STK2130 - Chapter 10.1

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

10.1 Brownian Motion

Consider a symmetric discrete-time random walk process $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{\ldots,-2,-1,0,1,2, \ldots\}$, and transition probabilities:

$$
P_{i, i-1}=P_{i, i+1}=\frac{1}{2}, \quad i \in \mathcal{X} .
$$

10.1 Brownian Motion

Consider a symmetric discrete-time random walk process $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{\ldots,-2,-1,0,1,2, \ldots\}$, and transition probabilities:

$$
P_{i, i-1}=P_{i, i+1}=\frac{1}{2}, \quad i \in \mathcal{X} .
$$

We now generalize this model by considering general timesteps of length Δt, and general steps in states of length Δx, and define:

$$
X(t)=\Delta x\left(X_{1}+X_{2}+\cdots+X_{\lfloor t / \Delta t\rfloor}\right)
$$

where X_{1}, X_{2}, \ldots are independent with $P\left(X_{i}=-1\right)=P\left(X_{i}=+1\right)=\frac{1}{2}$, $i=1,2, \ldots$, and where $\lfloor t / \Delta t\rfloor$ is the number of time steps at time t.

10.1 Brownian Motion

Consider a symmetric discrete-time random walk process $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{\ldots,-2,-1,0,1,2, \ldots\}$, and transition probabilities:

$$
P_{i, i-1}=P_{i, i+1}=\frac{1}{2}, \quad i \in \mathcal{X} .
$$

We now generalize this model by considering general timesteps of length Δt, and general steps in states of length Δx, and define:

$$
X(t)=\Delta x\left(X_{1}+X_{2}+\cdots+X_{\lfloor t / \Delta t\rfloor}\right)
$$

where X_{1}, X_{2}, \ldots are independent with $P\left(X_{i}=-1\right)=P\left(X_{i}=+1\right)=\frac{1}{2}$, $i=1,2, \ldots$, and where $\lfloor t / \Delta t\rfloor$ is the number of time steps at time t.
The state space of this process is:

$$
\mathcal{X}=\{\ldots,-2 \Delta x,-\Delta x, 0, \Delta x, 2 \Delta x, \ldots\}
$$

10.1 Brownian Motion

Consider a symmetric discrete-time random walk process $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{\ldots,-2,-1,0,1,2, \ldots\}$, and transition probabilities:

$$
P_{i, i-1}=P_{i, i+1}=\frac{1}{2}, \quad i \in \mathcal{X} .
$$

We now generalize this model by considering general timesteps of length Δt, and general steps in states of length Δx, and define:

$$
X(t)=\Delta x\left(X_{1}+X_{2}+\cdots+X_{\lfloor t / \Delta t\rfloor}\right)
$$

where X_{1}, X_{2}, \ldots are independent with $P\left(X_{i}=-1\right)=P\left(X_{i}=+1\right)=\frac{1}{2}$, $i=1,2, \ldots$, and where $\lfloor t / \Delta t\rfloor$ is the number of time steps at time t.
The state space of this process is:

$$
\mathcal{X}=\{\ldots,-2 \Delta x,-\Delta x, 0, \Delta x, 2 \Delta x, \ldots\}
$$

Moreover, the process changes states for each $t \in\{\Delta t, 2 \Delta t, 3 \Delta t, \ldots\}$.

10.1 Brownian Motion

Consider a symmetric discrete-time random walk process $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{\ldots,-2,-1,0,1,2, \ldots\}$, and transition probabilities:

$$
P_{i, i-1}=P_{i, i+1}=\frac{1}{2}, \quad i \in \mathcal{X} .
$$

We now generalize this model by considering general timesteps of length Δt, and general steps in states of length Δx, and define:

$$
X(t)=\Delta x\left(X_{1}+X_{2}+\cdots+X_{\lfloor t / \Delta t\rfloor}\right)
$$

where X_{1}, X_{2}, \ldots are independent with $P\left(X_{i}=-1\right)=P\left(X_{i}=+1\right)=\frac{1}{2}$, $i=1,2, \ldots$, and where $\lfloor t / \Delta t\rfloor$ is the number of time steps at time t. The state space of this process is:

$$
\mathcal{X}=\{\ldots,-2 \Delta x,-\Delta x, 0, \Delta x, 2 \Delta x, \ldots\}
$$

Moreover, the process changes states for each $t \in\{\Delta t, 2 \Delta t, 3 \Delta t, \ldots\}$.
NOTE: If we let $\Delta t=\Delta x=1$, the process $\{X(t): t \geq 0\}$ is essentially a symmetric random walk.

