STK2130 - Chapter 10.2

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

10.2 Hitting Times, Max Variable and Ruin

Let $\{X(t): t \geq 0\}$ be a Brownian motion process with variance parameter σ^{2}, and let:

$$
T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a .
$$

We want to compute $P\left(T_{a} \leq t\right)$, where $a>0$.

10.2 Hitting Times, Max Variable and Ruin

Let $\{X(t): t \geq 0\}$ be a Brownian motion process with variance parameter σ^{2}, and let:

$$
T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a .
$$

We want to compute $P\left(T_{a} \leq t\right)$, where $a>0$. In order to so, we instead consider $P(X(t) \geq a)$, and condition on the event $\left\{T_{a} \leq t\right\}$:

$$
\begin{aligned}
P(X(t) \geq a) & =P\left(X(t) \geq a \mid T_{a} \leq t\right) P\left(T_{a} \leq t\right) \\
& +P\left(X(t) \geq a \mid T_{a}>t\right) P\left(T_{a}>t\right)
\end{aligned}
$$

10.2 Hitting Times, Max Variable and Ruin

Let $\{X(t): t \geq 0\}$ be a Brownian motion process with variance parameter σ^{2}, and let:

$$
T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a .
$$

We want to compute $P\left(T_{a} \leq t\right)$, where $a>0$. In order to so, we instead consider $P(X(t) \geq a)$, and condition on the event $\left\{T_{a} \leq t\right\}$:

$$
\begin{aligned}
P(X(t) \geq a) & =P\left(X(t) \geq a \mid T_{a} \leq t\right) P\left(T_{a} \leq t\right) \\
& +P\left(X(t) \geq a \mid T_{a}>t\right) P\left(T_{a}>t\right)
\end{aligned}
$$

By symmetry, it follows that:

$$
P\left(X(t) \geq a \mid T_{a} \leq t\right)=\frac{1}{2}
$$

10.2 Hitting Times, Max Variable and Ruin

Let $\{X(t): t \geq 0\}$ be a Brownian motion process with variance parameter σ^{2}, and let:

$$
T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a .
$$

We want to compute $P\left(T_{a} \leq t\right)$, where $a>0$. In order to so, we instead consider $P(X(t) \geq a)$, and condition on the event $\left\{T_{a} \leq t\right\}$:

$$
\begin{aligned}
P(X(t) \geq a) & =P\left(X(t) \geq a \mid T_{a} \leq t\right) P\left(T_{a} \leq t\right) \\
& +P\left(X(t) \geq a \mid T_{a}>t\right) P\left(T_{a}>t\right)
\end{aligned}
$$

By symmetry, it follows that:

$$
P\left(X(t) \geq a \mid T_{a} \leq t\right)=\frac{1}{2}
$$

Moreover, we obviously have:

$$
P\left(X(t) \geq a \mid T_{a}>t\right)=0
$$

Hitting Times, Max Variable and Ruin (cont.)

Hence, we have:

$$
P(X(t) \geq a)=\frac{1}{2} P\left(T_{a} \leq t\right)
$$

and thus:

$$
P\left(T_{a} \leq t\right)=2 \cdot P(X(t) \geq a)=2 \cdot P\left(\frac{X(t)}{\sigma \sqrt{t}} \geq \frac{a}{\sigma \sqrt{t}}\right)=2 \cdot \Phi\left(-\frac{a}{\sigma \sqrt{t}}\right)
$$

Hitting Times, Max Variable and Ruin (cont.)

Hence, we have:

$$
P(X(t) \geq a)=\frac{1}{2} P\left(T_{a} \leq t\right)
$$

and thus:

$$
P\left(T_{a} \leq t\right)=2 \cdot P(X(t) \geq a)=2 \cdot P\left(\frac{X(t)}{\sigma \sqrt{t}} \geq \frac{a}{\sigma \sqrt{t}}\right)=2 \cdot \Phi\left(-\frac{a}{\sigma \sqrt{t}}\right)
$$

If $a<0$, we can use a similar argument, and obtain:

$$
P\left(T_{a} \leq t\right)=2 \cdot P(X(t) \leq a)=2 \cdot P\left(\frac{X(t)}{\sigma \sqrt{t}} \leq \frac{a}{\sigma \sqrt{t}}\right)=2 \cdot \Phi\left(\frac{a}{\sigma \sqrt{t}}\right)
$$

Hitting Times, Max Variable and Ruin (cont.)

Hence, we have:

$$
P(X(t) \geq a)=\frac{1}{2} P\left(T_{a} \leq t\right)
$$

and thus:

$$
P\left(T_{a} \leq t\right)=2 \cdot P(X(t) \geq a)=2 \cdot P\left(\frac{X(t)}{\sigma \sqrt{t}} \geq \frac{a}{\sigma \sqrt{t}}\right)=2 \cdot \Phi\left(-\frac{a}{\sigma \sqrt{t}}\right)
$$

If $a<0$, we can use a similar argument, and obtain:

$$
P\left(T_{a} \leq t\right)=2 \cdot P(X(t) \leq a)=2 \cdot P\left(\frac{X(t)}{\sigma \sqrt{t}} \leq \frac{a}{\sigma \sqrt{t}}\right)=2 \cdot \Phi\left(\frac{a}{\sigma \sqrt{t}}\right)
$$

The formulas can be combined to:

$$
P\left(T_{a} \leq t\right)=2 \cdot \Phi\left(-\frac{|a|}{\sigma \sqrt{t}}\right)
$$

Hitting Times, Max Variable and Ruin (cont.)

