STK2130 - Week 10

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Chapter 5

The Exponential Distribution and the Poisson Process

Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution with parameter $\lambda>0$, denoted as $X \sim \exp (\lambda)$, if its probability density function is given by:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

If $X \sim \exp (\lambda)$, then the cumulative distribution function of X is given by:

$$
F(x)=P(X \leq x)=\int_{0}^{x} f(t) d t= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

Moreover, the survival function of X is given by:

$$
\bar{F}(x)=P(X>x)=1-F(x)= \begin{cases}e^{-\lambda x} & x \geq 0 \\ 1 & x<0\end{cases}
$$

Memoryless stochastic variables

A random variable X is said to be memoryless if:

$$
P(X>s+t \mid X>t)=P(X-t>s \mid X>t)=P(X>s), \quad \text { for all } s, t \geq 0
$$

Thus, X is memoryless if $(X-t) \mid(X>t)$ has the same distribution as X.
Note that if X is the lifetime of some unit, $(X-t)$ is the remaining lifetime given that the unit has survived up to the time t.

If $X \sim \exp (\lambda)$, we have:

$$
\begin{aligned}
P(X>s+t \mid X>t) & =\frac{P(X>s+t \cap X>t)}{P(X>t)}=\frac{P(X>s+t)}{P(X>t)} \\
& =\frac{e^{-\lambda(s+t)}}{e^{-\lambda(t)}}=e^{-\lambda s}=P(X>s)
\end{aligned}
$$

Hence, we conclude that X is memoryless.

Memoryless stochastic variables (cont.)

The memoryless property:

$$
P(X>s+t \mid X>t)=P(X>s), \quad \text { for all } s, t \geq 0
$$

is equivalent to the following:

$$
P(X>s+t)=P(X>s) P(X>t), \quad \text { for all } s, t \geq 0
$$

Since $\bar{F}(x)=P(X>x)$, this property can also be written as:

$$
\bar{F}(s+t)=\bar{F}(s) \bar{F}(t), \quad \text { for all } s, t \geq 0
$$

We now show that the exponential distribution is essentially the only distribution with this property.

Memoryless stochastic variables (cont.)

Proposition

Let X be a random variable and let $\bar{F}(x)=P(X>x)$ be such that:

$$
\begin{align*}
\bar{F}(x+y) & =\bar{F}(x) \cdot \bar{F}(y), \quad \text { for all } x, y \geq 0 . \tag{1}\\
\lambda & =-\log (\bar{F}(1))>0 . \tag{2}
\end{align*}
$$

Then $X \sim \exp (\lambda)$.

PROOF: We first note that by (2), it follows that:

$$
\begin{equation*}
0<\bar{F}(1)=e^{-\lambda}<1 . \tag{3}
\end{equation*}
$$

Secondly we note that since cumulative distribution functions always are right-continuous, it follows that $\bar{F}=1-F$ is righ-continuous as well.

Memoryless stochastic variables (cont.)

By repeated use of (1) it follows that for $n, m \in \mathbb{N}^{+}$, we have:

$$
\begin{equation*}
\bar{F}\left(\frac{m}{n}\right)=\bar{F}\left(\frac{1}{n}+\cdots+\frac{1}{n}\right)=\bar{F}^{m}\left(\frac{1}{n}\right), \tag{4}
\end{equation*}
$$

where the sum contains m terms. In particular, by letting $m=n$, we get:

$$
\begin{equation*}
\bar{F}(1)=\bar{F}\left(\frac{n}{n}\right)=\bar{F}^{n}\left(\frac{1}{n}\right) \tag{5}
\end{equation*}
$$

Alternatively, (5) can be written as:

$$
\begin{equation*}
\bar{F}\left(\frac{1}{n}\right)=[\bar{F}(1)]^{1 / n} . \tag{6}
\end{equation*}
$$

By (3) and that \bar{F} is right-continuous, (6) implies that:

$$
\bar{F}(0)=\lim _{n \rightarrow \infty} \bar{F}\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty}[\bar{F}(1)]^{1 / n}=1 .
$$

Hence, since \bar{F} must be non-increasing, $\bar{F}(x)=1$ for all $x \leq 0$.

Memoryless stochastic variables (cont.)