10.1 Brownian Motion (cont.)

Since $E\left[X_{i}\right]=0$ and $\operatorname{Var}\left[X_{i}\right]=E\left[X_{i}^{2}\right]=1$, and

$$
X(t)=\Delta x\left(X_{1}+X_{2}+\cdots+X_{\lfloor t / \Delta t\rfloor}\right)
$$

it follows that:

$$
\begin{aligned}
E[X(t)] & =\Delta x\lfloor t / \Delta t\rfloor E\left[X_{i}\right]=0 \\
\operatorname{Var}[X(t)] & =(\Delta x)^{2}\lfloor t / \Delta t\rfloor \operatorname{Var}\left[X_{i}\right]=(\Delta x)^{2}\lfloor t / \Delta t\rfloor
\end{aligned}
$$

We now let $\Delta x=\sigma \sqrt{\Delta t}$, and consider the limit when Δt goes to zero:

$$
\begin{aligned}
& \lim _{\Delta t \rightarrow 0} E[X(t)]=0 \\
& \lim _{\Delta t \rightarrow 0} \operatorname{Var}[X(t)]=\lim _{\Delta t \rightarrow 0} \sigma^{2} \Delta t[t / \Delta t\rfloor=\sigma^{2} t
\end{aligned}
$$

10.1 Brownian Motion (cont.)

Definition (Brownian motion)
A Brownian motion is a stochastic process $\{X(t): t \geq 0\}$ where:
(i) $X(0)=0$
(ii) $\{X(t): t \geq 0\}$ has stationary and independent increments
(iii) $X(t) \sim N\left(0, \sigma^{2} t\right), \quad t>0$

If $\sigma=1,\{X(t): t \geq 0\}$ is called a standard Brownian motion.

NOTE: If $\{Y(t): t \geq 0\}$ is a Brownian motion, where $Y(t) \sim N\left(0, \sigma^{2} t\right)$, then $\{X(t): t \geq 0\}$, where $X(t)=Y(t) / \sigma$, for all $t \geq 0$ is a standard Brownian motion.

10.1 Brownian Motion (cont.)

NOTE: If $\{X(t): t \geq 0\}$ is a standard Brownian motion, it follows that:

$$
X(t+h)-X(t) \sim N(0, h)
$$

As $h \rightarrow 0, \operatorname{Var}[X(t+h)-X(t)] \rightarrow 0$.
From this it can be shown that $X(t)$ is continuous with probability 1.

10.1 Brownian Motion (cont.)

NOTE: If $\{X(t): t \geq 0\}$ is a standard Brownian motion, it follows that:

$$
X(t+h)-X(t) \sim N(0, h)
$$

As $h \rightarrow 0, \operatorname{Var}[X(t+h)-X(t)] \rightarrow 0$.
From this it can be shown that $X(t)$ is continuous with probability 1 .
On the other hand we have that:

$$
\frac{X(t+h)-X(t)}{h} \sim N\left(0, h^{-1}\right)
$$

As $h \rightarrow 0, \operatorname{Var}[(X(t+h)-X(t)) / h] \rightarrow \infty$.
From this it can be shown that $X(t)$ is nowhere differentiable with probability 1.

