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Chapter 5

The Exponential Distribution and the Poisson Process
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Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution
with parameter λ > 0, denoted as X ∼ exp(λ), if its probability density
function is given by:

f (x) =

{
λe−λx x ≥ 0

0 x < 0

If X ∼ exp(λ), then the cumulative distribution function of X is given by:

F (x) = P(X ≤ x) =

∫ x

0
f (t)dt =

{
1− e−λx x ≥ 0

0 x < 0

Moreover, the survival function of X is given by:

F̄ (x) = P(X > x) = 1− F (x) =

{
e−λx x ≥ 0

1 x < 0
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Memoryless stochastic variables

A random variable X is said to be memoryless if:

P(X > s + t |X > t) = P(X − t > s|X > t) = P(X > s), for all s, t ≥ 0.

Thus, X is memoryless if (X − t)|(X > t) has the same distribution as X .

Note that if X is the lifetime of some unit, (X − t) is the remaining lifetime
given that the unit has survived up to the time t .

If X ∼ exp(λ), we have:

P(X > s + t |X > t) =
P(X > s + t ∩ X > t)

P(X > t)
=

P(X > s + t)
P(X > t)

=
e−λ(s+t)

e−λ(t)
= e−λs = P(X > s)

Hence, we conclude that X is memoryless.
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Memoryless stochastic variables (cont.)

The memoryless property:

P(X > s + t |X > t) = P(X > s), for all s, t ≥ 0.

is equivalent to the following:

P(X > s + t) = P(X > s)P(X > t), for all s, t ≥ 0.

Since F̄ (x) = P(X > x), this property can also be written as:

F̄ (s + t) = F̄ (s)F̄ (t), for all s, t ≥ 0.

We now show that the exponential distribution is essentially the only
distribution with this property.
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Memoryless stochastic variables (cont.)

Proposition

Let X be a random variable and let F̄ (x) = P(X > x) be such that:

F̄ (x + y) = F̄ (x) · F̄ (y), for all x , y ≥ 0. (1)

λ = − log(F̄ (1)) > 0. (2)

Then X ∼ exp(λ).

PROOF: We first note that by (2), it follows that:

0 < F̄ (1) = e−λ < 1. (3)

Secondly we note that since cumulative distribution functions always are
right-continuous, it follows that F̄ = 1− F is righ-continuous as well.
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Memoryless stochastic variables (cont.)

By repeated use of (1) it follows that for n,m ∈ N+, we have:

F̄ ( m
n ) = F̄ ( 1

n + · · ·+ 1
n ) = F̄ m( 1

n ), (4)

where the sum contains m terms. In particular, by letting m = n, we get:

F̄ (1) = F̄ ( n
n ) = F̄ n( 1

n ). (5)

Alternatively, (5) can be written as:

F̄ ( 1
n ) = [F̄ (1)]1/n. (6)

By (3) and that F̄ is right-continuous, (6) implies that:

F̄ (0) = lim
n→∞

F̄ ( 1
n ) = lim

n→∞
[F̄ (1)]1/n = 1.

Hence, since F̄ must be non-increasing, F̄ (x) = 1 for all x ≤ 0.
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Memoryless stochastic variables (cont.)

We now combine (4) and (6), and get:

F̄ ( m
n ) = F̄ m( 1

n ) = F̄ (1)m/n, for all m,n ∈ N+.

Thus, since F̄ (1) = e−λ, we have proved that:

F̄ (q) = F̄ (1)q = e−λq , for all q ∈ Q+.

Now, let x ∈ R+. Since the set Q+ is dense in R+, there exists a decreasing
sequence {qr} ⊂ Q+ such that:

lim
r→∞

qr = x

Since F̄ is right-continuous, this implies that:

F̄ (x) = lim
r→∞

F̄ (qr ) = lim
r→∞

e−λqr = e−λx .

Hence, we conclude that X ∼ exp(λ) �
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The failure rate function

Let X be a continuously distributed positive random variable with density f ,
and survival function F̄ (x) = P(X > x), where F̄ (0) = 1.

The failure rate function (or hazard rate function) of X is defined as:

r(t) =
f (t)
F̄ (t)

, for all t such that F̄ (t) > 0.

