STK2130 - Week 9

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities $P_{i j}$ and stationary probabilities $\pi_{i}, i, j \in \mathcal{S}$.

Then let n be so large that we have reached a stationary state, i.e. $P_{i j}^{n} \approx \pi_{j}$.
We then consider the backwards chain $X_{n}, X_{n-1}, X_{n-2}, \ldots$
The backwards chain is also a Markov chain with transitions probabilities $Q_{i j}$, $i, j \in \mathcal{S}$ given by:

$$
\begin{aligned}
Q_{i j} & =P\left(X_{m}=j \mid X_{m+1}=i\right)=\frac{P\left(X_{m}=j \cap X_{m+1}=i\right)}{P\left(X_{m+1}=i\right)} \\
& =\frac{P\left(X_{m}=j\right) P\left(X_{m+1}=i \mid X_{m}=j\right)}{P\left(X_{m+1}=i\right)}=\frac{\pi_{j} P_{j i}}{\pi_{i}}
\end{aligned}
$$

Time Reversible Markov Chains (cont.)

We say that $\left\{X_{n}\right\}$ is time reversible if $Q_{i j}=P_{i j}$ for all $i, j \in \mathcal{S}$. Hence, $\left\{X_{n}\right\}$ is time reversible if and only if:

$$
\frac{\pi_{j} P_{j i}}{\pi_{i}}=P_{i j}, \quad \text { for all } i, j \in \mathcal{S}
$$

or equivalently if and only if:

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad \text { for all } i, j \in \mathcal{S}
$$

Doubly stochastic transition matrices

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} where $|\mathcal{S}|=n<\infty$. We then know that:

$$
\sum_{j \in \mathcal{S}} P_{i j} \cdot 1=1, \quad \text { for all } i \in \mathcal{S} .
$$

If $\boldsymbol{e}=(1, \ldots, 1)$ is an n-dimensional vector, we can rewrite this as:

$$
\boldsymbol{P} \boldsymbol{e}^{T}=\boldsymbol{e}^{T} .
$$

We say that \boldsymbol{P} is doubly stochastic if we also have:

$$
\sum_{i \in \mathcal{S}} P_{i j} \cdot 1=1, \quad \text { for all } j \in \mathcal{S} .
$$

In matrix notation this condition can be expressed as:

$$
\boldsymbol{e} \boldsymbol{P}=\boldsymbol{e}
$$

Doubly stochastic transition matrices (cont.)

Proposition

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} where $|\mathcal{S}|=n<\infty$. Then \boldsymbol{P} is doubly stochastic if and only if the stationary distribution is uniform, i.e.: $\boldsymbol{\pi}=\frac{1}{n} \boldsymbol{e}$.

PROOF:
\boldsymbol{P} is doubly stochastic

$\boldsymbol{\pi} \boldsymbol{P}=\boldsymbol{\pi}$
I
The stationary distribution is uniform

Doubly stochastic transition matrices (cont.)

Proposition

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} where $|\mathcal{S}|=n<\infty$. Assume that \boldsymbol{P} is doubly stochastic. Then the Markov chain is time reversible if and only if \boldsymbol{P} is symmetric.

PROOF: Since \boldsymbol{P} is doubly stochastic $\pi_{i}=\frac{1}{n}$ for all $i \in \mathcal{S}$. Hence, we get:

$$
Q_{i j}=\frac{\pi_{j} P_{j i}}{\pi_{i}}=\frac{\frac{1}{n} P_{j i}}{\frac{1}{n}}=P_{j i} \quad i, j \in \mathcal{S}
$$

Thus, $\boldsymbol{Q}=\boldsymbol{P}$ if and only if $P_{j i}=P_{i j}$ for all $i, j \in \mathcal{S}$.
That is, $\boldsymbol{Q}=\boldsymbol{P}$ if and only if \boldsymbol{P} is symmetric.

Example

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1,2\}$, where:

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0.2 & 0.4 & 0.4 \\
0.4 & 0.2 & 0.4 \\
0.4 & 0.4 & 0.2
\end{array}\right]
$$

Since \boldsymbol{P} is doubly stochastic and symmetric, the Markov chain is time reversible.

Example

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1,2\}$, where:

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0.0 & 0.1 & 0.9 \\
0.9 & 0.0 & 0.1 \\
0.1 & 0.9 & 0.0
\end{array}\right]
$$

Since \boldsymbol{P} is doubly stochastic and not symmetric, the Markov chain is not time reversible.

