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Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution
with parameter A > 0, denoted as X ~ exp()), if its probability density
function is given by:

e ™ x>0
f(x) =
0 x <0
If X ~ exp()), then the cumulative distribution function of X is given by:

1—e ™ x>0

F(x):P(ng):/o f(t)dt:{o o

Moreover, the survival function of X is given by:

- {e—” x>0
FxX)=P(X>x)=1-F(x)=

1 x<0
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Memoryless stochastic variables

A random variable X is said to be memoryless if:
PX>s+tX>t)=PX—-t>s|X>t)=P(X >s), foralls,t>D0.
Thus, X is memoryless if (X — t)|(X > t) has the same distribution as X.

Note that if X is the lifetime of some unit, (X — t) is the remaining lifetime
given that the unit has survived up to the time ¢.

If X ~ exp()), we have:

P(X>s+t\X>t):P(X>S+mx>t):P(X>s+t)

P(X>1) P(X>1)
e—A(ert) s
= 50 =e = P(X > s)

Hence, we conclude that X is memoryless.
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Memoryless stochastic variables (cont.)

The memoryless property:
PX>s+tHX>t=P(X>s), forallst>0.
is equivalent to the following:
P(X>s+t)=P(X>s)P(X>1t), forallst>0.
Since F(x) = P(X > x), this property can also be written as:
F(s+t) = F(s)F(t), foralls,t>0.

We now show that the exponential distribution is essentially the only
distribution with this property.
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Memoryless stochastic variables (cont.)

Proposition
Let X be a random variable and let F(x) = P(X > x) be such that:

F(x+y)=F(x)-F(y), forallx,y>0.
A= —log(F(1)) > 0.

Then X ~ exp()).

PROOF: We first note that by (2), it follows that:
O<F(1)=e?<1.

Secondly we note that since cumulative distribution functions always are
right-continuous, it follows that F = 1 — F is righ-continuous as well.
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Memoryless stochastic variables (cont.)

By repeated use of (1) it follows that for n, m € N*, we have:
Fem = Fo+-+5) = F"().
where the sum contains m terms. In particular, by letting m = n, we get:
F()=F() =F"(7).
Alternatively, (5) can be written as:
F(b) = [FO)m.
By (3) and that F is right-continuous, (6) implies that:
F(0) = lim F(1) = lim [F(1)]"/" =1.

Hence, since F must be non-increasing, F(x) = 1 for all x < 0.
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Memoryless stochastic variables (cont.)
We now combine (4) and (6), and get:
F(Z)=Fm(1)y= F(1)™" forallm ne N,
Thus, since F(1) = e~*, we have proved that:
F(gy=F(1)?=¢e?9, forallge Q™.

Now, let x € RT. Since the set Q* is dense in R™, there exists a decreasing
sequence {qg;} C QT such that:

lim gr = x

r—oo
Since F is right-continuous, this implies that:
C N C i —AQr _ a4 AX
P = fim Fla) = Jim o7 = o7,
Hence, we conclude that X ~ exp(\) [ |
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The failure rate function

Let X be a continuously distributed positive random variable with density f,
and survival function F(x) = P(X > x), where F(0) = 1.

The failure rate function (or hazard rate function) of X is defined as:

r(t) = ;__(tt) , forall t such that F(t) > 0.

The failure rate function, r(t) can be interpreted as follows:

P(X € (t,t+d)nX > 1)
P(X>1)

_ P(Xe(tt+d) f(t)at

S PX>t) T OF(@

P(Xe(t,t+d)X>1t)=

= r(t)dt.

Thus, r(t) is the conditional probability density given that X > t.
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The failure rate function (cont.)

Given the function r(t) we can recover the survival function F(x):

* _ 7 (1) L _
/Or(t)dt_/o Fryot  Subst:u=F(r). du = f(tet

F(x) au
- /0 1T—u
By using that F(0) = 1, it follows that C = 0, and hence we get:

F(x) = exp (—/ r(t)dt) =e "N x>0,
0

F(x) )
[IN(1 — u) + C] = — In(F(x)) - C

0

where R(x) = [, r(t)dt is referred to as the cumulative failure rate function
(or cumulatlve hazard function).
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The failure rate function (cont.)

Assume that X ~ exp(}\). Then it follows that:

_H) _deM

W=Fp = e =H

R(x) = /OX r(t)dt = /OX Adt = Ax.