We now combine (4) and (6), and get:

$$
\bar{F}\left(\frac{m}{n}\right)=\bar{F}^{m}\left(\frac{1}{n}\right)=\bar{F}(1)^{m / n}, \quad \text { for all } m, n \in \mathbb{N}^{+} .
$$

Thus, since $\bar{F}(1)=e^{-\lambda}$, we have proved that:

$$
\bar{F}(q)=\bar{F}(1)^{q}=e^{-\lambda q}, \quad \text { for all } q \in \mathbb{Q}^{+} .
$$

Now, let $x \in \mathbb{R}^{+}$. Since the set \mathbb{Q}^{+}is dense in \mathbb{R}^{+}, there exists a decreasing sequence $\left\{q_{r}\right\} \subset \mathbb{Q}^{+}$such that:

$$
\lim _{r \rightarrow \infty} q_{r}=x
$$

Since \bar{F} is right-continuous, this implies that:

$$
\bar{F}(x)=\lim _{r \rightarrow \infty} \bar{F}\left(q_{r}\right)=\lim _{r \rightarrow \infty} e^{-\lambda q_{r}}=e^{-\lambda x} .
$$

Hence, we conclude that $X \sim \exp (\lambda)$

The failure rate function

Let X be a continuously distributed positive random variable with density f, and survival function $\bar{F}(x)=P(X>x)$, where $\bar{F}(0)=1$.
The failure rate function (or hazard rate function) of X is defined as:

$$
r(t)=\frac{f(t)}{\bar{F}(t)}, \quad \text { for all } t \text { such that } \bar{F}(t)>0
$$

The failure rate function, $r(t)$ can be interpreted as follows:

$$
\begin{aligned}
& P(X \in(t, t+d t) \mid X>t)=\frac{P(X \in(t, t+d t) \cap X>t)}{P(X>t)} \\
&= \frac{P(X \in(t, t+d t))}{P(X>t)} \approx \frac{f(t) d t}{\bar{F}(t)}=r(t) d t .
\end{aligned}
$$

Thus, $r(t)$ is the conditional probability density given that $X>t$.

The failure rate function (cont.)

Given the function $r(t)$ we can recover the survival function $\bar{F}(x)$:

$$
\begin{aligned}
\int_{0}^{x} r(t) d t & =\int_{0}^{x} \frac{f(t)}{\bar{F}(t)} d t \quad \text { Subst.: } u=F(t), d u=f(t) d t \\
& =\int_{0}^{F(x)} \frac{d u}{1-u}=-\left.\right|_{0} ^{F(x)}[\ln (1-u)+C]=-\ln (\bar{F}(x))-C .
\end{aligned}
$$

By using that $\bar{F}(0)=1$, it follows that $C=0$, and hence we get:

$$
\bar{F}(x)=\exp \left(-\int_{0}^{x} r(t) d t\right)=e^{-R(x)}, \quad x \geq 0,
$$

where $R(x)=\int_{0}^{x} r(t) d t$ is referred to as the cumulative failure rate function (or cumulative hazard function).

The failure rate function (cont.)

Assume that $X \sim \exp (\lambda)$. Then it follows that:

$$
\begin{aligned}
r(t) & =\frac{f(t)}{\bar{F}(t)}=\frac{\lambda e^{-\lambda t}}{e^{-\lambda t}}=\lambda, \\
R(x) & =\int_{0}^{x} r(t) d t=\int_{0}^{x} \lambda d t=\lambda x .
\end{aligned}
$$

Hence, for the exponential distribution, the failure rate function is constant, while cumulative failure rate function is linear.

The Weibull distribution

Assume that the random variable X has a cumulative failure rate function $R(x)=(\lambda x)^{\alpha}$ where $\alpha, \lambda>0, x \geq 0$.
Then the distribution of X is called a Weibull distribution. The parameter α is referred to as the shape parameter.

The failure rate function of a Weibull distribution is obtained as the derivative of $R(x)$:

$$
r(t)=R^{\prime}(t)=\alpha \lambda(\lambda t)^{\alpha-1}, \quad t>0
$$

We observe that:

- If $0<\alpha<1$, then r is decreasing
- If $\alpha=1$, then r is constant
- If $\alpha>1$, then r is increasing

In fact, if $\alpha=1, X \sim \exp (\lambda)$.

The Weibull distribution (cont.)

The survival function of a Weibull distribution is given by:

$$
\bar{F}(x)=P(X>x)=e^{-R(x)}=e^{-(\lambda x)^{\alpha}}, \quad x \geq 0
$$

The cumulative distribution function of a Weibull distribution is given by:

$$
F(x)=1-\bar{F}(x)=1-e^{-(\lambda x)^{\alpha}}, \quad x \geq 0
$$

The density function of a Weibull distribution is given by:

$$
f(x)=r(x) \bar{F}(x)=\alpha \lambda(\lambda t)^{\alpha-1} e^{-(\lambda x)^{\alpha}}, \quad x \geq 0
$$

Example 5.6 Hyperexponential distribution

Let X_{1}, \ldots, X_{n} be independent exponential random variables with respective rates $\lambda_{1}, \ldots, \lambda_{n}$, where $\lambda_{i} \neq \lambda_{j}$ when $i \neq j$.
Let J be a discrete variable independent of X_{1}, \ldots, X_{n} and with values in the index set $\{1, \ldots, n\}$. Assume that:

$$
P(J=j)=P_{j}, \quad j=1, \ldots, n, \quad \sum_{j=1}^{n} P_{j}=1 .
$$

The random variable X_{J} is said to a hyperexponential random variable, or a discrete mixture of exponentials.