Time Reversible Markov Chains (cont.)

Theorem (4.2)

A stationary Markov chain for which $P_{i j}=0$ whenever $P_{j i}=0$ is time reversible if and only if starting in state i, any path back to i has the same probability as the reversed path. That is, if:

$$
P_{i, i_{1}} P_{i_{1}, i_{2}} \cdots P_{i_{k}, i}=P_{i, i_{k}} P_{i_{k}, i_{k-1}} \cdots P_{i_{1}, i}
$$

for all states $i, i_{1}, \ldots, i_{k}, k=1,2, \ldots$.

Time Reversible Markov Chains (cont.)

Proposition (4.9)

Consider an irreducible Markov chain with transition probability matrix \mathbf{P} and state space \mathcal{S}. If we can find a stationary distribution π on \mathcal{S}, and a transition probability matrix \boldsymbol{Q} such that:

$$
\pi_{i} P_{i j}=\pi_{j} Q_{j i}, \quad \text { for all } i, j \in \mathcal{S},
$$

then \boldsymbol{Q} is the transition probability matrix of the reversed chain, and π is the stationary distribution for both the original and reversed chain.

PROOF: The result is an immediate consequence of the previously established formula:

$$
Q_{j i}=\frac{\pi_{i} P_{i j}}{\pi_{j}}, \quad \text { for all } i, j \in \mathcal{S} .
$$

Example 4.40

Let L denote the lifetime of a type of light bulb, and assume that the distribution of L in days is:

$$
P(L=i)=p_{i}, \quad i=1,2, \ldots
$$

We have an infinite supply of light bulb of this kind, with lifetimes L_{1}, L_{2}, \ldots being independent and with the same distribution as L. Each time a bulb fails, it is replaced by a new one the next day.

$$
X_{n}=\text { The age of the light bulb at day } n, \quad n=1,2, \ldots
$$

Then $\left\{X_{n}\right\}$ is a Markov chain with state space $\mathcal{S}=\{1,2, \ldots\}$ and with transition probabilities:

$$
P_{i, 1}=\frac{P(L=i)}{P(L \geq i)}=\frac{p_{i}}{\sum_{j=i}^{\infty} p_{j}}, \quad P_{i, i+1}=1-P_{i, 1}, \quad i=1,2, \ldots
$$

Example 4.40 (cont.)

We then claim that the reversed chain has transition probabilities:

$$
\begin{aligned}
Q_{i, i-1} & =1, \quad i>1 \\
Q_{1, i} & =P(L=i)=p_{i}, \quad i \geq 1
\end{aligned}
$$

To show this we need to find a stationary distribution π_{1}, π_{2}, \ldots such that:

$$
\pi_{i} P_{i j}=\pi_{j} Q_{j i}, \quad i, j=1,2, \ldots
$$

We start out by letting $j=1$ and determine π_{1}, π_{2}, \ldots such that:

$$
\pi_{i} P_{i, 1}=\pi_{i} \frac{P(L=i)}{P(L \geq i)}=\pi_{1} Q_{1, i}=\pi_{1} P(L=i)
$$

This is equivalent to:

$$
\pi_{i}=\pi_{1} P(L \geq i)
$$

Example 4.40 (cont.)

Summing over all i and using that the π_{i}-s add up to 1 , we get:

$$
\begin{aligned}
1 & =\sum_{i=1}^{\infty} \pi_{i}=\pi_{1} \sum_{i=1}^{\infty} P(L \geq i) \\
& =\pi_{1} \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} p_{j}=\pi_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{j} I(j \geq i) \\
& =\pi_{1} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} p_{j} I(i \leq j)=\pi_{1} \sum_{j=1}^{\infty} p_{j} \sum_{i=1}^{\infty} I(i \leq j) \\
& =\pi_{1} \sum_{j=1}^{\infty} p_{j} \cdot j=\pi_{1} E[L] .
\end{aligned}
$$

Hence, it follows that $\pi_{1}=(E[L])^{-1}$, and thus:

$$
\pi_{i}=\pi_{1} P(L \geq i)=\frac{P(L \geq i)}{E[L]}, \quad i=1,2, \ldots
$$

Example 4.40 (cont.)