Hence, for the exponential distribution, the failure rate function is constant,
while cumulative failure rate function is linear.
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The Weibull distribution
Assume that the random variable X has a cumulative failure rate function
R(x) = (Ax)> where a, A > 0, x > 0.

Then the distribution of X is called a Weibull distribution. The parameter « is
referred to as the shape parameter.

The failure rate function of a Weibull distribution is obtained as the derivative
of R(x):

r(t) = R'(t) = aX(A)*', t>0.
We observe that:
@ If0 < a < 1,then ris decreasing
@ If « =1, then r is constant
@ If « > 1, then ris increasing
Infact, if a =1, X ~ exp(\).
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The Weibull distribution (cont.)

The survival function of a Weibull distribution is given by:

F(x)=P(X > x)=e 0 =" x>0

The cumulative distribution function of a Weibull distribution is given by:

F(x)=1—-Fx)=1—e ™" x>0.

The density function of a Weibull distribution is given by:

f(x) = r(x)F(x) = aA(A)*Te=)" - x> 0.
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Example 5.6 Hyperexponential distribution

Let Xi, ..., X, be independent exponential random variables with respective
rates Ai,..., Ap, Where \; # \; when i # j.

Let J be a discrete variable independent of Xi, ..., X, and with values in the
index set {1,...,n}. Assume that:

n
PU=))=P, j=1,....n, Y P=1.
j=1
The random variable X} is said to a hyperexponential random variable, or a

discrete mixture of exponentials.

EXAMPLE: A collection of n types of batteries.
— The lifetime of a battery of type j is exp();), j=1,...,n.

— P is the proportion of batteries of type j, j=1,...,n.
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Example 5.6 Hyperexponential distribution (cont.)

The cumulative distribution function is given by:
F(x)=P(X; <x)=1—-P(X; > x)

=1-3" P > xlJ = )P =)
j=1

n
=1-) Pe ™, x>0

The probability density function is given by:

f(x:—F(x ZPA, e M, x>0.
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Example 5.6 Hyperexponential distribution (cont.)

The failure rate function is given by:

f(t) X Pye

7 — , t>0.
F(t)y XL PeMt

r(t) =

NOTE: We also have:

P(X>tlJ=/)P(J=j)  Pe

= , t>0.
P(X > 1) 27:1 Pie=Nt

P(J=jIX>1t) =

Hence, the failure rate function r(t) can alternatively be expressed as:

n

r(t)=> NP =jX > 1).
j=1
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Example 5.6 Hyperexponential distribution (cont.)

If &y < \jforallj> 1, then:

P, e Mt
P(J=11X>1)= P s s, P

Py

= -1, ast — oo.
Py + Z/’Lz Pie=(y=t

Similarly, for all j > 1 we have:

P(J=jlX>1t)—0, as t — oc.

From this it follows that:

lim r(t) = min \;.
t—o0 1<j<n
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The Exponential Distribution (cont.)

Proposition (5.2)

Assume that Xi, ..., X, are independent and that X; ~ exp(\;), i=1,...,n.
Then min; X; ~ exp(zf’=1 Ai). Moreover, min; X; and the rank order of
Xi,..., Xy are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

P(Xi, < - <X, | 1r<niian,- > 1)

n
=P(X, << X, |[)Xi>1)
i=1

n
=P(X, —t<--<X,—t|[Xi>1)

i=1

=P <---<X;)

A. B. Huseby (Univ. of Oslo) STK2130 — Week 10 18/42



I
Example 5.8

A post office with two clerks, both are busy but there is no one else waiting in
line.

R; = Time until for clerk i becomes available, i=1,2
S = Your service time
T = The total time spent in the post office
We assume that Ry, R are independent and R; ~ exp(\;), i =1,2.
E[T] = E[T|R; < Ro]P(Ry < R2) + E[T|R2 < R]P(R2 < Ry)

M Ao
= E[Ry + S|R < R E[R,+ S|R, < R
[R: + S|A; 2])\1+)\2+ [R: + S|R: 1]/\1+>\2
We now use that:
. 1 )
E[Ri|Ri < Rs_i] = E[min(R, Rz)] = i=1,2

DYDY
1 ,
E[S|RI < RS—/] = ya I = 172

1
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Example 5.8 (cont.)