EXAMPLE: A collection of n types of batteries.

- The lifetime of a battery of type j is $\exp \left(\lambda_{j}\right), \quad j=1, \ldots, n$.
- P_{j} is the proportion of batteries of type $j, \quad j=1, \ldots, n$.

Example 5.6 Hyperexponential distribution (cont.)

The cumulative distribution function is given by:

$$
\begin{aligned}
F(x) & =P\left(X_{J} \leq x\right)=1-P\left(X_{J}>x\right) \\
& =1-\sum_{j=1}^{n} P\left(X_{j}>x \mid J=j\right) P(J=j) \\
& =1-\sum_{j=1}^{n} P_{j} e^{-\lambda_{j} x}, \quad x \geq 0 .
\end{aligned}
$$

The probability density function is given by:

$$
f(x)=\frac{d}{d x} F(x)=\sum_{j=1}^{n} P_{j} \lambda_{j} e^{-\lambda_{j} x}, \quad x \geq 0
$$

Example 5.6 Hyperexponential distribution (cont.)

The failure rate function is given by:

$$
r(t)=\frac{f(t)}{\bar{F}(t)}=\frac{\sum_{j=1}^{n} P_{j} \lambda_{j} e^{-\lambda_{j} t}}{\sum_{j=1}^{n} P_{j} e^{-\lambda_{j} t}}, \quad t>0
$$

NOTE: We also have:

$$
P(J=j \mid X>t)=\frac{P(X>t \mid J=j) P(J=j)}{P(X>t)}=\frac{P_{j} e^{-\lambda_{j} t}}{\sum_{j=1}^{n} P_{j} e^{-\lambda_{j} t}}, \quad t>0 .
$$

Hence, the failure rate function $r(t)$ can alternatively be expressed as:

$$
r(t)=\sum_{j=1}^{n} \lambda_{j} P(J=j \mid X>t)
$$

Example 5.6 Hyperexponential distribution (cont.)

If $\lambda_{1}<\lambda_{i}$ for all $i>1$, then:

$$
\begin{aligned}
P(J=1 \mid X>t) & =\frac{P_{1} e^{-\lambda_{1} t}}{P_{1} e^{-\lambda_{1} t}+\sum_{j=2}^{n} P_{j} e^{-\lambda_{j} t}} \\
& =\frac{P_{1}}{P_{1}+\sum_{j=2}^{n} P_{j} e^{-\left(\lambda_{j}-\lambda_{1}\right) t}} \rightarrow 1, \quad \text { as } t \rightarrow \infty .
\end{aligned}
$$

Similarly, for all $j>1$ we have:

$$
P(J=j \mid X>t) \rightarrow 0, \quad \text { as } t \rightarrow \infty .
$$

From this it follows that:

$$
\lim _{t \rightarrow \infty} r(t)=\min _{1 \leq j \leq n} \lambda_{j} .
$$

The Exponential Distribution (cont.)

Proposition (5.2)

Assume that X_{1}, \ldots, X_{n} are independent and that $X_{i} \sim \exp \left(\lambda_{i}\right), i=1, \ldots, n$. Then $\min _{i} X_{i} \sim \exp \left(\sum_{i=1}^{n} \lambda_{i}\right)$. Moreover, $\min _{i} X_{i}$ and the rank order of X_{1}, \ldots, X_{n} are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

$$
\begin{aligned}
P\left(X_{i_{1}}\right. & \left.<\cdots<X_{i_{n}} \mid \min _{1 \leq i \leq n} X_{i}>t\right) \\
& =P\left(X_{i_{1}}<\cdots<X_{i_{n}} \mid \bigcap_{i=1}^{n} X_{i}>t\right) \\
& =P\left(X_{i_{1}}-t<\cdots<X_{i_{n}}-t \mid \bigcap_{i=1}^{n} X_{i}>t\right) \\
& =P\left(X_{i_{1}}<\cdots<X_{i_{n}}\right)
\end{aligned}
$$