The failure rate function, r(t) can be interpreted as follows:

P(X ∈ (t , t + dt)|X > t) =
P(X ∈ (t , t + dt) ∩ X > t)

P(X > t)

=
P(X ∈ (t , t + dt))

P(X > t)
≈ f (t)dt

F̄ (t)
= r(t)dt .

Thus, r(t) is the conditional probability density given that X > t .
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The failure rate function (cont.)

Given the function r(t) we can recover the survival function F̄ (x):∫ x

0
r(t)dt =

∫ x

0

f (t)
F̄ (t)

dt Subst.: u = F (t), du = f (t)dt

=

∫ F (x)

0

du
1− u

= −
∣∣∣∣F (x)

0
[ln(1− u) + C] = − ln(F̄ (x))− C.

By using that F̄ (0) = 1, it follows that C = 0, and hence we get:

F̄ (x) = exp
(
−
∫ x

0
r(t)dt

)
= e−R(x), x ≥ 0,

where R(x) =
∫ x

0 r(t)dt is referred to as the cumulative failure rate function
(or cumulative hazard function).
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The failure rate function (cont.)

Assume that X ∼ exp(λ). Then it follows that:

r(t) =
f (t)
F̄ (t)

=
λe−λt

e−λt = λ,

R(x) =

∫ x

0
r(t)dt =

∫ x

0
λdt = λx .

Hence, for the exponential distribution, the failure rate function is constant,
while cumulative failure rate function is linear.
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The Weibull distribution

Assume that the random variable X has a cumulative failure rate function
R(x) = (λx)α where α, λ > 0, x ≥ 0.

Then the distribution of X is called a Weibull distribution. The parameter α is
referred to as the shape parameter.

The failure rate function of a Weibull distribution is obtained as the derivative
of R(x):

r(t) = R′(t) = αλ(λt)α−1, t > 0.

We observe that:

If 0 < α < 1, then r is decreasing

If α = 1, then r is constant

If α > 1, then r is increasing

In fact, if α = 1, X ∼ exp(λ).
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The Weibull distribution (cont.)

The survival function of a Weibull distribution is given by:

F̄ (x) = P(X > x) = e−R(x) = e−(λx)α , x ≥ 0.

The cumulative distribution function of a Weibull distribution is given by:

F (x) = 1− F̄ (x) = 1− e−(λx)α , x ≥ 0.

The density function of a Weibull distribution is given by:

f (x) = r(x)F̄ (x) = αλ(λt)α−1e−(λx)α , x ≥ 0.
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Example 5.6 Hyperexponential distribution

Let X1, . . . ,Xn be independent exponential random variables with respective
rates λ1, . . . , λn, where λi 6= λj when i 6= j .

Let J be a discrete variable independent of X1, . . . ,Xn and with values in the
index set {1, . . . ,n}. Assume that:

P(J = j) = Pj , j = 1, . . . ,n,
n∑

j=1

Pj = 1.

The random variable XJ is said to a hyperexponential random variable, or a
discrete mixture of exponentials.

EXAMPLE: A collection of n types of batteries.

– The lifetime of a battery of type j is exp(λj ), j = 1, . . . ,n.

– Pj is the proportion of batteries of type j , j = 1, . . . ,n.
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Example 5.6 Hyperexponential distribution (cont.)

The cumulative distribution function is given by:

F (x) = P(XJ ≤ x) = 1− P(XJ > x)

= 1−
n∑

j=1

P(Xj > x |J = j)P(J = j)

= 1−
n∑

j=1

Pje−λj x , x ≥ 0.

The probability density function is given by:

f (x) =
d
dx

F (x) =
n∑

j=1

Pjλje−λj x , x ≥ 0.
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Example 5.6 Hyperexponential distribution (cont.)

The failure rate function is given by:

r(t) =
f (t)
F̄ (t)

=

∑n
j=1 Pjλje−λj t∑n

j=1 Pje−λj t
, t > 0.

NOTE: We also have:

P(J = j |X > t) =
P(X > t |J = j)P(J = j)

P(X > t)
=

Pje−λj t∑n
j=1 Pje−λj t

, t > 0.

