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Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)

The counting process {N(t), t ≥ 0} is said to be a Poisson process with rate
λ > 0 if the following four axioms hold:

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments.

(iii) P(N(t + h)− N(t) = 1) = λh + o(h)

(iv) P(N(t + h)− N(t) ≥ 2) = o(h)
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Properties of the Poisson Process

Lemma (5.1)

Assume that {N(t), t ≥ 0} is a Poisson process with rate λ > 0. Then let
s > 0, and define:

Ns(t) = N(s + t)− N(s), for all t ≥ 0.

Then {Ns(t), t ≥ 0} is a Poisson process with rate λ as well.

Lemma (5.2)

If T1 is the time of the first event of a Poisson process {N(t), t ≥ 0} with rate
λ > 0, then:

P(T1 > t) = P(N(t) = 0) = e−λt , t ≥ 0.

That is T1 ∼ exp(λ).
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Properties of the Poisson Process (cont.)

Proposition (5.4)

Let T1,T2, . . . be the sequence of interarrival times of a Poisson process
{N(t), t ≥ 0} with rate λ > 0. That is, T1 is the time of the first event, and

Tn = The time between the (n − 1)st and nth event, n = 2,3, . . . .

Then T1,T2, . . . are independent and identically distributed exponential
random variables with rate λ.

PROOF: We have already shown that T1 ∼ exp(λ). For T2 we get:

P(T2 > t |T1 = s) = P(N(s + t)− N(s) = 0|T1 = s)

= P(N(s + t)− N(s) = 0) by Axiom (ii)

= P(Ns(t) = 0) = e−λt by Lemma 5.1 and Lemma 5.2.

The result follows by repeating this argument for T3,T4, . . . �
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Properties of the Poisson Process (cont.)

We now introduce:

Sn =
n∑

i=1

Ti , n = 1,2, . . .

By Proposition 5.4 Sn is a sum of independent identically distributed
exponentially distributed variables. Hence it follows that:

Sn ∼ gamma(n, λ), n = 1,2, . . .
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Properties of the Poisson Process (cont.)

Theorem (5.1)

Assume that {N(t), t ≥ 0} is a Poisson process with rate λ > 0. Then N(t) is
a Poisson random variable with rate λt . That is:

P(N(t) = n) =
(λt)n

n!
e−λt , n = 0,1,2, . . .

PROOF: By Lemma 5.2 we have:

P(N(t) = 0) = e−λt =
(λt)0

0!
e−λt

In order to determine P(N(t) = n) we condition on the event that Sn = s.

If s > t , we obviously have P(N(t) = n|Sn = s) = 0.
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Properties of the Poisson Process (cont.)

We then consider the case where 0 < s ≤ t , and get:

P(N(t) = n|Sn = s) = P(Tn+1 > t − s|Sn = s)

= P(Tn+1 > t − s) since Tn+1 and Sn are independent

= e−λ(t−s).

Hence, it follows that:

P(N(t) = n) =

∫ t

0
P(N(t) = n|Sn = s)fSn (s)ds

=

∫ t

0
e−λ(t−s) · λ

n

Γ(n)
sn−1e−λsds

= λne−λt
∫ t

0

sn−1

(n − 1)!
ds =

(λt)n

n!
e−λt , n = 1,2, . . . �
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Example 5.13

Suppose that people immigrate into a territory according to a Poisson
process with rate λ = 2 per day.

(a) Find the probability there are 10 arrivals in the following week (of 7 days).

(b) Find the expected number of days until there have been 20 arrivals.

SOLUTION: (a) We recall that:

P(N(t) = n) =
(λt)n

n!
e−λt , n = 1,2, . . .

Hence, we get that:

P(N(7) = 10) =
(2 · 7)10

10!
e−2·7

=
1410

10!
e−14 ≈ 0.06628
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Example 5.13 (cont.)

(b) We recall that:

Sn =
n∑

i=1

Ti = The point of time of the nth arrival

∼ gamma(n, λ).

Hence, we get:

E [Sn] =
n∑

i=1

E [Ti ] =
n
λ

In particular:

E [S20] =
20
2

= 10.
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Chapter 5.3.3 Further properties of Poisson Processes
Consider a Poisson process {N(t) : t ≥ 0} with rate λ. Each event can be
classified as either a Type I event or a Type II event.

p = P(A given event is of type I),

1− p = P(A given event is of type II)

We then introduce:

N1(t) = The number of type I events in (0, t ],

N2(t) = The number of type II events in (0, t ].