We note that if $j>1$, we have $P_{i j}=Q_{j i}=0$ for $j \neq i+1$. Hence, it remains to verify that:

$$
\pi_{i} P_{i j}=\pi_{j} Q_{j i}, \quad i=1,2, \ldots, \quad j=i+1
$$

Using the expressions for π_{1}, π_{2}, \ldots and that $Q_{i+1, i}=1$ for $i>1$, this is equivalent to:

$$
\frac{P(L \geq i)}{E[L]}\left(1-\frac{P(L=i)}{P(L \geq i)}\right)=\frac{P(L \geq i+1)}{E[L]}
$$

By simplifying this equation we get:

$$
P(L \geq i)-P(L=i)=P(L \geq i+1)
$$

which is trivially true.

Chapter 4.9 Markov Chain Monte Carlo Methods

Let Z be a discrete random variable with a state space \mathcal{S}, and assume that:

$$
P(Z=i)=\pi_{i}=\frac{b_{i}}{B}, \quad i \in \mathcal{S} .
$$

We assume that b_{i} is known for all $i \in \mathcal{S}$.
Since the probabilities must add up to 1 , we obviously have:

$$
\sum_{i \in \mathcal{S}} \frac{b_{i}}{B}=B^{-1} \sum_{i \in \mathcal{S}} b_{i}=1
$$

Hence, it follows that the normalizing constant B is given by:

$$
B=\sum_{i \in \mathcal{S}} b_{i} .
$$

Thus, in principle B is known as well. However, if $|\mathcal{S}|$ is large, calculating B may be a time-consuming task.

MCMC Methods (cont.)

EXAMPLE: Let T and Z be two discrete random variables with state spaces \mathcal{T} and \mathcal{S} respectively. We assume that the marginal distribution of Z and the conditional distribution of T given Z are known.

The conditional distribution of Z given T is then:

$$
P(Z=i \mid T=t)=\frac{P(Z=i) P(T=t \mid Z=i)}{\sum_{j \in \mathcal{S}} P(Z=j) P(T=t \mid Z=j)}=\frac{b_{i}(t)}{B(t)}, \quad i \in \mathcal{S}, t \in \mathcal{T},
$$

where we have introduced:

$$
\begin{aligned}
b_{i}(t) & =P(Z=i) P(T=t \mid Z=i), \quad i \in \mathcal{S}, t \in \mathcal{T} \\
B(t) & =\sum_{j \in \mathcal{S}} P(Z=j) P(T=t \mid Z=j)=P(T=t), \quad t \in \mathcal{T} .
\end{aligned}
$$

If $|\mathcal{S}|$ is large, we may want to avoid calculating $B(t)$.

MCMC Methods (cont.)

PROBLEM: Construct a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} and stationary distribution equal to the distribution of Z.

SOLUTION (Hastings-Metropolis): Let \boldsymbol{Q} be any given irreducible Markov chain transition probability matrix on \mathcal{S}, and define:

$$
\alpha_{i j}=\min \left(\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}, 1\right), \quad i, j \in \mathcal{S} .
$$

We then let the transition probability matrix of $\left\{X_{n}\right\}$, denoted \boldsymbol{P}, be defined as follows:

$$
\begin{aligned}
& P_{i j}=Q_{i j} \alpha_{i j}, \quad i \neq j, \\
& P_{i i}=1-\sum_{j \neq i} Q_{i j} \alpha_{i j}, \quad i \in \mathcal{S}
\end{aligned}
$$

MCMC Methods (cont.)

We then claim that $\left\{X_{n}\right\}$ is time reversible and have a stationary distribution equal to the distribution of Z.

To show this it is sufficient to verify that:

$$
\begin{equation*}
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad \text { for all } i, j \in \mathcal{S} . \tag{1}
\end{equation*}
$$

Since (1) is trivially satisfied for $i=j$, we focus on the case where $i \neq j$, where (1) can be expressed as:

$$
\begin{equation*}
\frac{b_{i}}{B} Q_{i j} \alpha_{i j}=\frac{b_{j}}{B} Q_{j i} \alpha_{j i}, \quad i \neq j \tag{2}
\end{equation*}
$$

By eliminating B from these equations and inserting the expression for $\alpha_{i j}$ we get:

$$
\begin{equation*}
b_{i} Q_{i j} \cdot \min \left(\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}, 1\right)=b_{j} Q_{j i} \cdot \min \left(\frac{b_{i} Q_{i j}}{b_{j} Q_{j i}}, 1\right), \quad i \neq j . \tag{3}
\end{equation*}
$$

MCMC Methods (cont.)