NOTE:

$$
\begin{aligned}
& \text { If } a>0 \text { : } \quad \max _{0 \leq s \leq t} X(s) \geq a \quad \Leftrightarrow \quad T_{a} \leq t \\
& \text { If } a<0: \quad \min _{0 \leq s \leq t} X(s) \leq a \quad \Leftrightarrow \quad T_{a} \leq t
\end{aligned}
$$

Hitting Times, Max Variable and Ruin (cont.)

NOTE:

$$
\begin{aligned}
& \text { If } a>0 \text { : } \quad \max _{0 \leq s \leq t} X(s) \geq a \quad \Leftrightarrow \quad T_{a} \leq t \\
& \text { If } a<0: \quad \min _{0 \leq s \leq t} X(s) \leq a \quad \Leftrightarrow \quad T_{a} \leq t
\end{aligned}
$$

Hence, if $a>0$, we have:

$$
P\left(\max _{0 \leq s \leq t} X(s) \geq a\right)=P\left(T_{a} \leq t\right)=2 \cdot \Phi\left(-\frac{a}{\sigma \sqrt{t}}\right)
$$

Hitting Times, Max Variable and Ruin (cont.)

NOTE:

$$
\begin{array}{llll}
\text { If } a>0: & \max _{0 \leq s \leq t} X(s) \geq a & \Leftrightarrow & T_{a} \leq t \\
\text { If } a<0: & \min _{0 \leq s \leq t} X(s) \leq a & \Leftrightarrow & T_{a} \leq t
\end{array}
$$

Hence, if $a>0$, we have:

$$
P\left(\max _{0 \leq s \leq t} X(s) \geq a\right)=P\left(T_{a} \leq t\right)=2 \cdot \Phi\left(-\frac{a}{\sigma \sqrt{t}}\right)
$$

Similarly, if $a<0$, we have:

$$
P\left(\min _{0 \leq s \leq t} X(s) \leq a\right)=P\left(T_{a} \leq t\right)=2 \cdot \Phi\left(\frac{a}{\sigma \sqrt{t}}\right)
$$

Hitting Times, Max Variable and Ruin (cont.)

Finally, we let $b<0<a$, and let $T=\min \left\{T_{a}, T_{b}\right\}$ where:

$$
\begin{aligned}
& T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a \\
& T_{b}=\inf \{t>0: X(t)=b\}=\text { The first time the process hits } b
\end{aligned}
$$

We want to calculate $P\left(T_{a}<T_{b}\right)=P(X(T)=a)$.

Hitting Times, Max Variable and Ruin (cont.)

Finally, we let $b<0<a$, and let $T=\min \left\{T_{a}, T_{b}\right\}$ where:

$$
\begin{aligned}
& T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a \\
& T_{b}=\inf \{t>0: X(t)=b\}=\text { The first time the process hits } b
\end{aligned}
$$

We want to calculate $P\left(T_{a}<T_{b}\right)=P(X(T)=a)$.
Let $P(X(T)=a)=p$, and $P(X(T)=b)=1-P(X(T)=a)=1-p$.

Hitting Times, Max Variable and Ruin (cont.)

Finally, we let $b<0<a$, and let $T=\min \left\{T_{a}, T_{b}\right\}$ where:

$$
\begin{aligned}
& T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a \\
& T_{b}=\inf \{t>0: X(t)=b\}=\text { The first time the process hits } b
\end{aligned}
$$

We want to calculate $P\left(T_{a}<T_{b}\right)=P(X(T)=a)$.
Let $P(X(T)=a)=p$, and $P(X(T)=b)=1-P(X(T)=a)=1-p$.
Since $E[X(t)]=0$ for all $t \geq 0$, it follows that we in particular must have:

$$
0=E[X(T)]=a \cdot p+b \cdot(1-p)=(a-b) p+b
$$

Hitting Times, Max Variable and Ruin (cont.)

Finally, we let $b<0<a$, and let $T=\min \left\{T_{a}, T_{b}\right\}$ where:

$$
\begin{aligned}
& T_{a}=\inf \{t>0: X(t)=a\}=\text { The first time the process hits } a \\
& T_{b}=\inf \{t>0: X(t)=b\}=\text { The first time the process hits } b
\end{aligned}
$$

We want to calculate $P\left(T_{a}<T_{b}\right)=P(X(T)=a)$.
Let $P(X(T)=a)=p$, and $P(X(T)=b)=1-P(X(T)=a)=1-p$.
Since $E[X(t)]=0$ for all $t \geq 0$, it follows that we in particular must have:

$$
0=E[X(T)]=a \cdot p+b \cdot(1-p)=(a-b) p+b
$$

By solving this equation with respect to p, we get:

$$
P\left(T_{a}<T_{b}\right)=P(X(T)=a)=p=\frac{-b}{a-b}=\frac{|b|}{a+|b|}
$$