Hence, the failure rate function r(t) can alternatively be expressed as:

r(t) =
n∑

j=1

λjP(J = j |X > t).
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Example 5.6 Hyperexponential distribution (cont.)
If λ1 < λi for all i > 1, then:

P(J = 1|X > t) =
P1e−λ1t

P1e−λ1t +
∑n

j=2 Pje−λj t

=
P1

P1 +
∑n

j=2 Pje−(λj−λ1)t
→ 1, as t →∞.

Similarly, for all j > 1 we have:

P(J = j |X > t)→ 0, as t →∞.

From this it follows that:

lim
t→∞

r(t) = min
1≤j≤n

λj .
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The Exponential Distribution (cont.)

Proposition (5.2)

Assume that X1, . . . ,Xn are independent and that Xi ∼ exp(λi ), i = 1, . . . ,n.
Then mini Xi ∼ exp(

∑n
i=1 λi ). Moreover, mini Xi and the rank order of

X1, . . . ,Xn are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

P(Xi1 < · · · < Xin | min
1≤i≤n

Xi > t)

= P(Xi1 < · · · < Xin |
n⋂

i=1

Xi > t)

= P(Xi1 − t < · · · < Xin − t |
n⋂

i=1

Xi > t)

= P(Xi1 < · · · < Xin )
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Example 5.8
A post office with two clerks, both are busy but there is no one else waiting in
line.

Ri = Time until for clerk i becomes available, i = 1,2

S = Your service time

T = The total time spent in the post office

We assume that R1,R2 are independent and Ri ∼ exp(λi ), i = 1,2.

E [T ] = E [T |R1 < R2]P(R1 < R2) + E [T |R2 ≤ R1]P(R2 < R1)

= E [R1 + S|R1 < R2]
λ1

λ1 + λ2
+ E [R2 + S|R2 < R1]

λ2

λ1 + λ2

We now use that:

E [Ri |Ri < R3−i ] = E [min(R1,R2)] =
1

λ1 + λ2
, i = 1,2

E [S|Ri < R3−i ] =
1
λi
, i = 1,2
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Example 5.8 (cont.)

E [T ] = E [R1 + S|R1 < R2]
λ1

λ1 + λ2
+ E [R2 + S|R2 < R1]

λ2

λ1 + λ2

=

(
1

λ1 + λ2
+

1
λ1

)
λ1

λ1 + λ2
+

(
1

λ1 + λ2
+

1
λ2

)
λ2

λ1 + λ2

=

(
λ1

λ1 + λ2
+ 1
)

1
λ1 + λ2

+

(
λ2

λ1 + λ2
+ 1
)

1
λ1 + λ2

=

(
λ1 + λ2

λ1 + λ2
+ 1 + 1

)
1

λ1 + λ2

=
3

λ1 + λ2
.
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The hypoexponential distribution

We recall that if X ∼ exp(λ), then the moment generating function of X is
given by:

MX (t) = E [etX ] =

∫ ∞
0

λe−(λ−t)xdx =
λ

λ− t
.

Now, let X1, . . . ,Xn be independent and Xi ∼ exp(λi ), i = 1, . . . ,n, and
assume that all the λi ’s are distinct. That is λi 6= λj for all i 6= j .

The moment generating function of S = X1 + · · ·+ Xn is given by:

MS(t) = E [etS] = E [etX1+···tXn ]

= E [etX1 ] · · ·E [etXn ] (since X1, . . . ,Xn are independent)

=
n∏

i=1

MXi (t) =
n∏

i=1

λi

λi − t
.
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The hypoexponential distribution (cont.)
Assume that λ1, . . . , λn be distinct positive numbers. A random variable Z is
said to have a hypoexponential distribution with rates λ1, . . . , λn if the density
of Z is given by:

fZ (z) =
n∑

i=1

Ci,n · λie−λi z , z ≥ 0,

where:

Ci,n =
∏
j 6=i

λj

λj − λi
, i = 1, . . . ,n.

The moment generating function of Z is then given by:

MZ (t) = E [etZ ] =

∫ ∞
0

n∑
i=1

Ci,n · λie−(λi−t)zdz

=
n∑

i=1

Ci,n

∫ ∞
0

λie−(λi−t)zdz =
n∑

i=1

Ci,n ·
λi

λi − t
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The hypoexponential distribution (cont.)