Example 5.8

A post office with two clerks, both are busy but there is no one else waiting in line.
$R_{i}=$ Time until for clerk i becomes available, $\quad i=1,2$
$S=$ Your service time
$T=$ The total time spent in the post office
We assume that R_{1}, R_{2} are independent and $R_{i} \sim \exp \left(\lambda_{i}\right), i=1,2$.

$$
\begin{aligned}
E[T] & =E\left[T \mid R_{1}<R_{2}\right] P\left(R_{1}<R_{2}\right)+E\left[T \mid R_{2} \leq R_{1}\right] P\left(R_{2}<R_{1}\right) \\
& =E\left[R_{1}+S \mid R_{1}<R_{2}\right] \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+E\left[R_{2}+S \mid R_{2}<R_{1}\right] \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

We now use that:

$$
\begin{aligned}
& E\left[R_{i} \mid R_{i}<R_{3-i}\right]=E\left[\min \left(R_{1}, R_{2}\right)\right]=\frac{1}{\lambda_{1}+\lambda_{2}}, \quad i=1,2 \\
& E\left[S \mid R_{i}<R_{3-i}\right]=\frac{1}{\lambda_{i}}, \quad i=1,2
\end{aligned}
$$

Example 5.8 (cont.)

$$
\begin{aligned}
E[T] & =E\left[R_{1}+S \mid R_{1}<R_{2}\right] \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+E\left[R_{2}+S \mid R_{2}<R_{1}\right] \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
& =\left(\frac{1}{\lambda_{1}+\lambda_{2}}+\frac{1}{\lambda_{1}}\right) \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+\left(\frac{1}{\lambda_{1}+\lambda_{2}}+\frac{1}{\lambda_{2}}\right) \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
& =\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+1\right) \frac{1}{\lambda_{1}+\lambda_{2}}+\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}+1\right) \frac{1}{\lambda_{1}+\lambda_{2}} \\
& =\left(\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}}+1+1\right) \frac{1}{\lambda_{1}+\lambda_{2}} \\
& =\frac{3}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

The hypoexponential distribution

We recall that if $X \sim \exp (\lambda)$, then the moment generating function of X is given by:

$$
M_{X}(t)=E\left[e^{t X}\right]=\int_{0}^{\infty} \lambda e^{-(\lambda-t) x} d x=\frac{\lambda}{\lambda-t}
$$

Now, let X_{1}, \ldots, X_{n} be independent and $X_{i} \sim \exp \left(\lambda_{i}\right), i=1, \ldots, n$, and assume that all the λ_{i} 's are distinct. That is $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$. The moment generating function of $S=X_{1}+\cdots+X_{n}$ is given by:

$$
\begin{aligned}
M_{S}(t) & =E\left[e^{t S}\right]=E\left[e^{t X_{1}+\cdots t X_{n}}\right] \\
& =E\left[e^{t X_{1}}\right] \cdots E\left[e^{t X_{n}}\right] \quad\left(\text { since } X_{1}, \ldots, X_{n} \text { are independent }\right) \\
& =\prod_{i=1}^{n} M_{X_{i}}(t)=\prod_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-t} .
\end{aligned}
$$

The hypoexponential distribution (cont.)

Assume that $\lambda_{1}, \ldots, \lambda_{n}$ be distinct positive numbers. A random variable Z is said to have a hypoexponential distribution with rates $\lambda_{1}, \ldots, \lambda_{n}$ if the density of Z is given by:

$$
f_{Z}(z)=\sum_{i=1}^{n} C_{i, n} \cdot \lambda_{i} e^{-\lambda_{i} z}, \quad z \geq 0
$$

where:

$$
C_{i, n}=\prod_{j \neq i} \frac{\lambda_{j}}{\lambda_{j}-\lambda_{i}}, \quad i=1, \ldots, n .
$$

The moment generating function of Z is then given by:

$$
\begin{aligned}
M_{Z}(t) & =E\left[e^{t z}\right]=\int_{0}^{\infty} \sum_{i=1}^{n} C_{i, n} \cdot \lambda_{i} e^{-\left(\lambda_{i}-t\right) z} d z \\
& =\sum_{i=1}^{n} C_{i, n} \int_{0}^{\infty} \lambda_{i} e^{-\left(\lambda_{i}-t\right) z} d z=\sum_{i=1}^{n} C_{i, n} \cdot \frac{\lambda_{i}}{\lambda_{i}-t}
\end{aligned}
$$

The hypoexponential distribution (cont.)