NOTE: N(t) = N1(t) + N2(t), and for s < t we have:

(N1(t)− N1(s)|N(t)− N(s) = n) ∼ Bin(n,p),

(N2(t)− N2(s)|N(t)− N(s) = n) ∼ Bin(n,1− p)
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Further properties of Poisson Processes (cont.)
From this we get that:

P(N1(t)− N1(s) = k) =
∞∑

n=k

P(N1(t)− N1(s) = k |N(t)− N(s) = n)

· P(N(t)− N(s) = n)

=
∞∑

n=k

(
n
k

)
pk (1− p)n−k · [λ(t − s)]n

n!
e−λ(t−s)

=
(λp(t − s))k

k !
e−λp(t−s)

∞∑
n=k

[λ(1− p)(t − s)]n−k

(n − k)!
e−λ(1−p)(t−s)

=
(λp(t − s))k

k !
e−λp(t−s)

That is, N1(t)− N1(s) ∼ Po(λp(t − s)).

Similarly, N2(t)− N2(s) ∼ Po(λ(1− p)(t − s)).
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Further properties of Poisson Processes (cont.)

Proposition

{N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are both Poisson processes having rates
λp and λ(1− p) respectively, and the two processes are independent.

PROOF: Since N(0) = 0, it follows that Ni (t) = 0, i = 1,2 as well.

Let (s1, t1] and (s2, t2] be disjoint. Since {N(t) : t ≥ 0} has independent
increments, we have for i = 1,2:

P(Ni (t2)− Ni (s2) = k |Ni (t1)− Ni (s1) = `)

=
∞∑

n=k

P(Ni (t2)− Ni (s2) = k |N(t2)− N(s2) = n,Ni (t1)− Ni (s1) = `)

· P(N(t2)− N(s2) = n|Ni (t1)− Ni (s1) = `)

=
∞∑

n=k

P(Ni (t2)− Ni (s2) = k |N(t2)− N(s2) = n) · P(N(t2)− N(s2) = n)

= P(Ni (t2)− Ni (s2) = k)
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Further properties of Poisson Processes (cont.)
Hence, {Ni (t) : t ≥ 0} have independent increments, i = 1,2.

Moreover, we have:

P(N1(h) = 1) = P(N1(h) = 1|N(h) = 1)P(N(h) = 1)

+ P(N1(h) = 1|N(h) ≥ 2)P(N(h) ≥ 2)

= p(λh + o(h)) + o(h)

= λph + o(h)

and:

P(N1(h) ≥ 2) ≤ P(N(h) ≥ 2) = o(h).

By similar arguments we get that:

P(N2(h) = 1) = λ(1− p)h + o(h)

P(N2(h) ≥ 2) = o(h).
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Further properties of Poisson Processes (cont.)

To show that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent we let s < t ,
and consider:

P[(N1(t)− N1(s) = k) ∩ (N2(t)− N2(s) = `)]

= P[(N1(t)− N1(s) = k) ∩ (N(t)− N(s) = k + `)]

=

(
k + `

k

)
pk (1− p)` · [λ(t − s)]k+`

(k + `)!
e−λ(t−s)

=
(λp(t − s))k

k !
e−λp(t−s) · (λ(1− p)(t − s))`

`!
e−λ(1−p)(t−s)

= P(N1(t)− N1(s) = k) · P(N2(t)− N2(s) = `)

Hence, we conclude that (N1(t)−N1(s)) and (N2(t)−N2(s)) are independent
for all s < t , implying that {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} are independent.
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Example 5.14

If immigrants to area A arrive at a Poisson rate of λ = 10 per week, and if
each immigrant is of English descent with probability p = 1

12 . What is the
probability that no people of English descent will emigrate to area A during
the month of February?

SOLUTION: By the previous proposition it follows that the number of
Englishmen emigrating to area A during the month of February is Poisson
distributed with mean:

λ · number of weeks in February · p = 10 · 4 · 1
12 = 10

3 .

Hence, we get:

P(no people of English descent in February)

=
(10/3)0

0!
e−10/3 = 0.0357
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Example 5.15

We consider a Poisson process {N(t) : t ≥ 0} with rate λ where each event
represents an offer. We introduce:

Xi = The size of the i th offer , , i = 1,2, . . .

