recall that:

$$egin{aligned} P_{ij} &= \mathcal{Q}_{ij} lpha_{ij}, \quad i
eq j, \ P_{ii} &= 1 - \sum_{j
eq i} \mathcal{Q}_{ij} lpha_{ij}, \quad i \in \mathcal{S} \end{aligned}$$

Assume that $X_n = i$. Then X_{n+1} can be generated using the following two-step Monte Carlo simulation procedure:

STEP 1. Generate $J \in S$ such that $P(J = j) = Q_{ij}, j \in S$.

STEP 2. Generate $B \in \{0, 1\}$ such that $P(B = 1 | J = j) = \alpha_{ij}$, and let:

$$X_{n+1} = B \cdot j + (1-B) \cdot i$$

Thus, a transition from state *i* to state *j* where $i \neq j$ happens if and only if J = j and B = 1. If not, the process stays in state *i*.

A D A A B A A B A A B A B B

The Monte Carlo simulation procedure can be used to estimate some unknown parameter in the distribution of *Z*, e.g.:

$$\theta = E[h(Z)] = \sum_{i \in S} h(i)P(Z=i),$$

where h is some function of interest, and the normalizing constant B of the distribution of Z is too time-consuming to calculate.

By simulating the Markov chain $\{X_n\}$, having a stationary distribution which is equal to the distribution of *Z*, we may estimate θ by:

$$\hat{\theta}_n = \frac{1}{n} \sum_{m=1}^n h(X_m).$$

By the law of large numbers it follows that $\hat{\theta}_n \to \theta$ when $n \to \infty$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

NOTE: X_1, X_2, \ldots are not independent samples.

Moreover, the chain may converge slowly towards its stationary distribution.

Both these issues tend to have a negative effect on the convergence rate of the estimator $\hat{\theta}_n$.

If many of the α_{ij} -s are small, the Markov chain tends to get stuck for a long time before eventually transiting to another state. In such cases the estimator $\hat{\theta}_n$ will converge very slowly.

・ロト ・ 四ト ・ ヨト ・ ヨト …

For optimal performance, i.e., fast convergence, the matrix *Q* should ideally be chosen so that:

$$b_i Q_{ij} = b_j Q_{ji}$$
, for all $i, j \in S$.

Then it follows that:

$$\alpha_{ij} = \min\left(\frac{b_j Q_{ji}}{b_i Q_{ij}}, 1\right) = 1, \quad \text{ for all } i, j \in \mathcal{S}.$$

Hence, $\boldsymbol{Q} = \boldsymbol{P}$, i.e., \boldsymbol{Q} is itself the transition probability matrix of $\{X_n\}$.

Finding the optimal matrix \boldsymbol{Q} implies finding a transition probability matrix with a stationary distribution which is equal to the distribution of Z. In real-life applications, this can be difficult.

Instead we may think of Q as our best guess, while the α_{ij} -s are correction factors which are used to generate a Markov chain with the correct stationary distribution.

Gibbs sampling

Assume that $\mathbf{Z} = (Z_1, \dots, Z_r)$ is a discrete random vector with values in S where:

$$P(\boldsymbol{Z} = \boldsymbol{z}) = p(\boldsymbol{z}) = g(\boldsymbol{z})/B$$
, for all $\boldsymbol{z} \in \mathcal{S}$,

where the g(z) is known for all $z \in S$ and B is an unknown normalizing constant.

We then consider the first step of the Hastings-Metropolis algorithm, and assume that $X_n = \mathbf{z} = (z_1, ..., z_r)$. The candidate for the next state, X_{n+1} , is generated as follows:

- 1. Generate K = k uniformly from the set $\{1, \ldots, r\}$.
- 2. Generate $Z_k = z$ conditional on $Z_i = z_i$, $i = 1, \ldots, (k-1), (k+1), \ldots, r$.

The resulting candidate for the next state, denoted **y**, is then:

$$\mathbf{y} = (z_1, \ldots, z_{k-1}, z, z_{k+1}, \ldots, z_r)$$

Gibbs sampling (cont.)

This implies that we have the following transition probabilities:

$$Q_{\mathbf{Z},\mathbf{y}} = \frac{1}{r} P(Z_k = z \mid Z_i = z_i, i \neq k)$$
$$= \frac{g(\mathbf{y})/B}{r \cdot \sum_{z_k} g(\mathbf{y})/B} = \frac{g(\mathbf{y})}{r \cdot \sum_{z_k} g(\mathbf{y})}$$

By the same type of argument, we also have:

$$Q_{oldsymbol{y},oldsymbol{z}} = rac{g(oldsymbol{z})}{r \cdot \sum_{z_k} g(oldsymbol{z})}.$$

However, since $\sum_{z_k} g(\mathbf{y}) = \sum_{z_k} g(\mathbf{z})$, this implies that:

$$g(\mathbf{z})Q_{\mathbf{Z},\mathbf{y}} = g(\mathbf{y})Q_{\mathbf{y},\mathbf{Z}}, \quad ext{ for all } \mathbf{z},\mathbf{y}\in\mathcal{S}.$$

Hence, $\alpha_{\boldsymbol{Z},\boldsymbol{Y}} = 1$ for all $\boldsymbol{Z}, \boldsymbol{Y} \in \mathcal{S}$, and thus, \boldsymbol{Q} is an optimal transition probability matrix.