10.1 Brownian Motion (cont.)

We now assume that $\{X(t): t \geq 0\}$ is a standard Brownian motion. Let $0<t_{1}<t_{2}<\cdots<t_{n}$, let $X_{i}=X\left(t_{i}\right), i=1,2, \ldots, n$, and let:

$$
Y_{1}=X_{1}, \quad Y_{2}=X_{2}-X_{1}, \quad Y_{3}=X_{3}-X_{2}, \quad \ldots \quad Y_{n}=X_{n}-X_{n-1}
$$

Finally, we introduce the density of a normal distribution with mean 0 and variance v, denoted by f_{v} :

$$
f_{v}(x)=\frac{1}{\sqrt{2 \pi v}} e^{-x^{2} / 2 v}
$$

We want to determine the joint density of X_{1}, \ldots, X_{n}, which denote by $f_{\boldsymbol{t}}\left(x_{1}, \ldots, x_{n}\right)$, where $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)$.

10.1 Brownian Motion (cont.)

Since $\{X(t): t \geq 0\}$ has stationary and independent increments, it follows that Y_{1}, \ldots, Y_{n} are independent and that:

$$
Y_{1} \sim N\left(0, t_{1}\right), \quad Y_{2} \sim N\left(0, t_{2}-t_{1}\right), \quad \ldots \quad Y_{n} \sim N\left(0, t_{n}-t_{n-1}\right)
$$

Hence, the joint density of Y_{1}, \ldots, Y_{n} is given by:

$$
f_{t_{1}}\left(y_{1}\right) \cdot f_{t_{2}-t_{1}}\left(y_{2}\right) \cdots f_{t_{n}-t_{n-1}}\left(y_{n}\right)
$$

The joint density of X_{1}, \ldots, X_{n} is then obtained by transforming the $Y_{i} \mathrm{~s}$ to the X_{i} s.

This is a simple linear transformation, and it is easy to verify that the Jacobian determinant of this transformation is 1 . Thus, by the change of variable formula we get that:

$$
f_{\boldsymbol{t}}\left(x_{1}, \ldots, x_{n}\right)=f_{t_{1}}\left(x_{1}\right) \cdot f_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right) \cdots f_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right)
$$

10.1 Brownian Motion (cont.)

More specifically, the joint density has the form:

$$
f_{\boldsymbol{t}}\left(x_{1}, \ldots, x_{n}\right)=C(\boldsymbol{t}) e^{-(1 / 2) Q\left(x_{1}, \ldots, x_{n}\right)}
$$

where $C(\boldsymbol{t})$ is a suitable normalizing constant, and where:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}+\cdots+\frac{\left(x_{n}-x_{n-1}\right)^{2}}{t_{n}-t_{n-1}}
$$

NOTE: This formula is valid for any $n \geq 1$ and for any $0<t_{1}<\cdots<t_{n}$. Moreover, from this formula we can derive all possible conditional densities as well.

10.1 Brownian Motion (cont.)

EXAMPLE: Let $0<t_{1}<t_{2}$, and let $X_{1}=X\left(t_{1}\right)$ and $X_{2}=X\left(t_{2}\right)$. Then the joint density of X_{1} and X_{2} is:

$$
f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)=C(\boldsymbol{t}) e^{-(1 / 2) Q\left(x_{1}, x_{2}\right)}
$$

where:

$$
Q\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}
$$

The marginal densities of X_{1} and X_{2} are respectively:

$$
\begin{aligned}
& f_{t_{1}}\left(x_{1}\right)=C\left(t_{1}\right) e^{-(1 / 2)\left(x_{1}^{2} / t_{1}\right)} \\
& f_{t_{2}}\left(x_{2}\right)=C\left(t_{2}\right) e^{-(1 / 2)\left(x_{2}^{2} / t_{2}\right)}
\end{aligned}
$$

10.1 Brownian Motion (cont.)

The conditional density of X_{2} given $X_{1}=x_{1}$ then becomes:

$$
\begin{aligned}
f_{X_{2} \mid x_{1}=x_{1}} & =\frac{f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)}{f_{t_{1}}\left(x_{1}\right)}=\frac{C(\boldsymbol{t}) e^{-(1 / 2)\left[\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}\right]}}{C\left(t_{1}\right) e^{-(1 / 2)\left[\frac{x_{1}^{2}}{t_{1}}\right]}} \\
& =C\left(t_{2} \mid t_{1}\right) e^{-(1 / 2)\left[\frac{\left(x_{2}-x_{1}\right)^{2}}{L_{2}-t_{1}}\right]}
\end{aligned}
$$

where the normalizing constant $C\left(t_{2} \mid t_{1}\right)=C(\boldsymbol{t}) / C\left(t_{1}\right)$.
From this it follows that $\left(X_{2} \mid X_{1}=x_{1}\right) \sim N\left(x_{1}, t_{2}-t_{1}\right)$.