We assume that X1,X2, . . . are non-negative, independent and identically
distributed random variables with density f (x). We assume that f (x) > 0 for
all x ≥ 0 and introduce:

F̄ (x) = P(Xi > x), x ≥ 0.

POLICY: Accept the first offer greater than some chosen number y , and
define:

Ny (t) = The number of offers greater than y in (0, t ], t ≥ 0.

Then {Ny (t) : t ≥ 0} is a Poisson process with rate λF̄ (y).
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Example 5.15 (cont.)
If Ty is the time until the first offer which is greater than y , then:

Ty ∼ exp(λF̄ (y)),

and we get:

E [Ty ] =
1

λF̄ (y)

The accepted offer is denoted by X . Thus, we know that X > y . Moreover,
we must pay a waiting cost proportional to the waiting time Ty given by cTy .

R(y) = Net return of the deal = X − cTy .

We then have:

E [R(y)] = E [X |X > y ]− cE [Ty ] =

∫ ∞
y

x
f (x)

F̄ (y)
dx − c

λF̄ (y)
.
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Example 5.15 (cont.)
Thus, we may write:

E [R(y)] =

∫∞
y xf (x)dx − c/λ

F̄ (y)

In order to find the value of y which maximizes E [R(y)] we compute the
derivative, and note that:

d
dy

E [R(y)] = 0

if and only if:

F̄ (y) · (−yf (y))− (−f (y))

[∫ ∞
y

xf (x)dx − c
λ

]
= 0

or equivalently: [∫ ∞
y

xf (x)dx − c
λ

]
=

∫ ∞
y

yf (x)dx
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Example 5.15 (cont.)

The equation: [∫ ∞
y

xf (x)dx − c
λ

]
=

∫ ∞
y

yf (x)dx

can alternatively be written as:∫ ∞
y

(x − y)f (x)dx =
c
λ

We denote the left-hand side of this equation by φ(y). Since we have
assumed that f (x) > 0 for all x ≥ 0, φ is a strictly decreasing function of y ,
and we have:

φ(0) =

∫ ∞
0

(x − 0)f (x)dx = E [X ], φ(∞) = 0.

Thus, assuming that E [X ] > c/λ, there exists a unique solution.
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Example 5.15 (cont.)

Assume more specifically that:

f (x) =
1
µ

e−x/µ, x ≥ 0.

Thus, F̄ (x) = e−x/µ, E [X ] = µ, and we have:

φ(y) =

∫ ∞
y

(x − y)f (x)dx =

∫ ∞
y

(x − y)
1
µ

e−x/µdx

We then substitute u = (x − y), and du = dx , and get:

φ(y) =

∫ ∞
0

u · 1
µ

e−(u+y)/µdu

= e−y/µ
∫ ∞

0
u · 1

µ
e−u/µdu = µe−y/µ.
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Example 5.15 (cont.)

Hence, the equation φ(y) = c/λ becomes:

µe−y/µ =
c
λ

or equivalently:

−y/µ = ln(
c
λµ

)

Thus, the optimal y -value, which we denote by y∗ is given by:

y∗ = −µ ln(
c
λµ

) = µ ln(
µ

c/λ
)

NOTE: Since we have assumed that E [X ] = µ > c/λ it follows that y∗ > 0.
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Example 5.15 (cont.)

In the general case y∗ satisfies:

φ(y∗) =

∫ ∞
y∗

(x − y∗)f (x)dx =
c
λ

We then consider:

E [R(y∗)] =

∫∞
y∗ xf (x)dx − c/λ

F̄ (y∗)

=
1

F̄ (y∗)

[∫ ∞
y∗

(x − y∗)f (x)dx − c
λ

+

∫ ∞
y∗

y∗f (x)dx
]

=
1

F̄ (y∗)

[
φ(y∗)− c

λ
+ y∗F̄ (y∗)

]
= y∗

Thus, the optimal value y∗ is also equal to the optimal expected net return.
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Order statistics

Assume that Y1,Y2, . . . ,Yn are independent and identically distributed with
density f (y).

We then consider the corresponding order statistics obtained from
Y1,Y2, . . . ,Yn by ordering these variables:

Y(1) < Y(2) < · · · < Y(n)

The joint density of the order statistics is given by:

f (y(1), y(2), . . . , y(n)) = n!
n∏

i=1

f (y(i)), y(1) < y(2) < · · · < y(n).