By inserting the expressions for $C_{1, n}, \ldots, C_{n, n}$, we get:

$$
\begin{aligned}
M_{z}(t) & =\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-t} \cdot C_{i, n}=\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-t} \prod_{j \neq i} \frac{\lambda_{j}}{\lambda_{j}-\lambda_{i}} \\
& =\prod_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-t} \cdot \sum_{i=1}^{n} \prod_{j \neq i} \frac{\lambda_{j}-t}{\lambda_{j}-\lambda_{i}}=\prod_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-t} \cdot \phi_{n}(t),
\end{aligned}
$$

where:

$$
\phi_{n}(t)=\sum_{i=1}^{n} \prod_{j \neq i} \frac{\lambda_{j}-t}{\lambda_{j}-\lambda_{i}}
$$

We observe that $\phi_{n}(t)$ is a polynomial in t of degree ν, where $\nu \leq(n-1)$. If $\nu>0$, the equation $\phi_{n}(t)=1$ can have at most $\nu<n$ distinct real solutions.

The hypoexponential distribution (cont.)

However, for $k=1, \ldots, n$ we must have:

$$
\begin{aligned}
& \prod_{j \neq i} \frac{\lambda_{j}-\lambda_{k}}{\lambda_{j}-\lambda_{i}}=0, \quad \text { if } k \neq i, \\
& \prod_{j \neq i} \frac{\lambda_{j}-\lambda_{k}}{\lambda_{j}-\lambda_{i}}=1, \quad \text { if } k=i .
\end{aligned}
$$

Hence, we get that:

$$
\phi_{n}\left(\lambda_{k}\right)=\sum_{i=1}^{n} \prod_{j \neq i} \frac{\lambda_{j}-\lambda_{k}}{\lambda_{j}-\lambda_{i}}=1, \quad k=1, \ldots, n .
$$

Since we have assumed that $\lambda_{1}, \ldots, \lambda_{n}$ are distinct, the equation $\phi_{n}(t)=1$ has n distinct real solutions, which implies that $\nu=0$, i.e., that $\phi_{n}(t) \equiv 1$.

The hypoexponential distribution (cont.)

Thus, we have shown that the moment generating function of Z is simply:

$$
M_{Z}(t)=\prod_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}-t}=M_{S}(t)
$$

Since the moment generating function (when it exists) uniquely determines the distribution, this implies that Z has the distribution of a sum of n independent, exponentially distributed variables with distinct rates.

NOTE: Since $\phi_{n}(t) \equiv 1$, it follows that we also have:

$$
\sum_{i=1}^{n} C_{i, n}=\sum_{i=1}^{n} \prod_{j \neq i} \frac{\lambda_{j}}{\lambda_{j}-\lambda_{i}}=\phi_{n}(0)=1
$$

Hence, we also get that:

$$
\int_{0}^{\infty} f_{Z}(z) d z=\sum_{i=1}^{n} C_{i, n} \int_{0}^{\infty} \lambda_{i} e^{-\lambda_{i} z} d z=\sum_{i=1}^{n} C_{i, n}=1
$$

The hypoexponential distribution (cont.)

NOTE: Both the hyperexponential distribution and the hypoexponential distribution have probability densities of the form:

$$
f(x)=\sum_{i=1}^{n} a_{i} e^{-\lambda_{i} x}, \quad x \geq 0
$$

where:

$$
\sum_{i=1}^{n} a_{i}=1
$$

For the hyperexponential distribution the parameters a_{1}, \ldots, a_{n} are all numbers between 0 and 1 . Hence, these parameters can be interpreted as probabilities.

For the hypoexponential distribution the parameters a_{1}, \ldots, a_{n} will in general be both less than 0 and greater than 1 . Thus, in this case the parameters can not be interpreted as probabilities.

Chapter 5.2.5 The Dirichlet Distribution

Let X_{1}, \ldots, X_{n} be independent and $X_{i} \sim \operatorname{gamma}\left(\alpha_{i}, \lambda\right), i=1, \ldots, n$. Then we have shown that:

$$
S=\sum_{i=1}^{n} X_{i} \sim \operatorname{gamma}\left(\sum_{i=1}^{n} \alpha_{i}, \lambda\right)
$$

We now consider the random vector:

$$
\left(Y_{1}, \ldots, Y_{n-1}\right)=\left(\frac{X_{1}}{S}, \ldots, \frac{X_{n-1}}{S}\right)
$$

In order to find the joint probability density of $\left(Y_{1}, \ldots, Y_{n-1}\right)$, we first derive the joint probability density of $\left(Y_{1}, \ldots, Y_{n-1}, S\right)$, noting that:

$$
X_{i}=S \cdot Y_{i}, \quad i=1, \ldots,(n-1), \quad X_{n}=S-\sum_{i=1}^{n-1} S \cdot Y_{i}=S \cdot\left(1-\sum_{i=1}^{n-1} Y_{i}\right)
$$

The Dirichlet Distribution (cont.)