10.1 Brownian Motion (cont.)

In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
Q\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}
$$

10.1 Brownian Motion (cont.)

In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
Q\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}=\frac{x_{1}^{2}}{t_{1}}+\frac{x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}}{t_{2}-t_{1}}
$$

10.1 Brownian Motion (cont.)

In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}=\frac{x_{1}^{2}}{t_{1}}+\frac{x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}}{t_{2}-t_{1}} \\
& =\left[\frac{1}{t_{1}}+\frac{1}{t_{2}-t_{1}}\right] x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2}
\end{aligned}
$$

10.1 Brownian Motion (cont.)

In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}=\frac{x_{1}^{2}}{t_{1}}+\frac{x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}}{t_{2}-t_{1}} \\
& =\left[\frac{1}{t_{1}}+\frac{1}{t_{2}-t_{1}}\right] x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2}
\end{aligned}
$$

10.1 Brownian Motion (cont.)

In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}=\frac{x_{1}^{2}}{t_{1}}+\frac{x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}}{t_{2}-t_{1}} \\
& =\left[\frac{1}{t_{1}}+\frac{1}{t_{2}-t_{1}}\right] x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}}{t_{2}} x_{2}^{2}\right]
\end{aligned}
$$

10.1 Brownian Motion (cont.)

In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}=\frac{x_{1}^{2}}{t_{1}}+\frac{x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}}{t_{2}-t_{1}} \\
& =\left[\frac{1}{t_{1}}+\frac{1}{t_{2}-t_{1}}\right] x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}}{t_{2}} x_{2}^{2}\right] \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}^{2}}{t_{2}^{2}} x_{2}^{2}+\left(\frac{t_{1}}{t_{2}}-\frac{t_{1}^{2}}{t_{2}^{2}}\right) x_{2}^{2}\right]
\end{aligned}
$$

10.1 Brownian Motion (cont.)

$$
Q\left(x_{1}, x_{2}\right)=\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}^{2}}{t_{2}^{2}} x_{2}^{2}+\left(\frac{t_{1}}{t_{2}}-\frac{t_{1}^{2}}{t_{2}^{2}}\right) x_{2}^{2}\right]
$$

10.1 Brownian Motion (cont.)

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}^{2}}{t_{2}^{2}} x_{2}^{2}+\left(\frac{t_{1}}{t_{2}}-\frac{t_{1}^{2}}{t_{2}^{2}}\right) x_{2}^{2}\right] \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left(x_{1}-\frac{t_{1}}{t_{2}} x_{2}\right)^{2}+\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} \frac{t_{1}}{t_{2}}\left(1-\frac{t_{1}}{t_{2}}\right) x_{2}^{2}
\end{aligned}
$$

10.1 Brownian Motion (cont.)

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}^{2}}{t_{2}^{2}} x_{2}^{2}+\left(\frac{t_{1}}{t_{2}}-\frac{t_{1}^{2}}{t_{2}^{2}}\right) x_{2}^{2}\right] \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left(x_{1}-\frac{t_{1}}{t_{2}} x_{2}\right)^{2}+\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} \frac{t_{1}}{t_{2}}\left(1-\frac{t_{1}}{t_{2}}\right) x_{2}^{2} \\
& =\frac{\left(x_{1}-t_{1} x_{2} / t_{2}\right)^{2}}{t_{1}\left(t_{2}-t_{1}\right) / t_{2}}+\frac{x_{2}^{2}}{t_{2}}
\end{aligned}
$$