In particular, if Yi ∼ uniform(0, t), i = 1, . . . ,n, then:

f (y(1), y(2), . . . , y(n)) =
n!

tn , 0 < y(1) < y(2) < · · · < y(n) < t .
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Chapter 5.3.4 Conditional Distribution of the Arrival
Times

Theorem (5.2)

We consider a Poisson process {N(t) : t ≥ 0}, and assume that N(t) = n.
Then the arrival times S1 < S2 < · · · < Sn has the following joint density:

f (s1, s2, . . . , sn|N(t) = n) =
n!

tn , 0 < s1 < s2 < · · · < sn < t .

PROOF: We let 0 = s0 < s1 < · · · < sn < t and let h > 0 be a small number.
Then:

P(s1 < S1 ≤ s1 + h, · · · , sn < Sn ≤ sn + h,N(t) = n)

= P(
n⋂

i=1

[si − si−1 < Ti ≤ si − si−1 + h],Tn+1 > (t − sn))
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Conditional Distribution of the Arrival Times (cont.)

P(
n⋂

i=1

[si − si−1 < Ti ≤ si − si−1 + h],Tn+1 > (t − sn))

=
n∏

i=1

[e−λ(si−si−1) − e−λ(si−si−1+h)] · e−λ(t−sn)

=
n∏

i=1

e−λ(si−si−1)[1− e−λh] · e−λ(t−sn)

= e−λt [1− e−λh]n

Hence, it follows that:

P(s1 < S1 ≤ s1 + h, · · · , sn < Sn ≤ sn + h,N(t) = n|N(t) = n)

=
e−λt [1− e−λh]n

e−λt (λt)n/n!
=

n!

tn ·
(

1− e−λh

λ

)n
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Conditional Distribution of the Arrival Times (cont.)

Furthermore:

1
hn P(s1 < S1 ≤ s1 + h, · · · , sn < Sn ≤ sn + h,N(t) = n|N(t) = n)

=
n!

tn ·
(

1− e−λh

λh

)n

By using l’Hôpital’s rule it is easy to show that:

lim
h→0

1− e−λh

λh
= 1

Hence, it follows that:

f (s1, s2, . . . , sn|N(t) = n) =
n!

tn , 0 < s1 < s2 < · · · < sn < t �
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Chapter 5.4 Generalizations of the Poisson Process

Definition

A counting process {N(t) : t ≥ 0} is said to be a non-homogeneous Poisson
process with intensity function λ(t), t ≥ 0, if:

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments.

(iii) P(N(t + h)− N(t) = 1) = λ(t)h + o(h)

(iv) P(N(t + h)− N(t) ≥ 2) = o(h)

We also introduce the mean value function m(t) defined by:

m(t) =

∫ t

0
λ(u)du
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The non-homogeneous Poisson Process (cont.)

Lemma (5.3)

If {N(t), t ≥ 0} is a non-homogeneous Poisson process with intensity function
λ(t), then:

P(N(t) = 0) = e−m(t), t ≥ 0.

PROOF: Let P0(t) = P(N(t) = 0). Then:

P0(t + h) = P(N(t + h) = 0)

= P(N(t) = 0 ∩ N(t + h)− N(t) = 0)

= P(N(t) = 0) · P(N(t + h)− N(t) = 0) by Axiom (ii)

= P0(t)(1− λ(t)h + o(h)) by Axiom (iii) and (iv)
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The non-homogeneous Poisson Process (cont.)

Hence, we get:

P0(t + h)− P0(t) = −λ(t)hP0(t) + o(h)P0(t)

Dividing by h and letting h→ 0 gives that:

P ′0(t) = lim
h→0

P0(t + h)− P0(t)
h

= lim
h→0

[−λ(t)P0(t) +
o(h)P0(t)

h
] = −λ(t)P0(t).

Alternatively, this can be expressed as:

P ′0(t)
P0(t)

= −λ(t)

We then integrate both sides of this equation:∫ t

0

P ′0(s)

P0(s)
ds = −

∫ t

0
λ(s)ds
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The non-homogeneous Poisson Process (cont.)