E[T] = E[R: + S|R; <R2] +E[R2+S|Rz<R1])\ +A

N +l) Y +( 1 +l> Ao
A\ M A M A A Mt A2/ M+
M 1 Ao ) 1

= +1 + +1

<)\1 + A2 ) A1+ A2 <)\1 + A2 A+ A2
A+ Ao 1

= 1

<)\1+)\2 >>\1+)\2

_ 3
Mt A

A. B. Huseby (Univ. of Oslo) STK2130 — Week 10 20/42



The hypoexponential distribution
We recall that if X ~ exp()), then the moment generating function of X is

given by:

Mx(t) = E[e*] = /0 e 0%dx = —Ai :

Now, let X, ..., X, be independent and X; ~ exp()\), i=1,...,n, and
assume that all the \;’s are distinct. Thatis A; # \; for all i # .

The moment generating function of S = Xj + - - - + X, is given by:
Ms(t) = E[etS] _ E[etx1+...txn]

= E[e™].--E[e®] (since Xi,..., X, are independent)
n n A

=TT M) =] .
,-1} (1) H Nt
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The hypoexponential distribution (cont.)

Assume that )y, ..., A\, be distinct positive numbers. A random variable Z is

said to have a hypoexponential distribution with rates A,
of Z is given by:

n
f2(2) =Y Cin-Ne?, z>0,
i

where:

Aj ,
C,,,,—H)\j_)\i, i=1,...,n.
J#i
The moment generating function of Z is then given by:

0o N
Me(t) = Ele%) = [ Y Cin e~ %0z
0 =

n 0o n
= Z C,',n/ A/e‘(k"‘”zdz = Z Cin-
i=1 0 i=1
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The hypoexponential distribution (cont.)

By inserting the expressions for Cy p, ..., Cn.n, We get:

n

)\, Aj
MZ(t) = ; )‘I Z )\I H )\ ]

n

115 H ;o)
i=1 "

=1 j;éi

where:

¢m—zn§

i=1 j#i

We observe that ¢,(t) is a polynomial in t of degree v, where v < (n—1).

If v > 0, the equation ¢,(t) = 1 can have at most v < n distinct real solutions.
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The hypoexponential distribution (cont.)

However, for k = 1,..., n we must have:
N— M , .
HA-—A,-_O’ if k £ i,
j#i
Hif._ik_:u if k = i.
i

Hence, we get that:
T N - Ak
qsn(Ak):ZHh:L k=1,....n
i=1 j#i 7Y !

Since we have assumed that Aq,. .., A, are distinct, the equation ¢,(t) = 1
has n distinct real solutions, which implies that v = 0, i.e., that ¢,(t) = 1.

A. B. Huseby (Univ. of Oslo) STK2130 — Week 10 24/42



——
The hypoexponential distribution (cont.)

Thus, we have shown that the moment generating function of Z is simply:

Mz(t) = H y —t Ms(1).

Since the moment generating function (when it exists) uniquely determines
the distribution, this implies that Z has the distribution of a sum of n
independent, exponentially distributed variables with distinct rates.

NOTE: Since ¢,(t) = 1, it follows that we also have:

ZC,H—ZHAA’ = ¢n(0) = 1

i=1 j#i

Hence, we also get that:
[e%s) n oo n
/ fz(Z)dZ = Z C,'7n/ )\,-e"\’zdz = Z C,'7n =1
0 i=1 0 i=1
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The hypoexponential distribution (cont.)
NOTE: Both the hyperexponential distribution and the hypoexponential
distribution have probability densities of the form:
n
f(x) = Z aie M, x>0,
i=1

where:

n
Za,-:1.
i=1

For the hyperexponential distribution the parameters a;, ..., a, are all
numbers between 0 and 1. Hence, these parameters can be interpreted as
probabilities.

For the hypoexponential distribution the parameters ajy, .. ., a, will in general
be both less than 0 and greater than 1. Thus, in this case the parameters can
not be interpreted as probabilities.
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Chapter 5.2.5 The Dirichlet Distribution

Let Xi,..., X, be independent and X; ~ gamma(«;, A), i =1,...,n. Then we
have shown that:

n n
S=>"X;~gamma(}  aj,\).
i=1 i=1

We now consider the random vector:
X X
g g )

In order to find the joint probability density of (Yi,..., Y,_1), we first derive
the joint probability density of (Y3, ..., Y,_1, S), noting that:

(Yi,o Y1) = (

n—1 n—1
Xi=8-Y, i=1,..(n-1), X=8-)8Y=8(1->Y)
i=1 i=1
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The Dirichlet Distribution (cont.)