By inserting the expressions for C1,n, . . . ,Cn,n, we get:

MZ (t) =
n∑

i=1

λi

λi − t
· Ci,n =

n∑
i=1

λi

λi − t

∏
j 6=i

λj

λj − λi

=
n∏

i=1

λi

λi − t
·

n∑
i=1

∏
j 6=i

λj − t
λj − λi

=
n∏

i=1

λi

λi − t
· φn(t),

where:

φn(t) =
n∑

i=1

∏
j 6=i

λj − t
λj − λi

We observe that φn(t) is a polynomial in t of degree ν, where ν ≤ (n − 1).

If ν > 0, the equation φn(t) = 1 can have at most ν < n distinct real solutions.

A. B. Huseby (Univ. of Oslo) STK2130 – Week 10 23 / 42



The hypoexponential distribution (cont.)

However, for k = 1, . . . ,n we must have:∏
j 6=i

λj − λk

λj − λi
= 0, if k 6= i ,

∏
j 6=i

λj − λk

λj − λi
= 1, if k = i .

Hence, we get that:

φn(λk ) =
n∑

i=1

∏
j 6=i

λj − λk

λj − λi
= 1, k = 1, . . . ,n.

Since we have assumed that λ1, . . . , λn are distinct, the equation φn(t) = 1
has n distinct real solutions, which implies that ν = 0, i.e., that φn(t) ≡ 1.
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The hypoexponential distribution (cont.)
Thus, we have shown that the moment generating function of Z is simply:

MZ (t) =
n∏

i=1

λi

λi − t
= MS(t).

Since the moment generating function (when it exists) uniquely determines
the distribution, this implies that Z has the distribution of a sum of n
independent, exponentially distributed variables with distinct rates.

NOTE: Since φn(t) ≡ 1, it follows that we also have:
n∑

i=1

Ci,n =
n∑

i=1

∏
j 6=i

λj

λj − λi
= φn(0) = 1.

Hence, we also get that:∫ ∞
0

fZ (z)dz =
n∑

i=1

Ci,n

∫ ∞
0

λie−λi zdz =
n∑

i=1

Ci,n = 1
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The hypoexponential distribution (cont.)
NOTE: Both the hyperexponential distribution and the hypoexponential
distribution have probability densities of the form:

f (x) =
n∑

i=1

aie−λi x , x ≥ 0,

where:

n∑
i=1

ai = 1.

For the hyperexponential distribution the parameters a1, . . . ,an are all
numbers between 0 and 1. Hence, these parameters can be interpreted as
probabilities.

For the hypoexponential distribution the parameters a1, . . . ,an will in general
be both less than 0 and greater than 1. Thus, in this case the parameters can
not be interpreted as probabilities.
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Chapter 5.2.5 The Dirichlet Distribution

Let X1, . . . ,Xn be independent and Xi ∼ gamma(αi , λ), i = 1, . . . ,n. Then we
have shown that:

S =
n∑

i=1

Xi ∼ gamma(
n∑

i=1

αi , λ).

We now consider the random vector:

(Y1, . . . ,Yn−1) = (
X1

S
, . . . ,

Xn−1

S
).

In order to find the joint probability density of (Y1, . . . ,Yn−1), we first derive
the joint probability density of (Y1, . . . ,Yn−1,S), noting that:

Xi = S · Yi , i = 1, . . . , (n − 1), Xn = S −
n−1∑
i=1

S · Yi = S · (1−
n−1∑
i=1

Yi ).
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The Dirichlet Distribution (cont.)
Hence, the Jacobi matrix of this transformation is:

J =


s 0 . . . 0 y1
0 s . . . 0 y2
...

...
. . .

...
...

0 0 0 s yn−1

−s −s . . . −s 1−
∑n−1

i=1 yi


Moreover, it is easy to verify that the determinant of this matrix is |J| = sn−1.

