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10.1 Brownian Motion
Consider a symmetric discrete-time random walk process {Xn : n ≥ 0} with
state space X = {. . . ,−2,−1,0,1,2, . . .}, and transition probabilities:

Pi,i−1 = Pi,i+1 = 1
2 , i ∈ X .

We now generalize this model by considering general timesteps of length ∆t ,
and general steps in states of length ∆x , and define:

X (t) = ∆x(X1 + X2 + · · ·+ Xbt/∆tc)

where X1,X2, . . . are independent with P(Xi = −1) = P(Xi = +1) = 1
2 ,

i = 1,2, . . ., and where bt/∆tc is the number of time steps at time t .

The state space of this process is:

X = {. . . ,−2∆x ,−∆x ,0,∆x ,2∆x , . . .}

Moreover, the process changes states for each t ∈ {∆t ,2∆t ,3∆t , . . .}.

NOTE: If we let ∆t = ∆x = 1, the process {X (t) : t ≥ 0} is essentially a
symmetric random walk.
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10.1 Brownian Motion (cont.)

Since E [Xi ] = 0 and Var[Xi ] = E [X 2
i ] = 1, and

X (t) = ∆x(X1 + X2 + · · ·+ Xbt/∆tc)

it follows that:

E [X (t)] = ∆xbt/∆tcE [Xi ] = 0

Var[X (t)] = (∆x)2bt/∆tcVar[Xi ] = (∆x)2bt/∆tc

We now let ∆x = σ
√

∆t , and consider the limit when ∆t goes to zero:

lim
∆t→0

E [X (t)] = 0

lim
∆t→0

Var[X (t)] = lim
∆t→0

σ2∆tbt/∆tc = σ2t
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10.1 Brownian Motion (cont.)

Definition (Brownian motion)

A Brownian motion is a stochastic process {X (t) : t ≥ 0} where:

(i) X (0) = 0

(ii) {X (t) : t ≥ 0} has stationary and independent increments

(iii) X (t) ∼ N(0, σ2t), t > 0

If σ = 1, {X (t) : t ≥ 0} is called a standard Brownian motion.

NOTE: If {Y (t) : t ≥ 0} is a Brownian motion, where Y (t) ∼ N(0, σ2t), then
{X (t) : t ≥ 0}, where X (t) = Y (t)/σ, for all t ≥ 0 is a standard Brownian
motion.
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10.1 Brownian Motion (cont.)

NOTE: If {X (t) : t ≥ 0} is a standard Brownian motion, it follows that:

X (t + h)− X (t) ∼ N(0,h)

As h→ 0, Var[X (t + h)− X (t)]→ 0.

From this it can be shown that X (t) is continuous with probability 1.

On the other hand we have that:

X (t + h)− X (t)
h

∼ N(0,h−1)

As h→ 0, Var[(X (t + h)− X (t))/h]→∞.

From this it can be shown that X (t) is nowhere differentiable with probability
1.
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10.1 Brownian Motion (cont.)

We now assume that {X (t) : t ≥ 0} is a standard Brownian motion. Let
0 < t1 < t2 < · · · < tn, let Xi = X (ti ), i = 1,2, . . . ,n, and let:

Y1 = X1, Y2 = X2 − X1, Y3 = X3 − X2, . . . Yn = Xn − Xn−1

Finally, we introduce the density of a normal distribution with mean 0 and
variance v , denoted by fv :

fv (x) =
1√
2πv

e−x2/2v

We want to determine the joint density of X1, . . . ,Xn, which denote by
ft (x1, . . . , xn), where t = (t1, . . . , tn).
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10.1 Brownian Motion (cont.)

Since {X (t) : t ≥ 0} has stationary and independent increments, it follows
that Y1, . . . ,Yn are independent and that:

Y1 ∼ N(0, t1), Y2 ∼ N(0, t2 − t1), . . . Yn ∼ N(0, tn − tn−1)

Hence, the joint density of Y1, . . . ,Yn is given by:

ft1 (y1) · ft2−t1 (y2) · · · ftn−tn−1 (yn)

The joint density of X1, . . . ,Xn is then obtained by transforming the Yis to the
Xis.

This is a simple linear transformation, and it is easy to verify that the Jacobian
determinant of this transformation is 1. Thus, by the change of variable
formula we get that:

ft (x1, . . . , xn) = ft1 (x1) · ft2−t1 (x2 − x1) · · · ftn−tn−1 (xn − xn−1)
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10.1 Brownian Motion (cont.)

More specifically, the joint density has the form:

ft (x1, . . . , xn) = C(t)e−(1/2)Q(x1,...,xn)

where C(t) is a suitable normalizing constant, and where:

Q(x1, . . . , xn) =
x2

1
t1

+
(x2 − x1)2

t2 − t1
+ · · ·+ (xn − xn−1)2

tn − tn−1

NOTE: This formula is valid for any n ≥ 1 and for any 0 < t1 < · · · < tn.
Moreover, from this formula we can derive all possible conditional densities
as well.
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10.1 Brownian Motion (cont.)