CASE 1: $b_{i} Q_{i j} \leq b_{j} Q_{j i}$ In this case $\alpha_{i j}=1$ while $\alpha_{j i}=\left(b_{i} Q_{i j}\right) /\left(b_{j} Q_{j i}\right)$, and hence, (3) simplifies to:

$$
\begin{equation*}
b_{i} Q_{i j}=b_{j} Q_{j i} \cdot\left(b_{i} Q_{i j}\right) /\left(b_{j} Q_{j i}\right), \quad i \neq j \tag{4}
\end{equation*}
$$

CASE 2: $b_{i} Q_{i j} \geq b_{j} Q_{j i}$ In this case $\alpha_{i j}=\left(b_{j} Q_{j i}\right) /\left(b_{i} Q_{i j}\right)$ while $\alpha_{j i}=1$, and hence, (3) simplifies to:

$$
\begin{equation*}
b_{i} Q_{i j} \cdot\left(b_{j} Q_{j i}\right) /\left(b_{i} Q_{i j}\right)=b_{j} Q_{j i}, \quad i \neq j \tag{5}
\end{equation*}
$$

Since obviously both (4) and (5) hold true, we conclude that (1) holds true as well.

MCMC Methods (cont.)

We recall that:

$$
\begin{aligned}
& P_{i j}=Q_{i j} \alpha_{i j}, \quad i \neq j, \\
& P_{i j}=1-\sum_{j \neq i} Q_{i j} \alpha_{i j}, \quad i \in \mathcal{S}
\end{aligned}
$$

Assume that $X_{n}=i$. Then X_{n+1} can be generated using the following two-step Monte Carlo simulation procedure:
STEP 1. Generate $J \in \mathcal{S}$ such that $P(J=j)=Q_{i j}, j \in \mathcal{S}$.
STEP 2. Generate $B \in\{0,1\}$ such that $P(B=1 \mid J=j)=\alpha_{i j}$, and let:

$$
X_{n+1}=B \cdot j+(1-B) \cdot i
$$

Thus, a transition from state i to state j where $i \neq j$ happens if and only if $J=j$ and $B=1$. If not, the process stays in state i.

MCMC Methods (cont.)

The Monte Carlo simulation procedure can be used to estimate some unknown parameter in the distribution of Z, e.g.:

$$
\theta=E[h(Z)]=\sum_{i \in \mathcal{S}} h(i) P(Z=i),
$$

where h is some function of interest, and the normalizing constant B of the distribution of Z is too time-consuming to calculate.

By simulating the Markov chain $\left\{X_{n}\right\}$, having a stationary distribution which is equal to the distribution of Z, we may estimate θ by:

$$
\hat{\theta}_{n}=\frac{1}{n} \sum_{m=1}^{n} h\left(X_{m}\right) .
$$

By the law of large numbers it follows that $\hat{\theta}_{n} \rightarrow \theta$ when $n \rightarrow \infty$.

MCMC Methods (cont.)

NOTE: X_{1}, X_{2}, \ldots are not independent samples.
Moreover, the chain may converge slowly towards its stationary distribution.
Both these issues tend to have a negative effect on the convergence rate of the estimator $\hat{\theta}_{n}$.

If many of the $\alpha_{i j}$-s are small, the Markov chain tends to get stuck for a long time before eventually transiting to another state. In such cases the estimator $\hat{\theta}_{n}$ will converge very slowly.

MCMC Methods (cont.)

For optimal performance, i.e., fast convergence, the matrix \boldsymbol{Q} should ideally be chosen so that:

$$
b_{i} Q_{i j}=b_{j} Q_{j i}, \quad \text { for all } i, j \in \mathcal{S} .
$$

Then it follows that:

$$
\alpha_{i j}=\min \left(\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}, 1\right)=1, \quad \text { for all } i, j \in \mathcal{S} .
$$

Hence, $\boldsymbol{Q}=\boldsymbol{P}$, i.e., \boldsymbol{Q} is itself the transition probability matrix of $\left\{X_{n}\right\}$.
Finding the optimal matrix \boldsymbol{Q} implies finding a transition probability matrix with a stationary distribution which is equal to the distribution of Z. In real-life applications, this can be difficult.