The joint probability density of (Y1, . . . ,Yn−1,S) is then obtained by inserting
the expressions for x1, . . . , xn into the joint probability density of X1, . . . ,Xn:

f (y1, . . . , yn−1,s) =
n−1∏
i=1

λαi

Γ(αi )
(syi )

αi−1e−λsyi

· λαn

Γ(αn)
(s(1−

n−1∑
i=1

yi ))αn−1e−λs(1−
∑n−1

i=1 yi ) · |sn−1|
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The Dirichlet Distribution (cont.)

f (y1, . . . , yn−1,s) =
n−1∏
i=1

λαi

Γ(αi )
(syi )

αi−1e−λsyi

· λαn

Γ(αn)
(s(1−

n−1∑
i=1

yi ))αn−1e−λs(1−
∑n−1

i=1 yi ) · |sn−1|

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)
yα1−1

1 · · · yαn−1−1
n−1 (1−

n−1∑
i=1

yi )
αn−1

· λα1+···+αn

Γ(α1 + · · ·+ αn)
sα1+···+αn−1e−λs.
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The Dirichlet Distribution (cont.)

The joint probability density of (Y1, . . . ,Yn−1) is obtained by integrating with
respect to s:

f (y1, . . . ,yn−1) =

∫ ∞
0

f (y1, . . . , yn−1, s)ds

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)
yα1−1

1 · · · yαn−1−1
n−1 (1−

n−1∑
i=1

yi )
αn−1

·
∫ ∞

0

λα1+···+αn

Γ(α1 + · · ·+ αn)
sα1+···+αn−1e−λsds

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)
yα1−1

1 · · · yαn−1−1
n−1 (1−

n−1∑
i=1

yi )
αn−1.
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The Dirichlet Distribution (cont.)

NOTE: The joint probability density of (Y1, . . . ,Yn−1) and S can be factorised
as follows:

f (y1, . . . , yn−1,s)

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)
yα1−1

1 · · · yαn−1−1
n−1 (1−

n−1∑
i=1

yi )
αn−1

· λα1+···+αn

Γ(α1 + · · ·+ αn)
sα1+···+αn−1e−λs

= f (y1, . . . , yn−1) · f (s).

Hence, it follows that the vector (Y1, . . . ,Yn−1) and S are independent of each
other.
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The Dirichlet Distribution (cont.)

The joint distribution of (Y1, . . . ,Yn−1) is called a Dirichlet distribution with
parameters α1, . . . , αn, and we write:

(Y1, . . . ,Yn−1) ∼ Dirichlet(α1, . . . , αn)

NOTE: Since Yi = Xi/S, it follows that:

n−1∑
i=1

Yi =
n−1∑
i=1

Xi/S =
S − Xn

S
∈ (0,1).

Thus, f (y1, . . . , yn−1) > 0 only when 0 < y1 + · · ·+ yn−1 < 1.

In the special case where α1 = · · · = αn = 1, we get:

f (y1, . . . , yn−1) =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)
yα1−1

1 · · · yαn−1−1
n−1 (1−

n−1∑
i=1

yi )
αn−1 = (n − 1)!
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The Dirichlet Distribution (cont.)

In the special case where n = 2, i.e., when (Y1, . . . ,Yn−1) = Y1, we get:

f (y1) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
yα1−1

1 (1− y1)α2−1, 0 < y1 < 1.

This distribution is called a Beta distribution with parameters α1, α2.

In the case where α1 = α2 = 1, we get:

f (y1) =
Γ(1 + 1)

Γ(1)Γ(1)
y1−1

1 (1− y1)1−1

= 1, 0 < y1 < 1.

Thus, in this case Y1 ∼ uniform(0,1).
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Chapter 5.3.1 Counting Processes

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t)
represents the total number of events that occur by time t ≥ 0.

EXAMPLES:

N(t) = Number of persons arriving at a store up to and including time t ≥ 0

N(t) = Number of children being born up to and including time t ≥ 0

N(t) = Number of reported accidents up to and including time t ≥ 0
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Counting Processes (cont.)

Properties of a counting process:

N(t) ∈ {0,1,2, . . .} for all t ≥ 0.

N(t) is non-decreasing in t . That is, if s < t , then N(s) ≤ N(t).

If s < t , then N(t)− N(s) equals the number of events in (s, t ].

A counting process is said to have independent increments if N(t1)− N(s1)
and N(t2)− N(s2) are independent for all pairs of non-overlapping intervals
(s1, t1] and (s2, t2].

A counting process is said to have stationary increments if the distribution of
N(s + t)− N(s) has the same distribution for all s ≥ 0.
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The o(h)-notation

Definition

The function f (·) is said to be o(h) if:

lim
h→0

f (h)

h
= 0.

