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10.1 Brownian Motion

Consider a symmetric discrete-time random walk process {X, : n > 0} with
state space X ={...,—-2,—1,0,1,2,...}, and transition probabilities:

1 .
Pii1=Piip1=5, €k.
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10.1 Brownian Motion

We now generalize this model by considering general timesteps of length At,
and general steps in states of length Ax, and define:

X(t) = AX(X1 + X2 —+ -+ Xl_t/AtJ)

where Xi, Xz, ... are independent with P(X; = —1) = P(X; = +1)

-1
=1,
i=1,2,...,and where |t/At] is the number of time steps at time ¢.
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10.1 Brownian Motion

We now generalize this model by considering general timesteps of length At,
and general steps in states of length Ax, and define:

X(t) = AX(X1 + X2 —+ -+ Xl_t/AtJ)

where Xi, X, ... are independent with P(X; = —1) = P(X; = +1) = ],
i=1,2,...,and where |t/At] is the number of time steps at time ¢.

The state space of this process is:
X ={..,-2Ax,-Ax,0,Ax,2Ax, ...}
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10.1 Brownian Motion

We now generalize this model by considering general timesteps of length At,
and general steps in states of length Ax, and define:

X(t) = AX(X1 + X2 —+ -+ XLI/AtJ)

where Xi, X, ... are independent with P(X; = —1) = P(Xi = +1) = 3,

i=1,2,...,and where |t/At] is the number of time steps at time ¢.
The state space of this process is:

X ={..,-2Ax,-Ax,0,Ax,2Ax, ...}

Moreover, the process changes states for each f € {At,2A¢t, 3AtL,. . .}.
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10.1 Brownian Motion

Consider a symmetric discrete-time random walk process { X, : n > 0} with
state space X ={...,—-2,—1,0,1,2,...}, and transition probabilities:

1 .
Pii1=Piip1=5, €k.

We now generalize this model by considering general timesteps of length At,
and general steps in states of length Ax, and define:

X(t) = AX(X1 + X2 =+ 4 X“/A”)

where Xi, X, ... are independent with P(X; = —1) = P(X; = +1) = {,
i=1,2,...,and where |t/At] is the number of time steps at time t. The state
space of this process is:

X ={...,-2Ax,—-Ax,0,Ax,2Ax, ...}
Moreover, the process changes states for each t € {At,2At,3At,...}.

NOTE: If we let At = Ax = 1, the process {X(t) : t > 0} is essentially a
symmetric random walk.
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10.1 Brownian Motion (cont.)
Since E[X] = 0 and Var[X]] = E[X?] = 1, and
X(t) = Ax(Xs + Xo + -+ X\t/a1))
it follows that:
E[X(1)] = Ax[t/At]E[X] =0

Var[X(1)] = (Ax)?[t/At] Var[X]] = (Ax)?[t/At]

We now let Ax = o/ At, and consider the limit when At goes to zero:

m, EVX(0] =0

. I 2 _ 2
Jim Var{X(0)] = lim o®At|t/At] = ot
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10.1 Brownian Motion (cont.)

Definition (Brownian motion)
A Brownian motion is a stochastic process {X(t) : t > 0} where:

(i) X(0)=0
(i) {X(t):t> 0} has stationary and independent increments

(i) X(t) ~ N(0,02t), t>0

Ifo =1, {X(t) : t > 0} is called a standard Brownian motion.

NOTE: If {Y(t) : t > 0} is a Brownian motion, where Y(t) ~ N(0, s?t), then
{X(t): t >0}, where X(t) = Y(t)/o, for all t > 0 is a standard Brownian
motion.
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10.1 Brownian Motion (cont.)

NOTE: If {X(t) : t > 0} is a standard Brownian motion, it follows that:
X(t+ h) — X(t) ~ N(0, h)
As h — 0, Var[X(t + h) — X(t)] — 0.

From this it can be shown that X(t) is continuous with probability 1.
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——
10.1 Brownian Motion (cont.)