Hence, the Jacobi matrix of this transformation is:

S 0 0 Y1

0 S 0 Yo
N :

0 0 0 s Yn—1

-§ -8 ... —s 1—2,1;/,

Moreover, it is easy to verify that the determinant of this matrix is |J| = s"~'.

The joint probability density of (Yi,..., Y,—1, S) is then obtained by inserting

the expressions for xi, . . ., x, into the joint probability density of Xi, ..., Xy:
n—1 Xy
f P _,S: _S.ai—1e—>\sy;
(¥ Yn-1,5) ,l} F(a,-)( Vi)

Frag 0 - Zy, )y IS s
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The Dirichlet Distribution (cont.)

n—1

f(}’h---a}’n—hs):

I

Ao
()

(sy’_)a,-f1 ef)\sy,'
1

)\o‘” n—1 n—1
2 s(1 — VY1 g=As(1-275" i) | | gn—1
a1 = X0 "]

-1
r(OM +"'+Oén) g —1 an_1—1 . _1
=Dy
pa

= —r(a1) - r(an) f “ e yn_1
. )\oc1+-~-+a,—, Sa1+---+o¢n—1 e—)\s.
Moy + -+ ap)
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The Dirichlet Distribution (cont.)

The joint probability density of (Y4, ..., Y,—1) is obtained by integrating with
respect to s:

f(y1a"'?yf7—1):/ f(y1,...,yn_1,S)dS
0

—1
B r(a1 4o OZn) oy—1 an_1—1 (1 . nzy_)anf1
i

T Tl Tam T ~

oo )\a1+"'+an
/ —sa1+"'+0‘n_1e_>\sds
o Tlar s+ an

Mar+-+an) o1 a1~ 1 _”*1 )
LTI I P
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The Dirichlet Distribution (cont.)

NOTE: The joint probability density of (Y4,..., Y,—1) and S can be factorised
as follows:

f(}’h---a}’n—hs)
—1

Mot +-+an) a1 an_q—1 s 4

=~ @@ 1 n 1 — )X
M(ar) - T(an) Vi Yalit ;M)

. )\oq+-~~+a,—, Sa1+---+an—1e—)\s

Moy + -+ ap)
=1, Y1) - £(8).
Hence, it follows that the vector (Y1, ..., Y,_1) and S are independent of each

other.
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The Dirichlet Distribution (cont.)

The joint distribution of (Y1, ..., Y,_1) is called a Dirichlet distribution with
parameters a4, ..., an, and we write:

(Y1,..., Yn_1) ~ Dirichlet(a, ..., ap)
NOTE: Since Y; = X;/S, it follows that:

n—1
Y Yi= Zx,/s =
i=1

Thus, f(y1,...,¥n—1) >0o0nlywhen 0 < yy3 +---+ yp_1 < 1.

€ (0,1).

In the special case where oy = --- = ap = 1, we get:

Mot + -+ an) a1

— ap_1—1 _ an—1_ _ |
f(}/17~~-ayn—1) r(a1)|—(a)}/1 yn 1 (1 Zy n 1)
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The Dirichlet Distribution (cont.)

In the special case where n =2, i.e., when (Y1,..., Ys—1) = Y, we get:

Mot +a2) o1 o—1
=0 — ) 1.
f(y1) r(a1)r(a2)y1 (1 Y1) ’ 0<Y1 <
This distribution is called a Beta distribution with parameters a4, .

In the case where a1 = ax = 1, we get:

(1) 4y

)= W}ﬁ (1—y)'!

=1, O0<y <.

Thus, in this case Y; ~ uniform(0,1).
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Chapter 5.3.1 Counting Processes

A stochastic process {N(t),t > 0} is said to be a counting process if N(t)
represents the total number of events that occur by time ¢ > 0.

EXAMPLES:
N(t) = Number of persons arriving at a store up to and including time t > 0
N(t) = Number of children being born up to and including time ¢t > 0

N(t) = Number of reported accidents up to and including time t > 0
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Counting Processes (cont.)

Properties of a counting process:
@ N(t) € {0,1,2,...}forall t > 0.
@ N(t)is non-decreasing in t. Thatis, if s < t, then N(s) < N(t).

@ If s < t, then N(t) — N(s) equals the number of events in (s, f].