EXAMPLES:

(a) The function f (x) = x2 is o(h) since:

lim
h→0

f (h)

h
= lim

h→0

h2

h
= lim

h→0
h = 0.

(b) The function f (x) = x is not o(h) since:

lim
h→0

f (h)

h
= lim

h→0

h
h

= lim
h→0

1 = 1.
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The o(h)-notation (cont.)

(c) If f (·) is o(h) and g(·) is o(h), then so is f (·) + g(·).

lim
h→0

f (h) + g(h)

h
= lim

h→0

f (h)

h
+ lim

h→0

g(h)

h
= 0 + 0 = 0.

(d) If f (·) is o(h), then so is c · f (·).

lim
h→0

c · f (h)

h
= c · lim

h→0

f (h)

h
= c · 0 = 0.

(e) Any finite linear combination of functions, each of which is o(h), is o(h).
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Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)

The counting process {N(t), t ≥ 0} is said to be a Poisson process with rate
λ > 0 if the following four axioms hold:

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments.

(iii) P(N(t + h)− N(t) = 1) = λh + o(h)

(iv) P(N(t + h)− N(t) ≥ 2) = o(h)
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Properties of the Poisson Process

Lemma (5.1)

Assume that {N(t), t ≥ 0} is a Poisson process with rate λ > 0. Then let
s > 0, and define:

Ns(t) = N(s + t)− N(s), for all t ≥ 0.

Then {Ns(t), t ≥ 0} is a Poisson process with rate λ as well.

PROOF: We prove the lemma by verifying that {Ns(t), t ≥ 0} satisfies the
axioms given in Definition 5.2:

(i) Ns(0) = N(s + 0)− N(s) = 0

(ii) {Ns(t), t ≥ 0} has independent increments since
{N(t), t ≥ 0} has independent increments.

(iii) P(Ns(t + h)− Ns(t) = 1) = P(N(s + t + h)− N(s + t) = 1) = λh + o(h)

(iv) P(Ns(t + h)− Ns(t) ≥ 2) = P(N(s + t + h)− N(s + t) ≥ 2) = o(h)
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Properties of the Poisson Process (cont.)

Lemma (5.2)

If T1 is the time of the first event of a Poisson process {N(t), t ≥ 0} with rate
λ > 0, then:

P(T1 > t) = P(N(t) = 0) = e−λt , t ≥ 0.

That is T1 ∼ exp(λ).

PROOF: Let P0(t) = P(N(t) = 0). Then:

P0(t + h) = P(N(t + h) = 0)

= P(N(t) = 0 ∩ N(t + h)− N(t) = 0)

= P(N(t) = 0) · P(N(t + h)− N(t) = 0) by Axiom (ii)

= P0(t)(1− λh + o(h)) by Axiom (iii) and (iv)
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Properties of the Poisson Process (cont.)
Hence, we get:

P0(t + h)− P0(t) = −λhP0(t) + o(h)P0(t)

Dividing by h and letting h→ 0 gives that:

P ′0(t) = lim
h→0

P0(t + h)− P0(t)
h

= lim
h→0

[−λP0(t) +
o(h)P0(t)

h
] = −λP0(t).

Alternatively, this can be expressed as:

P ′0(t)
P0(t)

= −λ

Integrating both sides of this equation yields:

log(P0(t)) = −λt + C.

Since P0(0) = P(N(0) = 0) = 1 it follows that C = 0, and hence, we get:

P(T1 > t) = P(N(t) = 0) = P0(t) = e−λt , t ≥ 0 �
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Properties of the Poisson Process (cont.)

Proposition (5.4)

Let T1,T2, . . . be the sequence of interarrival times of a Poisson process
{N(t), t ≥ 0} with rate λ > 0. That is, T1 is the time of the first event, and

Tn = The time between the (n − 1)st and nth event, n = 2,3, . . . .

Then T1,T2, . . . are independent and identically distributed exponential
random variables with rate λ.

PROOF: We have already shown that T1 ∼ exp(λ). For T2 we get:

P(T2 > t |T1 = s) = P(N(s + t)− N(s) = 0|T1 = s)

= P(N(s + t)− N(s) = 0) by Axiom (ii)

= P(Ns(t) = 0) = e−λt by Lemma 5.1 and Lemma 5.2.

The result follows by repeating this argument for T3,T4, . . . �
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