Hence, the Jacobi matrix of this transformation is:

$$
J=\left[\begin{array}{ccccc}
s & 0 & \ldots & 0 & y_{1} \\
0 & s & \ldots & 0 & y_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & s & y_{n-1} \\
-s & -s & \ldots & -s & 1-\sum_{i=1}^{n-1} y_{i}
\end{array}\right]
$$

Moreover, it is easy to verify that the determinant of this matrix is $|J|=s^{n-1}$.
The joint probability density of $\left(Y_{1}, \ldots, Y_{n-1}, S\right)$ is then obtained by inserting the expressions for x_{1}, \ldots, x_{n} into the joint probability density of X_{1}, \ldots, X_{n} :

$$
\begin{aligned}
f\left(y_{1}, \ldots, y_{n-1}, s\right) & =\prod_{i=1}^{n-1} \frac{\lambda^{\alpha_{i}}}{\Gamma\left(\alpha_{i}\right)}\left(s y_{i}\right)^{\alpha_{i}-1} e^{-\lambda s y_{i}} \\
\cdot & \frac{\lambda^{\alpha_{n}}}{\Gamma\left(\alpha_{n}\right)}\left(s\left(1-\sum_{i=1}^{n-1} y_{i}\right)\right)^{\alpha_{n}-1} e^{-\lambda s\left(1-\sum_{i=1}^{n-1} y_{i}\right)} \cdot\left|s^{n-1}\right|
\end{aligned}
$$

The Dirichlet Distribution (cont.)

$$
\begin{aligned}
f\left(y_{1}, \ldots, y_{n-1}, s\right) & =\prod_{i=1}^{n-1} \frac{\lambda^{\alpha_{i}}}{\Gamma\left(\alpha_{i}\right)}\left(s y_{i}\right)^{\alpha_{i}-1} e^{-\lambda s y_{i}} \\
\cdot & \frac{\lambda^{\alpha_{n}}}{\Gamma\left(\alpha_{n}\right)}\left(s\left(1-\sum_{i=1}^{n-1} y_{i}\right)\right)^{\alpha_{n}-1} e^{-\lambda s\left(1-\sum_{i=1}^{n-1} y_{i}\right)} \cdot\left|s^{n-1}\right| \\
& =\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right)} y_{1}^{\alpha_{1}-1} \cdots y_{n-1}^{\alpha_{n-1}-1}\left(1-\sum_{i=1}^{n-1} y_{i}\right)^{\alpha_{n}-1} \\
& \cdot \frac{\lambda^{\alpha_{1}+\cdots+\alpha_{n}}}{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)} s^{\alpha_{1}+\cdots+\alpha_{n}-1} e^{-\lambda s .}
\end{aligned}
$$

The Dirichlet Distribution (cont.)

The joint probability density of $\left(Y_{1}, \ldots, Y_{n-1}\right)$ is obtained by integrating with respect to s :

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{n-1}\right)=\int_{0}^{\infty} f\left(y_{1}, \ldots, y_{n-1}, s\right) d s \\
& \quad=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right)} y_{1}^{\alpha_{1}-1} \cdots y_{n-1}^{\alpha_{n-1}-1}\left(1-\sum_{i=1}^{n-1} y_{i}\right)^{\alpha_{n}-1} \\
& \quad \cdot \int_{0}^{\infty} \frac{\lambda^{\alpha_{1}+\cdots+\alpha_{n}}}{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)} s^{\alpha_{1}+\cdots+\alpha_{n}-1} e^{-\lambda s} d s \\
& \quad=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right)} y_{1}^{\alpha_{1}-1} \cdots y_{n-1}^{\alpha_{n-1}-1}\left(1-\sum_{i=1}^{n-1} y_{i}\right)^{\alpha_{n}-1} .
\end{aligned}
$$

The Dirichlet Distribution (cont.)

NOTE: The joint probability density of $\left(Y_{1}, \ldots, Y_{n-1}\right)$ and S can be factorised as follows:

$$
\begin{aligned}
& f\left(y_{1}, \ldots, y_{n-1}, s\right) \\
&=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right)} y_{1}^{\alpha_{1}-1} \cdots y_{n-1}^{\alpha_{n-1}-1}\left(1-\sum_{i=1}^{n-1} y_{i}\right)^{\alpha_{n}-1} \\
& \cdot \frac{\lambda^{\alpha_{1}+\cdots+\alpha_{n}}}{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)} s^{\alpha_{1}+\cdots+\alpha_{n}-1} e^{-\lambda s} \\
&=f\left(y_{1}, \ldots, y_{n-1}\right) \cdot f(s) .
\end{aligned}
$$

Hence, it follows that the vector $\left(Y_{1}, \ldots, Y_{n-1}\right)$ and S are independent of each other.