A counting process is said to have independent increments if N(t) — N(s1)

and N(t) — N(sz) are independent for all pairs of non-overlapping intervals
(31, t1] and (32, tz].

A counting process is said to have stationary increments if the distribution of
N(s + t) — N(s) has the same distribution for all s > 0.
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The o(h)-notation

Definition
The function f(-) is said to be o(h) if:

EXAMPLES:

(a) The function f(x) = x2 is o(h) since:

2
lim M = lim h—: lim h=0.
h—0 h h—0 h h—0

(b) The function f(x) = x is not o(h) since:

Cfh) . h
/l@oT_flv@oF_flwino1_1'
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The o(h)-notation (cont.)

(c) If f(-) is o(h) and g(-) is o(h), then so is f(-) + g(-).

jim {9 i 7)oy 900 o,
h—0 h h—0 h h—0 h
(d) If f(-) is o(h), then so is ¢ - f(-).
im S _ o im 1) 5 g,
h—0 h h—0 h

(e) Any finite linear combination of functions, each of which is o(h), is o(h).
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Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)

The counting process {N(t),t > 0} is said to be a Poisson process with rate
A > 0 if the following four axioms hold:

(i)  N@O)=0

(i) {N(t),t > 0} has independent increments.
(i) P(N(t+ h)— N(t)=1) = h+ o(h)
(iv)  P(N(t+ h) — N(t) > 2) = o(h)
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Properties of the Poisson Process

Lemma (5.1)

Assume that {N(t),t > 0} is a Poisson process with rate A > 0. Then let
s > 0, and define:

Ns(t) = N(s+1t)— N(s), forallt>D0.

Then {Ns(t),t > 0} is a Poisson process with rate \ as well.

PROOF: We prove the lemma by verifying that {Ns(t), t > 0} satisfies the
axioms given in Definition 5.2:

(i) Ns(0)=N(s+0)—N(s)=0
(i) {Ns(t),t > 0} has independent increments since
{N(t), t > 0} has independent increments.
(i) P(Ns(t+h)— Ns(t)=1)=P(N(s+t+h)—N(s+1t)=1)= X h+ o(h)
(iv) P(Ns(t+h)— Ns(t) >2)=P(N(s+t+h)— N(s+1)>2)=o0(h)

A. B. Huseby (Univ. of Oslo) STK2130 — Week 10 39/42



——
Properties of the Poisson Process (cont.)

Lemma (5.2)

If Ty is the time of the first event of a Poisson process {N(t),t > 0} with rate
A > 0, then:

P(Ty > t)=P(N(t)=0)=e"* t>0.
Thatis Ty ~ exp()).

PROOF: Let Py(t) = P(N(f) = 0). Then:
Po(t+ h) = P(N(t+ h) =0)
= P(N(t) =0Nn N(t+ h) — N(t) = 0)
= P(N(t) =0)- P(N(t+ h) — N(t) =0) by Axiom (ii)
= Po(t)(1 — Ah+ o(h)) by Axiom (iii) and (iv)
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Properties of the Poisson Process (cont.)

Hence, we get:
Po(t + h) — P()(t) = —)\hP()(t) + O(h)P()(t)
Dividing by h and letting h — 0 gives that:

Po(t + h) — Po(t) o(h)Po(t)

Py(t) = lim ’ = Im[=APo(t) + ==722] = ~APo(1).
Alternatively, this can be expressed as:
Po(1)
Po(t) —

Integrating both sides of this equation yields:
log(Po(t)) = =Mt + C.
Since Py(0) = P(N(0) = 0) = 1 it follows that C = 0, and hence, we get:
P(Ti >t) = P(N(t)=0)=Py(t) =™, t>0 ®
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Properties of the Poisson Process (cont.)

Proposition (5.4)

Let Ty, Ty, ... be the sequence of interarrival times of a Poisson process
{N(t),t > 0} with rate A\ > 0. That is, Ty is the time of the first event, and

T, = The time between the (n — 1)st and nth event, n=23,....

Then Ty, T, ... are independent and identically distributed exponential
random variables with rate \.

PROOF: We have already shown that T; ~ exp()). For T, we get:
P(To > tiTy =8)=P(N(s+t)— N(s)=0|Ty = s)
= P(N(s+1t)— N(s)=0) by Axiom (ii)
= P(Ns(t) =0)=e"* by Lemma5.1 and Lemma 5.2.

The result follows by repeating this argument for T3, Ty, ... |
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