NOTE: If {X(t) : t > 0} is a standard Brownian motion, it follows that:
X(t+ h) — X(t) ~ N(0, h)

As h — 0, Var[X(t + h) — X(t)] — 0.

From this it can be shown that X(t) is continuous with probability 1.

On the other hand we have that:

X(t + h) — X(1)
h

As h— 0, Var[(X(t+ h) — X(t))/h] — .

From this it can be shown that X(t) is nowhere differentiable with probability
1.

~ N(,h™ )
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——
10.1 Brownian Motion (cont.)

We now assume that {X(t) : t > 0} is a standard Brownian motion. Let
O<th<b<---<tyletX;=X(t),i=1,2,...,n,and let:

Yi=Xi, Yo=Xo—-Xi, Ya=Xs-Xa, ... Yp=Xp— Xo_1

Finally, we introduce the density of a normal distribution with mean 0 and
variance v, denoted by f,:

f(X) = ———e X /2
v(x) vanv
We want to determine the joint density of Xi, ..., X,, which denote by

fe(x1,...,Xn), Where t = (t;,...,1y).
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10.1 Brownian Motion (cont.)

Since {X(t) : t > 0} has stationary and independent increments, it follows
that Yi,..., Y, are independent and that:

Yi ~N@O,t;), Yo~ NO,tx—t), ... Ynr N(O,t,—tr1)

Hence, the joint density of Yi, ..., Y, is given by:

fo(y1) - Tty (Y2) - - fro—t,_, (Vn)

The joint density of Xi, ..., X, is then obtained by transforming the Y;s to the
Xis.

This is a simple linear transformation, and it is easy to verify that the Jacobian
determinant of this transformation is 1. Thus, by the change of variable
formula we get that:

fe(X1,..., Xn) = o (X1) - Fy—ty (X2 — X1) -+ - ooty (Xn — Xn—1)
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10.1 Brownian Motion (cont.)

More specifically, the joint density has the form:
fe(x1,...,Xn) = C(t)e~(1/2Qx..x0)

where C(t) is a suitable normalizing constant, and where:

X2 (X0 — Xxq)? Xn — Xp—1)2
Qxr,. ) = 5 %Jr.@r%
1 2 — 1 n — tn—1

NOTE: This formula is valid forany n > 1 andforany 0 < 4 < --- < tp.
Moreover, from this formula we can derive all possible conditional densities
as well.
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——
10.1 Brownian Motion (cont.)

EXAMPLE: Let 0 < t < b, and let X; = X(t1) and X2 = X(%). Then the joint
density of X7 and X is:

fp(x1,x2) = C(t)e—(1/2)O(X1,Xz)
where:

(2 —x)?

2
Q. xe) = t_1+ b h

The marginal densities of X; and X, are respectively:

fi(x1) = C(ty)e~ (/200

f,(x2) = C(ty)e~(1/D0E/k)
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10.1 Brownian Motion (cont.)

The conditional density of X, given X; = x; then becomes:

_ g e=x)?
ft(X1,X2) . C(t) (1/2)[ M ]

faiX=x, =
1 fi,(x1) —(1/2)| &
1 Clt)e a2 #]
—(1/2 (XZ_X1)2
_ Clalte (/2| =2

where the normalizing constant C(k|t;) = C(t)/C(t).

From this it follows that (Xz| X7 = x1) ~ N(x1, & — t).
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X; given X> = x2, we rewrite
Q(x1, X2) as follows:

(2 —x)?