The Exponential Distribution and the Poisson Process

STK2130 – Week 9

æ

イロト イヨト イヨト イヨト

Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution with parameter $\lambda > 0$, denoted as $X \sim exp(\lambda)$, if its probability density function is given by:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

If $X \sim exp(\lambda)$, then the cdf of X is given by:

$$F(x) = P(X \le x) = \int_0^x f(t)dt = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Moreover, the ccdf of *X* is given by:

$$ar{F}(x)=P(X>x)=1-F(x)=\left\{egin{array}{cc} e^{-\lambda x} & x\geq 0\ 1 & x<0 \end{array}
ight.$$

(日)

The exponential distribution is a special case of the gamma distribution with parameters $\alpha > 0$ and $\lambda > 0$, denoted as $X \sim gamma(\alpha, \lambda)$ with probability density function:

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

where $\Gamma(\alpha)$, defined for all $\alpha > 0$, is the gamma function given by:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx, \qquad \Gamma(n) = (n-1)!, \quad n = 1, 2, \dots$$

By substituting $u = \lambda x$ and $du = \lambda dx$, we find that:

$$\int_0^\infty f(x)dx = \frac{1}{\Gamma(\alpha)}\int_0^\infty u^{\alpha-1}e^{-u}du = 1.$$

Thus, f(x) is indeed a proper probability density.

Assume that $X \sim exp(\lambda)$, and let p > -1. We then have:

$$E[X^{p}] = \int_{0}^{\infty} x^{p} f(x) dx = \int_{0}^{\infty} \lambda x^{p} e^{-\lambda x} dx$$
$$= \frac{\Gamma(p+1)}{\lambda^{p}} \int_{0}^{\infty} \frac{\lambda^{p+1}}{\Gamma(p+1)} x^{(p+1)-1} e^{-\lambda x} dx$$
$$= \frac{\Gamma(p+1)}{\lambda^{p}}.$$

In particular:

$$E[X] = \frac{\Gamma(2)}{\lambda^1} = \frac{(2-1)!}{\lambda} = \frac{1}{\lambda}, \qquad E[X^2] = \frac{\Gamma(3)}{\lambda^2} = \frac{(3-1)!}{\lambda^2} = \frac{2}{\lambda^2},$$
$$Var[X] = E[X^2] - (E[X])^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

A. B. Huseby (Univ. of Oslo)

3

イロン イ理 とく ヨン イヨン

Assume that $X \sim gamma(\alpha, \lambda)$. Then the moment generating function of X is given by:

$$\begin{split} \mathcal{M}_{X}(t) &= \mathcal{E}[\boldsymbol{e}^{tX}] = \int_{0}^{\infty} \boldsymbol{e}^{tx} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \boldsymbol{e}^{-\lambda x} dx \\ &= \int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \boldsymbol{e}^{-(\lambda-t)x} dx \\ &= \frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}} \int_{0}^{\infty} \frac{(\lambda-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \boldsymbol{e}^{-(\lambda-t)x} dx \\ &= \frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}}, \quad \text{for all } t < \lambda. \end{split}$$

In particular, if $X \sim exp(\lambda)$, we have:

$$M_X(t) = rac{\lambda}{\lambda-t}, \quad ext{ for all } t < \lambda.$$

STK2130 - Week 9

(日)

Proposition (5.1)

Assume that X_1, \ldots, X_n are independent and $X_i \sim exp(\lambda)$, $i = 1, \ldots, n$, and let:

$$Y = X_1 + \cdots + X_n$$

Then $Y \sim gamma(n, \lambda)$.

PROOF: Using moment generating functions we get:

$$M_{Y}(t) = E[e^{tY}] = E[e^{tX_{1}+\dots+tX_{n}}] = M_{X_{1}}(t) \cdots M_{X_{n}}(t)$$
$$= \frac{\lambda}{\lambda-t} \cdots \frac{\lambda}{\lambda-t} = \frac{\lambda^{n}}{(\lambda-t)^{n}}$$

Hence, $Y \sim gamma(n, \lambda)$.

Proposition 5.1 is a special case of the following more general result:

Proposition (5.1b)

Assume that X_1, \ldots, X_n are independent and $X_i \sim gamma(\alpha_i, \lambda)$, $i = 1, \ldots, n$, and let:

$$Y=X_1+\cdots+X_n$$

Then $Y \sim gamma(\alpha, \lambda)$, where $\alpha = \sum_{i=1}^{n} \alpha_i$.