EXAMPLE: Let 0 < t1 < t2, and let X1 = X (t1) and X2 = X (t2). Then the joint
density of X1 and X2 is:

ft (x1, x2) = C(t)e−(1/2)Q(x1,x2)

where:

Q(x1, x2) =
x2

1
t1

+
(x2 − x1)2

t2 − t1

The marginal densities of X1 and X2 are respectively:

ft1 (x1) = C(t1)e−(1/2)(x2
1/t1)

ft2 (x2) = C(t2)e−(1/2)(x2
2/t2)
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10.1 Brownian Motion (cont.)

The conditional density of X2 given X1 = x1 then becomes:

fX2|X1=x1 =
ft (x1, x2)

ft1 (x1)
=

C(t)e
−(1/2)

[
x2
1

t1
+

(x2−x1)2

t2−t1

]

C(t1)e
−(1/2)

[
x2
1

t1

]

= C(t2|t1)e
−(1/2)

[
(x2−x1)2

t2−t1

]

where the normalizing constant C(t2|t1) = C(t)/C(t1).

From this it follows that (X2|X1 = x1) ∼ N(x1, t2 − t1).
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10.1 Brownian Motion (cont.)

In order to find the conditional density of X1 given X2 = x2, we rewrite
Q(x1, x2) as follows:

Q(x1, x2) =
x2

1
t1

+
(x2 − x1)2

t2 − t1
=

x2
1

t1
+

x2
2 − 2x2x1 + x2

1
t2 − t1

=

[
1
t1

+
1

t2 − t1

]
x2

1 −
2x2

t2 − t1
x1 +

1
t2 − t1

x2
2

=
t2

t1(t2 − t1)
x2

1 −
2x2

t2 − t1
x1 +

1
t2 − t1

x2
2

=
t2

t1(t2 − t1)

[
x2

1 − 2
t1x2

t2
x1 +

t1
t2

x2
2

]

=
t2

t1(t2 − t1)

[
x2

1 − 2
t1x2

t2
x1 +

t2
1

t2
2

x2
2 +

(
t1
t2
−

t2
1

t2
2

)
x2

2

]
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)

Q(x1, x2) =
t2

t1(t2 − t1)

[
x2

1 − 2
t1x2

t2
x1 +

t2
1

t2
2

x2
2 +

(
t1
t2
−

t2
1

t2
2

)
x2

2

]

=
t2

t1(t2 − t1)

(
x1 −

t1
t2

x2

)2

+
t2

t1(t2 − t1)

t1
t2

(
1− t1

t2

)
x2

2

=
(x1 − t1x2/t2)2

t1(t2 − t1)/t2
+

x2
2

t2
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)
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10.1 Brownian Motion (cont.)

The conditional density of X1 given X2 = x2 then becomes:

fX1|X2=x2 =
ft (x1, x2)

ft2 (x2)
=

C(t)e
−(1/2)

[
(x1−t1x2/t2)2

t1(t2−t1)/t2
+

x2
2

t2

]

C(t2)e
−(1/2)

[
x2
2

t2

]

= C(t1|t2)e
−(1/2)

[
(x1−t1x2/t2)2

t1(t2−t1)/t2

]

where the normalizing constant C(t1|t2) = C(t)/C(t2).

From this it follows that (X1|X2 = x2) ∼ N( t1
t2

x2,
t1
t2

(t2 − t1)).
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Example 10.1

Bicycle race with two competitors, A and B.

Y (t) = A’s lead in seconds after 100t percent of the race is finished

We model {Y (t) : 0 ≤ t ≤ 1} as a Brownian motion process with variance
parameter σ2.

We let t1 = 1
2 and t2 = 1. Moreover, we let Xi = Y (ti )

σ , i = 1,2.

We have shown that:

(X2|X1 = x1) ∼ N(x1, t2 − t1) = N(x1,
1
2 )

(X1|X2 = x2) ∼ N(
t1
t2

x2,
t1
t2

(t2 − t1)) = N( x2
2 ,

1
4 )
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Example 10.1 (cont.)

(a) Find the probability that A wins given that A leads by σ seconds when
t = 1

2 .

SOLUTION:

P(Y (t2) > 0|Y (t1) = σ) = P(
Y (t2)

σ
> 0|Y (t1)

σ
= 1)

= P(X2 > 0|X1 = 1)

= P(
X2 − 1√

1/2
>

0− 1√
1/2
|X1 = 1)

= 1− Φ(
−1√
1/2

) = Φ(
√

2) ≈ 0.9213
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Example 10.1 (cont.)

(b) Find the probability that A leads when t = 1
2 given that A leads by σ

seconds when t = 1.

SOLUTION:

P(Y (t1) > 0|Y (t2) = σ) = P(
Y (t1)

σ
> 0|Y (t2)

σ
= 1)

= P(X1 > 0|X2 = 1)

= P(
X1 − 1

2√
1/4

>
0− 1

2√
1/4
|X2 = 1)

= 1− Φ(
− 1

2√
1/4

) = Φ(1) ≈ 0.8413
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