Instead we may think of \mathbf{Q} as our best guess, while the $\alpha_{i j}$-s are correction factors which are used to generate a Markov chain with the correct stationary distribution.

Gibbs sampling

Assume that $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{r}\right)$ is a discrete random vector with values in \mathcal{S} where:

$$
P(\boldsymbol{Z}=\boldsymbol{z})=p(\boldsymbol{z})=g(\boldsymbol{z}) / B, \quad \text { for all } \boldsymbol{z} \in \mathcal{S},
$$

where the $g(\boldsymbol{z})$ is known for all $\boldsymbol{z} \in \mathcal{S}$ and B is an unknown normalizing constant.

We then consider the first step of the Hastings-Metropolis algorithm, and assume that $X_{n}=\boldsymbol{z}=\left(z_{1}, \ldots, z_{r}\right)$. The candidate for the next state, X_{n+1}, is generated as follows:

1. Generate $K=k$ uniformly from the set $\{1, \ldots, r\}$.
2. Generate $Z_{k}=z$ conditional on $Z_{i}=z_{i}, i=1, \ldots,(k-1),(k+1) \ldots, r$.

The resulting candidate for the next state, denoted \boldsymbol{y}, is then:

$$
\boldsymbol{y}=\left(z_{1}, \ldots, z_{k-1}, z, z_{k+1}, \ldots, z_{r}\right)
$$

Gibbs sampling (cont.)

This implies that we have the following transition probabilities:

$$
\begin{aligned}
Q_{\mathbf{z}, \boldsymbol{y}} & =\frac{1}{r} P\left(Z_{k}=z \mid Z_{i}=z_{i}, i \neq k\right) \\
& =\frac{g(\boldsymbol{y}) / B}{r \cdot \sum_{z_{k}} g(\boldsymbol{y}) / B}=\frac{g(\boldsymbol{y})}{r \cdot \sum_{z_{k}} g(\boldsymbol{y})}
\end{aligned}
$$

By the same type of argument, we also have:

$$
Q_{\boldsymbol{y}, \boldsymbol{z}}=\frac{g(\boldsymbol{z})}{r \cdot \sum_{z_{k}} g(\boldsymbol{z})}
$$

However, since $\sum_{z_{k}} g(\boldsymbol{y})=\sum_{z_{k}} g(\boldsymbol{z})$, this implies that:

$$
g(\boldsymbol{z}) Q_{\boldsymbol{z}, \boldsymbol{y}}=g(\boldsymbol{y}) Q_{\boldsymbol{y}, \boldsymbol{z}}, \quad \text { for all } \boldsymbol{z}, \boldsymbol{y} \in \mathcal{S}
$$

Hence, $\alpha_{\boldsymbol{z}, \boldsymbol{y}}=1$ for all $\boldsymbol{z}, \boldsymbol{y} \in \mathcal{S}$, and thus, \boldsymbol{Q} is an optimal transition probability matrix.

Chapter 5

The Exponential Distribution and the Poisson Process

Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution with parameter $\lambda>0$, denoted as $X \sim \exp (\lambda)$, if its probability density function is given by:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

If $X \sim \exp (\lambda)$, then the cdf of X is given by:

$$
F(x)=P(X \leq x)=\int_{0}^{x} f(t) d t= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

Moreover, the ccdf of X is given by:

$$
\bar{F}(x)=P(X>x)=1-F(x)= \begin{cases}e^{-\lambda x} & x \geq 0 \\ 1 & x<0\end{cases}
$$

The Exponential Distribution (cont.)

The exponential distribution is a special case of the gamma distribution with parameters $\alpha>0$ and $\lambda>0$, denoted as $X \sim \operatorname{gamma}(\alpha, \lambda)$ with probability density function:

$$
f(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

where $\Gamma(\alpha)$, defined for all $\alpha>0$, is the gamma function given by:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \quad \Gamma(n)=(n-1)!, \quad n=1,2, \ldots
$$

By substituting $u=\lambda x$ and $d u=\lambda d x$, we find that:

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} u^{\alpha-1} e^{-u} d u=1
$$

Thus, $f(x)$ is indeed a proper probability density.

The Exponential Distribution (cont.)