10.1 Brownian Motion (cont.)

The conditional density of X_{1} given $X_{2}=x_{2}$ then becomes:

$$
\begin{aligned}
f_{X_{1} \mid x_{2}=x_{2}} & =\frac{f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)}{f_{t_{2}}\left(x_{2}\right)}=\frac{C(\boldsymbol{t}) e^{-(1 / 2)\left[\frac{\left(x_{1}-t_{1} x_{2} / t_{2}\right)^{2}}{t_{1}\left(t_{2}-t_{1}\right) t_{2}}+\frac{x_{2}^{2}}{t_{2}}\right]}}{C\left(t_{2}\right) e^{-(1 / 2)\left[\frac{x_{2}^{2}}{t_{2}}\right]}} \\
& =C\left(t_{1} \mid t_{2}\right) e^{-(1 / 2)\left[\frac{\left(x_{1}-t_{1} x_{2} / t_{2}\right)^{2}}{t_{1}\left(t_{2}-t_{1}\right) / t_{2}}\right]}
\end{aligned}
$$

where the normalizing constant $C\left(t_{1} \mid t_{2}\right)=C(\boldsymbol{t}) / C\left(t_{2}\right)$.
From this it follows that $\left(X_{1} \mid X_{2}=x_{2}\right) \sim N\left(\frac{t_{1}}{t_{2}} x_{2}, \frac{t_{1}}{t_{2}}\left(t_{2}-t_{1}\right)\right)$.

Example 10.1

Bicycle race with two competitors, A and B .
$Y(t)=$ A's lead in seconds after $100 t$ percent of the race is finished
We model $\{Y(t): 0 \leq t \leq 1\}$ as a Brownian motion process with variance parameter σ^{2}.

We let $t_{1}=\frac{1}{2}$ and $t_{2}=1$. Moreover, we let $X_{i}=\frac{Y\left(t_{i}\right)}{\sigma}, i=1,2$.
We have shown that:

$$
\begin{aligned}
& \left(X_{2} \mid X_{1}=x_{1}\right) \sim N\left(x_{1}, t_{2}-t_{1}\right)=N\left(x_{1}, \frac{1}{2}\right) \\
& \left(X_{1} \mid X_{2}=x_{2}\right) \sim N\left(\frac{t_{1}}{t_{2}} x_{2}, \frac{t_{1}}{t_{2}}\left(t_{2}-t_{1}\right)\right)=N\left(\frac{x_{2}}{2}, \frac{1}{4}\right)
\end{aligned}
$$

Example 10.1 (cont.)

(a) Find the probability that A wins given that A leads by σ seconds when $t=\frac{1}{2}$.

SOLUTION:

$$
\begin{aligned}
P\left(Y\left(t_{2}\right)>0 \mid Y\left(t_{1}\right)=\sigma\right) & =P\left(\left.\frac{Y\left(t_{2}\right)}{\sigma}>0 \right\rvert\, \frac{Y\left(t_{1}\right)}{\sigma}=1\right) \\
& =P\left(X_{2}>0 \mid X_{1}=1\right) \\
& =P\left(\left.\frac{X_{2}-1}{\sqrt{1 / 2}}>\frac{0-1}{\sqrt{1 / 2}} \right\rvert\, X_{1}=1\right) \\
& =1-\Phi\left(\frac{-1}{\sqrt{1 / 2}}\right)=\Phi(\sqrt{2}) \approx 0.9213
\end{aligned}
$$

Example 10.1 (cont.)

(b) Find the probability that A leads when $t=\frac{1}{2}$ given that A leads by σ seconds when $t=1$.

SOLUTION:

$$
\begin{aligned}
P\left(Y\left(t_{1}\right)>0 \mid Y\left(t_{2}\right)=\sigma\right) & =P\left(\left.\frac{Y\left(t_{1}\right)}{\sigma}>0 \right\rvert\, \frac{Y\left(t_{2}\right)}{\sigma}=1\right) \\
& =P\left(X_{1}>0 \mid X_{2}=1\right) \\
& =P\left(\left.\frac{X_{1}-\frac{1}{2}}{\sqrt{1 / 4}}>\frac{0-\frac{1}{2}}{\sqrt{1 / 4}} \right\rvert\, X_{2}=1\right) \\
& =1-\Phi\left(\frac{-\frac{1}{2}}{\sqrt{1 / 4}}\right)=\Phi(1) \approx 0.8413
\end{aligned}
$$