On the left-hand side we substitute u = P0(s) and du = P ′0(s)ds, and get:∫ P0(t)

P0(0)

du
u

= −
∫ t

0
λ(s)ds

The integration yields that:

log(P0(t))− log(P0(0)) = −
∫ t

0
λ(s)ds

Since P0(0) = P(N(0) = 0) = 1 it follows that:

P0(t) = e−
∫ t

0 λ(s)ds = e−m(t), �
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The non-homogeneous Poisson Process (cont.)

Corollary

If {N(t), t ≥ 0} is a non-homogeneous Poisson process with intensity function
λ(t), and let T1 be the time of the first event. Then we have:

P(T1 > t) = P(N(t) = 0) = e−m(t), t ≥ 0.

Moreover, the density of T1 is given by:

fT1 (t) = λ(t)e−m(t), t ≥ 0.

PROOF: The first part follows immediate from Lemma 5.3, while the second
part follows by differentiation �
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The non-homogeneous Poisson Process (cont.)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process, and s > 0, we
define:

Ns(t) = N(s + t)− N(s).

Lemma (5.4)

If {N(t) : t ≥ 0} is a non-homogeneous Poisson process with intensity
function λ(t), then {Ns(t) : t ≥ 0} is a non-homogeneous Poisson process
with intensity function λs(t) = λ(s + t), t ≥ 0.

PROOF: Similar to the proof of the corresponding result for homogeneous
Poisson processes, i.e., Lemma 5.1. Simply replace λ by λ(t) �

A. B. Huseby (Univ. of Oslo) STK2130 – Week 11 32 / 37



The non-homogeneous Poisson Process (cont.)

The mean value function of {Ns(t) : t ≥ 0} is given by:

ms(t) =

∫ t

0
λs(u)du

=

∫ t

0
λ(s + u)du Subst.: v = s + u, dv = du.

=

∫ s+t

s
λ(v)dv

= m(s + t)−m(s)

Hence, we also have:

ms(t − s) = m(t − s + s)−m(s) = m(t)−m(s).
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The non-homogeneous Poisson Process (cont.)

Theorem

If {N(t), t ≥ 0} is a non-homogeneous Poisson process with intensity function
λ(t), then:

P(N(t) = n) =
(m(t))n

n!
e−m(t), t ≥ 0, n = 0,1,2, . . .

PROOF: Induction with respect to n. By Lemma 5.3 the theorem holds for
n = 0.

We then assume that we have shown that:

P(N(t) = n) =
(m(t))n

n!
e−m(t), t ≥ 0,

and consider the probability P(N(t) = n + 1).
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The non-homogeneous Poisson Process (cont.)

In order to calculate this probability we condition on T1, noting that if s > t ,
then obviously P(N(t) = n + 1|T1 = s) = 0.

P(N(t) = n + 1) =

∫ t

0
P(N(t) = n + 1|T1 = s) fT1 (s)ds

=

∫ t

0
P(N(t) = n + 1|T1 = s)λ(s)e−m(s)ds

=

∫ t

0
P(N(t)− N(s) = n|T1 = s)λ(s)e−m(s)ds

=

∫ t

0
P(N(t)− N(s) = n)λ(s)e−m(s)ds (Indep. incr.)

=

∫ t

0
P(Ns(t − s) = n)λ(s)e−m(s)ds
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The non-homogeneous Poisson Process (cont.)

By Lemma 5.4 and the induction hypothesis it follows that:

P(Ns(t − s) = n) =
(ms(t − s))n

n!
e−ms(t−s)

=
(m(t)−m(s)))n

n!
e−(m(t)−m(s))

By inserting this into the integral we get:

P(N(t) = n + 1) =

∫ t

0
P(Ns(t − s) = n)λ(s)e−m(s)ds

=

∫ t

0

(m(t)−m(s)))n

n!
e−(m(t)−m(s)) λ(s)e−m(s)ds
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The non-homogeneous Poisson Process (cont.)

Simplifying the integrand yields:

P(N(t) = n + 1) =

∫ t

0

(m(t)−m(s)))n

n!
e−(m(t)−m(s)) λ(s)e−m(s)ds

=
e−m(t)

n!

∫ t

0
(m(t)−m(s))nλ(s)ds

We then substitute: u = m(t)−m(s) and du = −λ(s)ds, and get:

P(N(t) = n + 1) =
e−m(t)

n!

∫ m(t)

0
undu

=
(m(t))n+1

(n + 1)!
e−m(t)

which completes the induction proof �
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