Assume that $X \sim \exp (\lambda)$, and let $p>-1$. We then have:

$$
\begin{aligned}
E\left[X^{p}\right] & =\int_{0}^{\infty} x^{p} f(x) d x=\int_{0}^{\infty} \lambda x^{p} e^{-\lambda x} d x \\
& =\frac{\Gamma(p+1)}{\lambda^{p}} \int_{0}^{\infty} \frac{\lambda^{p+1}}{\Gamma(p+1)} x^{(p+1)-1} e^{-\lambda x} d x \\
& =\frac{\Gamma(p+1)}{\lambda^{p}} .
\end{aligned}
$$

In particular:

$$
E[X]=\frac{\Gamma(2)}{\lambda^{1}}=\frac{(2-1)!}{\lambda}=\frac{1}{\lambda}, \quad E\left[X^{2}\right]=\frac{\Gamma(3)}{\lambda^{2}}=\frac{(3-1)!}{\lambda^{2}}=\frac{2}{\lambda^{2}},
$$

$$
\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}}
$$

The Exponential Distribution (cont.)

Assume that $X \sim \operatorname{gamma}(\alpha, \lambda)$. Then the moment generating function of X is given by:

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t x}\right]=\int_{0}^{\infty} e^{t x} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} d x \\
& =\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}} \int_{0}^{\infty} \frac{(\lambda-t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t) x} d x \\
& =\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}}, \quad \text { for all } t<\lambda .
\end{aligned}
$$

In particular, if $X \sim \exp (\lambda)$, we have:

$$
M_{X}(t)=\frac{\lambda}{\lambda-t}, \quad \text { for all } t<\lambda
$$

The Exponential Distribution (cont.)

Proposition (5.1)
Assume that X_{1}, \ldots, X_{n} are independent and $X_{i} \sim \exp (\lambda), i=1, \ldots, n$, and let:

$$
Y=X_{1}+\cdots+X_{n}
$$

Then $Y \sim \operatorname{gamma}(n, \lambda)$.

PROOF: Using moment generating functions we get:

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right]=E\left[e^{t X_{1}+\cdots+t X_{n}}\right]=M_{X_{1}}(t) \cdots M_{X_{n}}(t) \\
& =\frac{\lambda}{\lambda-t} \cdots \frac{\lambda}{\lambda-t}=\frac{\lambda^{n}}{(\lambda-t)^{n}}
\end{aligned}
$$

Hence, $Y \sim \operatorname{gamma}(n, \lambda)$.

The Exponential Distribution (cont.)

Proposition 5.1 is a special case of the following more general result:
Proposition (5.1b)
Assume that X_{1}, \ldots, X_{n} are independent and $X_{i} \sim \operatorname{gamma}\left(\alpha_{i}, \lambda\right), i=1, \ldots, n$, and let:

$$
Y=X_{1}+\cdots+X_{n}
$$

Then $Y \sim \operatorname{gamma}(\alpha, \lambda)$, where $\alpha=\sum_{i=1}^{n} \alpha_{i}$.

PROOF: Using moment generating functions we get:

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right]=E\left[e^{t X_{1}+\cdots+t X_{n}}\right]=M_{X_{1}}(t) \cdots M_{X_{n}}(t) \\
& =\frac{\lambda^{\alpha_{1}}}{(\lambda-t)^{\alpha_{1}}} \cdots \frac{\lambda^{\alpha_{n}}}{(\lambda-t)^{\alpha_{n}}}=\frac{\lambda^{\alpha}}{(\lambda-t)^{\alpha}}
\end{aligned}
$$

Hence, $Y \sim \operatorname{gamma}(\alpha, \lambda)$.

The Exponential Distribution (cont.)

A random variable X is said to be memoryless if:

$$
P(X>s+t \mid X>t)=P(X-t>s \mid X>t)=P(X>s), \quad \text { for all } s, t \geq 0
$$

Thus, X is memoryless if $(X-t) \mid(X>t)$ has the same distribution as X.
If $X \sim \exp (\lambda)$, we have:

$$
\begin{aligned}
P(X>s+t \mid X>t) & =\frac{P(X>s+t \cap X>t)}{P(X>t)} \\
& =\frac{P(X>s+t)}{P(X>t)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda(t)}}=e^{-\lambda s}=P(X>s)
\end{aligned}
$$

Hence, we conclude that X is memoryless.