The Dirichlet Distribution (cont.)

The joint distribution of $\left(Y_{1}, \ldots, Y_{n-1}\right)$ is called a Dirichlet distribution with parameters $\alpha_{1}, \ldots, \alpha_{n}$, and we write:

$$
\left(Y_{1}, \ldots, Y_{n-1}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

NOTE: Since $Y_{i}=X_{i} / S$, it follows that:

$$
\sum_{i=1}^{n-1} Y_{i}=\sum_{i=1}^{n-1} X_{i} / S=\frac{S-X_{n}}{S} \in(0,1)
$$

Thus, $f\left(y_{1}, \ldots, y_{n-1}\right)>0$ only when $0<y_{1}+\cdots+y_{n-1}<1$.
In the special case where $\alpha_{1}=\cdots=\alpha_{n}=1$, we get:
$f\left(y_{1}, \ldots, y_{n-1}\right)=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n}\right)} y_{1}^{\alpha_{1}-1} \cdots y_{n-1}^{\alpha_{n-1}-1}\left(1-\sum_{i=1}^{n-1} y_{i}\right)^{\alpha_{n}-1}=(n-1)!$

The Dirichlet Distribution (cont.)

In the special case where $n=2$, i.e., when $\left(Y_{1}, \ldots, Y_{n-1}\right)=Y_{1}$, we get:

$$
f\left(y_{1}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1}, \quad 0<y_{1}<1 .
$$

This distribution is called a Beta distribution with parameters α_{1}, α_{2}.
In the case where $\alpha_{1}=\alpha_{2}=1$, we get:

$$
\begin{aligned}
f\left(y_{1}\right) & =\frac{\Gamma(1+1)}{\Gamma(1) \Gamma(1)} y_{1}^{1-1}\left(1-y_{1}\right)^{1-1} \\
& =1, \quad 0<y_{1}<1 .
\end{aligned}
$$

Thus, in this case $Y_{1} \sim$ uniform $(0,1)$.

Chapter 5.3.1 Counting Processes

A stochastic process $\{N(t), t \geq 0\}$ is said to be a counting process if $N(t)$ represents the total number of events that occur by time $t \geq 0$.

EXAMPLES:

$N(t)=$ Number of persons arriving at a store up to and including time $t \geq 0$
$N(t)=$ Number of children being born up to and including time $t \geq 0$
$N(t)=$ Number of reported accidents up to and including time $t \geq 0$

Counting Processes (cont.)

Properties of a counting process:

- $N(t) \in\{0,1,2, \ldots\}$ for all $t \geq 0$.
- $N(t)$ is non-decreasing in t. That is, if $s<t$, then $N(s) \leq N(t)$.
- If $s<t$, then $N(t)-N(s)$ equals the number of events in $(s, t]$.

A counting process is said to have independent increments if $N\left(t_{1}\right)-N\left(s_{1}\right)$ and $N\left(t_{2}\right)-N\left(s_{2}\right)$ are independent for all pairs of non-overlapping intervals $\left(s_{1}, t_{1}\right]$ and (s_{2}, t_{2}.

A counting process is said to have stationary increments if the distribution of $N(s+t)-N(s)$ has the same distribution for all $s \geq 0$.

The $o(h)$-notation

Definition

The function $f(\cdot)$ is said to be $o(h)$ if:

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=0 .
$$

EXAMPLES:

(a) The function $f(x)=x^{2}$ is $o(h)$ since:

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h^{2}}{h}=\lim _{h \rightarrow 0} h=0
$$

(b) The function $f(x)=x$ is not $o(h)$ since:

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1 .
$$

The $o(h)$-notation (cont.)

(c) If $f(\cdot)$ is $o(h)$ and $g(\cdot)$ is $o(h)$, then so is $f(\cdot)+g(\cdot)$.

$$
\lim _{h \rightarrow 0} \frac{f(h)+g(h)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}+\lim _{h \rightarrow 0} \frac{g(h)}{h}=0+0=0 .
$$

(d) If $f(\cdot)$ is $o(h)$, then so is $c \cdot f(\cdot)$.

$$
\lim _{h \rightarrow 0} \frac{c \cdot f(h)}{h}=c \cdot \lim _{h \rightarrow 0} \frac{f(h)}{h}=c \cdot 0=0
$$

(e) Any finite linear combination of functions, each of which is $O(h)$, is $O(h)$.

Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)
The counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process with rate $\lambda>0$ if the following four axioms hold:
(i) $\quad N(0)=0$
(ii) $\quad\{N(t), t \geq 0\}$ has independent increments.
(iii) $\quad P(N(t+h)-N(t)=1)=\lambda h+o(h)$
(iv) $\quad P(N(t+h)-N(t) \geq 2)=o(h)$

Properties of the Poisson Process

Lemma (5.1)

Assume that $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda>0$. Then let $s>0$, and define:

$$
N_{s}(t)=N(s+t)-N(s), \quad \text { for all } t \geq 0
$$

Then $\left\{N_{s}(t), t \geq 0\right\}$ is a Poisson process with rate λ as well.
PROOF: We prove the lemma by verifying that $\left\{N_{s}(t), t \geq 0\right\}$ satisfies the axioms given in Definition 5.2:
(i) $N_{s}(0)=N(s+0)-N(s)=0$
(ii) $\left\{N_{s}(t), t \geq 0\right\}$ has independent increments since $\{N(t), t \geq 0\}$ has independent increments.
(iii) $P\left(N_{s}(t+h)-N_{s}(t)=1\right)=P(N(s+t+h)-N(s+t)=1)=\lambda h+o(h)$
(iv) $P\left(N_{s}(t+h)-N_{s}(t) \geq 2\right)=P(N(s+t+h)-N(s+t) \geq 2)=o(h)$

Properties of the Poisson Process (cont.)

Lemma (5.2)

If T_{1} is the time of the first event of a Poisson process $\{N(t), t \geq 0\}$ with rate $\lambda>0$, then:

$$
P\left(T_{1}>t\right)=P(N(t)=0)=e^{-\lambda t}, \quad t \geq 0
$$

That is $T_{1} \sim \exp (\lambda)$.

PROOF: Let $P_{0}(t)=P(N(t)=0)$. Then:

$$
\begin{aligned}
P_{0}(t+h) & =P(N(t+h)=0) \\
& =P(N(t)=0 \cap N(t+h)-N(t)=0) \\
& =P(N(t)=0) \cdot P(N(t+h)-N(t)=0) \quad \text { by Axiom (ii) } \\
& =P_{0}(t)(1-\lambda h+o(h)) \quad \text { by Axiom (iii) and (iv) }
\end{aligned}
$$

Properties of the Poisson Process (cont.)

Hence, we get:

$$
P_{0}(t+h)-P_{0}(t)=-\lambda h P_{0}(t)+o(h) P_{0}(t)
$$

Dividing by h and letting $h \rightarrow 0$ gives that:

$$
P_{0}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{P_{0}(t+h)-P_{0}(t)}{h}=\lim _{h \rightarrow 0}\left[-\lambda P_{0}(t)+\frac{o(h) P_{0}(t)}{h}\right]=-\lambda P_{0}(t) .
$$

Alternatively, this can be expressed as:

$$
\frac{P_{0}^{\prime}(t)}{P_{0}(t)}=-\lambda
$$

Integrating both sides of this equation yields:

$$
\log \left(P_{0}(t)\right)=-\lambda t+C
$$

Since $P_{0}(0)=P(N(0)=0)=1$ it follows that $C=0$, and hence, we get:

$$
P\left(T_{1}>t\right)=P(N(t)=0)=P_{0}(t)=e^{-\lambda t}, \quad t \geq 0
$$

Properties of the Poisson Process (cont.)

Proposition (5.4)

Let T_{1}, T_{2}, \ldots be the sequence of interarrival times of a Poisson process $\{N(t), t \geq 0\}$ with rate $\lambda>0$. That is, T_{1} is the time of the first event, and
$T_{n}=$ The time between the $(n-1)$ st and n nth event, $\quad n=2,3, \ldots$.
Then T_{1}, T_{2}, \ldots are independent and identically distributed exponential random variables with rate λ.

PROOF: We have already shown that $T_{1} \sim \exp (\lambda)$. For T_{2} we get:

$$
\begin{aligned}
P\left(T_{2}>t \mid T_{1}=s\right) & =P\left(N(s+t)-N(s)=0 \mid T_{1}=s\right) \\
& =P(N(s+t)-N(s)=0) \quad \text { by Axiom (ii) } \\
& =P\left(N_{s}(t)=0\right)=e^{-\lambda t} \quad \text { by Lemma } 5.1 \text { and Lemma } 5.2
\end{aligned}
$$

The result follows by repeating this argument for T_{3}, T_{4}, \ldots