2
Q(X1,X2):t—1+ b1
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X; given X> = x2, we rewrite
Q(x1, X2) as follows:

(X — x1)? xf X2 — 2XoX1 + X2
b—H t tb — b

2
Q(X1,X2) = t_1 +
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X; given X> = x2, we rewrite
Q(x1, X2) as follows:

(X — x1)? xf X2 — 2XoX1 + X2
b—H t tb — b

2
Q(X1,X2) = t_1 +

X X,
b — 1t 1—1—1‘2—1‘1 2

_l’_
1 b—t
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X; given X> = x2, we rewrite
Q(x1, X2) as follows:

2 2 2 2 2
X (xz—x1)_x_1 X5 — 2XoX1 + X;

Q(thz):F L—ti ot b—t
= | — Xy — X- X
[t1+t2—t1] T T o8

= — X — Xy + X.

hb—t) " -t -t 2
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X; given X> = x2, we rewrite
Q(x1, X2) as follows:

2 2 2 2 2
X (xz—x1)_x_1 X5 — 2XoX1 + X;

W= e w Tu ' e
- [:_1+ t21f1] X - f221(21‘1x1 * f21t1X22
N ﬁxz - 1221(21‘1 o t 1 t x
= ﬁ [xf — Z%M + ;—;xg
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X; given X> = x2, we rewrite
Q(x1, X2) as follows:

X_12 (% —x1)2 x_12 X2 — 2XpX1 + X2
t S bh— b

1 1
= | — Xy — X- X
[a+&—a}1 bt T h_f

= Xy —
btk —t)

Q(x1,X2) =

L ki x; L
= —2 |:X12—2£X1 +—1X§:|

t(t—t)
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IS
10.1 Brownian Motion (cont.)
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IS
10.1 Brownian Motion (cont.)

ty 5 hxo 2, [t B\ ,
X1, X)) = —————— |Xf —2—= L x; — — 4 x
b 4 2 b t t
t1(t2—t1)< T 2) t1(t2—t1)t2< L)
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10.1 Brownian Motion (cont.)

ty 5 hxo t2 2. (b 2\ ,
Xy, X0) = ———— |Xf —2—=X —— = | x
Q( 15 2) t1(t2—t1)|:1 1+t2 Xo + A 2

2
t ( t ) b t1< t1> )
=— (X —-——X| +— 1—— | x
h—t) ' &7 hb—t) L L)

_ (X1 - l'1X2/t2)2 X_22
bk —t)/t b
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10.1 Brownian Motion (cont.)

The conditional density of Xy given X = x» then becomes:

2
tiXo/1n)2 | X
-/ S 2

o, 0000 Clt)e

Xi| Xo=x2 — -

1| Xo=X2 fz(XZ) ~ Z
t Cl)e (/22

(X —tixp/1p)?
= C(t |t2)ei(1/2)[ﬁ}

where the normalizing constant C(t|t) = C(t)/C(t).

From this it follows that (X;| Xz = x2) ~ N(% X, ¢ Lk, —t)).
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I
Example 10.1

Bicycle race with two competitors, A and B.
Y(t) = A’s lead in seconds after 100t percent of the race is finished

We model {Y(t): 0 <t <1} as a Brownian motion process with variance
parameter o2.

We let t; = } and t; = 1. Moreover, we let X; = X&) j =1 2.

We have shown that:
(X2|X1 = X1) ~ N(X17 b — f1) = N(X1,%)

t t
(Xi|Xe = xo) ~ N(éxZ, é(fz —#))=N(%,1)
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——
Example 10.1 (cont.)

(a) Find the probability that A wins given that A leads by o seconds when
t pr—

l\)l—‘

SOLUTION:

P(Y () > 0|Y(t) = o) = p(@ - m@

ZP(X2>O|X1 =1)
X —1 0—1X1

~ae e Y
—1
:1_¢(\/1—7)—¢(\/§)~09213
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——
Example 10.1 (cont.)

(b) Find the probability that A leads when t = % given that A leads by ¢
seconds when t = 1.

SOLUTION:

P(Y(t) > 0|Y(k) = 0) = p(@ S oY) _ g

g

= P(X1 > 0|X2 = 1)

Y ald B JIRR

BNy IRV Y7 R
—1

=1-d(—==2=) = d(1) ~ 0.8413
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