Example 5.2

The amount of time one spends in a bank, denoted X, is exponentially distributed with mean ten minutes. That is, $X \sim \exp (\lambda)=\exp \left(\frac{1}{10}\right)$.
PROBLEM 1: What is the probability that a customer will spend more than fifteen minutes in the bank?
SOLUTION:

$$
P(X>15)=e^{-15 \lambda}=e^{-15 / 10} \approx 0.223
$$

PROBLEM 2: What is the probability that a customer will spend more than fifteen minutes in the bank given that she is still in the bank after ten minutes?

SOLUTION:

$$
P(X>15 \mid X>10)=e^{-(15-10) \lambda}=e^{-5 / 10} \approx 0.607
$$

The Exponential Distribution (cont.)

Assume that X_{1}, X_{2} are independent and that $X_{i} \sim \exp \left(\lambda_{i}\right), i=1,2$. We want to calculate the probability of the event that $X_{1}<X_{2}$.

$$
\begin{aligned}
P\left(X_{1}<X_{2}\right) & =\int_{0}^{\infty} P\left(X_{1}<X_{2} \mid X_{1}=x\right) \lambda_{1} e^{-\lambda_{1} x} d x \\
& =\int_{0}^{\infty} P\left(X_{2}>x\right) \lambda_{1} e^{-\lambda_{1} x} d x \\
& =\int_{0}^{\infty} e^{-\lambda_{2} x} \lambda_{1} e^{-\lambda_{1} x} d x \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \int_{0}^{\infty}\left(\lambda_{1}+\lambda_{2}\right) e^{-\left(\lambda_{1}+\lambda_{2}\right) x} d x \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
\end{aligned}
$$

The Exponential Distribution (cont.)

Assume that X_{1}, \ldots, X_{n} are independent and that $X_{i} \sim \exp \left(\lambda_{i}\right), i=1, \ldots, n$.

$$
\begin{aligned}
P\left(\min _{1 \leq i \leq n} X_{i}>x\right) & =P\left(\bigcap_{i=1}^{n} X_{i}>x\right) \\
& =\prod_{i=1}^{n} P\left(X_{i}>x\right) \quad \text { (by independence) } \\
& =\prod_{i=1}^{n} e^{-\lambda_{i} x} \\
& =e^{-\left(\sum_{i=1}^{n} \lambda_{i}\right) x}
\end{aligned}
$$

Thus, we have shown that $\min _{1 \leq i \leq n} X_{i} \sim \exp \left(\sum_{i=1}^{n} \lambda_{i}\right)$.

The Exponential Distribution (cont.)

The following result combines the two previous results:
Assume that X_{1}, \ldots, X_{n} are independent and that $X_{i} \sim \exp \left(\lambda_{i}\right), i=1, \ldots, n$. We want to calculate the probability that X_{i} is the smallest of all the variables, i.e., that $X_{i}<X_{j}$ for all $j \neq i$.

$$
\begin{aligned}
P\left(\bigcap_{j \neq i}\left[X_{i}<X_{j}\right]\right) & =P\left(X_{i}<\min _{j \neq i} X_{j}\right) \\
& =\frac{\lambda_{i}}{\lambda_{i}+\sum_{j \neq i} \lambda_{j}}, \quad \text { since } \min _{j \neq i} X_{j} \sim \exp \left(\sum_{j \neq i} \lambda_{j}\right) \\
& =\frac{\lambda_{i}}{\sum_{j=1}^{n} \lambda_{j}}
\end{aligned}
$$

The Exponential Distribution (cont.)

Proposition (5.2)

Assume that X_{1}, \ldots, X_{n} are independent and that $X_{i} \sim \exp \left(\lambda_{i}\right), i=1, \ldots, n$. Then $\min _{i} X_{i} \sim \exp \left(\sum_{i=1}^{n} \lambda_{i}\right)$. Moreover, $\min _{i} X_{i}$ and the rank order of X_{1}, \ldots, X_{n} are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

$$
\begin{aligned}
P\left(X_{i_{1}}\right. & \left.<\cdots<X_{i_{n}} \mid \min _{1 \leq i \leq n} X_{i}>t\right) \\
& =P\left(X_{i_{1}}<\cdots<X_{i_{n}} \mid \bigcap_{i=1}^{n} X_{i}>t\right) \\
& =P\left(X_{i_{1}}-t<\cdots<X_{i_{n}}-t \mid \bigcap_{i=1}^{n} X_{i}>t\right) \\
& =P\left(X_{i_{1}}<\cdots<X_{i_{n}}\right)
\end{aligned}
$$