PROOF: Using moment generating functions we get:

$$M_{Y}(t) = E[e^{tY}] = E[e^{tX_{1}+\dots+tX_{n}}] = M_{X_{1}}(t)\cdots M_{X_{n}}(t)$$
$$= \frac{\lambda^{\alpha_{1}}}{(\lambda-t)^{\alpha_{1}}}\cdots \frac{\lambda^{\alpha_{n}}}{(\lambda-t)^{\alpha_{n}}} = \frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}}$$

Hence, $Y \sim gamma(\alpha, \lambda)$.

A random variable X is said to be memoryless if:

$$P(X > s + t | X > t) = P(X - t > s | X > t) = P(X > s),$$
 for all $s, t \ge 0$.

Thus, X is memoryless if (X - t)|(X > t) has the same distribution as X.

If $X \sim exp(\lambda)$, we have:

$$P(X > s + t | X > t) = \frac{P(X > s + t \cap X > t)}{P(X > t)}$$
$$= \frac{P(X > s + t)}{P(X > t)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda(t)}} = e^{-\lambda s} = P(X > s)$$

Hence, we conclude that *X* is memoryless.

Example 5.2

The amount of time one spends in a bank, denoted *X*, is exponentially distributed with mean ten minutes. That is, $X \sim exp(\lambda) = exp(\frac{1}{10})$.

PROBLEM 1: What is the probability that a customer will spend more than fifteen minutes in the bank?

SOLUTION:

$$P(X > 15) = e^{-15\lambda} = e^{-15/10} \approx 0.223$$

PROBLEM 2: What is the probability that a customer will spend more than fifteen minutes in the bank given that she is still in the bank after ten minutes? SOLUTION:

$$P(X > 15 \mid X > 10) = e^{-(15-10)\lambda} = e^{-5/10} \approx 0.607$$

3

イロト 不得 トイヨト イヨト

Assume that X_1, X_2 are independent and that $X_i \sim exp(\lambda_i)$, i = 1, 2. We want to calculate the probability of the event that $X_1 < X_2$.

$$P(X_1 < X_2) = \int_0^\infty P(X_1 < X_2 | X_1 = x) \lambda_1 e^{-\lambda_1 x} dx$$
$$= \int_0^\infty P(X_2 > x) \lambda_1 e^{-\lambda_1 x} dx$$
$$= \int_0^\infty e^{-\lambda_2 x} \lambda_1 e^{-\lambda_1 x} dx$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2} \int_0^\infty (\lambda_1 + \lambda_2) e^{-(\lambda_1 + \lambda_2) x} dx$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume that X_1, \ldots, X_n are independent and that $X_i \sim exp(\lambda_i), i = 1, \ldots, n$.

$$P(\min_{1 \le i \le n} X_i > x) = P(\bigcap_{i=1}^n X_i > x)$$
$$= \prod_{i=1}^n P(X_i > x) \qquad \text{(by independence)}$$
$$= \prod_{i=1}^n e^{-\lambda_i x}$$
$$= e^{-(\sum_{i=1}^n \lambda_i)x}$$

Thus, we have shown that $\min_{1 \le i \le n} X_i \sim exp(\sum_{i=1}^n \lambda_i)$.

3

The following result combines the two previous results:

Assume that X_1, \ldots, X_n are independent and that $X_i \sim exp(\lambda_i)$, $i = 1, \ldots, n$. We want to calculate the probability that X_i is the smallest of all the variables, i.e., that $X_i < X_i$ for all $j \neq i$.

$$\begin{split} \mathcal{P}(\bigcap_{j \neq i} [X_i < X_j]) &= \mathcal{P}(X_i < \min_{j \neq i} X_j) \\ &= \frac{\lambda_i}{\lambda_i + \sum_{j \neq i} \lambda_j}, \qquad \text{since } \min_{j \neq i} X_j \sim exp(\sum_{j \neq i} \lambda_j) \\ &= \frac{\lambda_i}{\sum_{j=1}^n \lambda_j} \end{split}$$

Proposition (5.2)

Assume that X_1, \ldots, X_n are independent and that $X_i \sim exp(\lambda_i)$, $i = 1, \ldots, n$. Then $\min_i X_i \sim exp(\sum_{i=1}^n \lambda_i)$. Moreover, $\min_i X_i$ and the rank order of X_1, \ldots, X_n are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

$$P(X_{i_{1}} < \dots < X_{i_{n}} \mid \min_{1 \le i \le n} X_{i} > t)$$

$$= P(X_{i_{1}} < \dots < X_{i_{n}} \mid \bigcap_{i=1}^{n} X_{i} > t)$$

$$= P(X_{i_{1}} - t < \dots < X_{i_{n}} - t \mid \bigcap_{i=1}^{n} X_{i} > t)$$

$$= P(X_{i_{1}} < \dots < X_{i_{n}})$$