STK2130 - Lecture 6 - part 2

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities $P_{i j}$ and stationary probabilities $\pi_{i}, i, j \in \mathcal{S}$.

Then let n be so large that we have reached a stationary state, i.e. $P_{i j}^{n} \approx \pi_{j}$.
We then consider the backwards chain $X_{n}, X_{n-1}, X_{n-2}, \ldots$
The backwards chain is also a Markov chain with transitions probabilities $Q_{i j}$, $i, j \in \mathcal{S}$ given by:

$$
\begin{aligned}
Q_{i j} & =P\left(X_{m}=j \mid X_{m+1}=i\right)=\frac{P\left(X_{m}=j \cap X_{m+1}=i\right)}{P\left(X_{m+1}=i\right)} \\
& =\frac{P\left(X_{m}=j\right) P\left(X_{m+1}=i \mid X_{m}=j\right)}{P\left(X_{m+1}=i\right)}=\frac{\pi_{j} P_{j i}}{\pi_{i}}
\end{aligned}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

We say that $\left\{X_{n}\right\}$ is time reversible if $Q_{i j}=P_{i j}$ for all $i, j \in \mathcal{S}$. Hence, $\left\{X_{n}\right\}$ is time reversible if and only if:

$$
\frac{\pi_{j} P_{j i}}{\pi_{i}}=P_{i j}, \quad \text { for all } i, j \in \mathcal{S}
$$

or equivalently if and only if:

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad \text { for all } i, j \in \mathcal{S} .
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem (Time reversible chain)
Assume that we can find non-negative numbers $x_{i}, i \in \mathcal{S}$ such that:

$$
\begin{equation*}
x_{i} P_{i j}=x_{j} P_{j i}, \quad \text { for all } i, j \in \mathcal{S}, \quad \text { and } \sum_{i \in \mathcal{S}} x_{i}=1 \tag{1}
\end{equation*}
$$

Then the Markov chain is time reversible.

PROOF: If $x_{i}, i \in \mathcal{S}$ satisfy (1), then it follows that:

$$
\begin{equation*}
\sum_{i \in \mathcal{S}} x_{i} P_{i j}=x_{j} \sum_{i \in \mathcal{S}} P_{j i}=x_{j}, \quad \text { for all } j \in \mathcal{S} \quad \text { and } \sum_{i \in \mathcal{S}} x_{i}=1 . \tag{2}
\end{equation*}
$$

We have proved that the equations (2) have the unique solution:

$$
x_{i}=\pi_{i}, \quad \text { for all } i \in \mathcal{S}
$$

which completes the proof.

Example 4.37

Consider a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1, \ldots, M\}$ and transition probabilities:

$$
\begin{aligned}
P_{i, i+1} & =\alpha_{i}=1-P_{i, i-1}, \quad i=1, \ldots, M-1, \\
P_{0,1} & =\alpha_{0}=1-P_{0,0}, \\
P_{M, M} & =\alpha_{M}=1-P_{M, M-1}
\end{aligned}
$$

In matrix form we have

$$
\boldsymbol{P}=\left[\begin{array}{cccccccc}
1-\alpha_{0} & \alpha_{0} & 0 & 0 & \ldots & 0 & 0 & 0 \\
1-\alpha_{1} & 0 & \alpha_{1} & 0 & \ldots & 0 & 0 & 0 \\
0 & 1-\alpha_{2} & 0 & \alpha_{2} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & \alpha_{M-2} & 0 \\
0 & 0 & 0 & 0 & \ldots & 1-\alpha_{M-1} & 0 & \alpha_{M-1} \\
0 & 0 & 0 & 0 & \ldots & 0 & 1-\alpha_{M} & \alpha_{M}
\end{array}\right]
$$

Example 4.37 (cont.)

In this case the long run rate of transitions from i to $i+1$ must be equal to the long run rate of transitions from $i+1$ to i. From this it can be shown that:

$$
\pi_{i} P_{i, i+1}=\pi_{i+1} P_{i+1, i}, \quad i=0,1, \ldots,(M-1) .
$$

That is, the Markov chain is time reversible.
In order to find the stationary probabilities we solve the following equations:

$$
\begin{aligned}
\pi_{0} \alpha_{0} & =\pi_{1}\left(1-\alpha_{1}\right), \\
\pi_{1} \alpha_{1} & =\pi_{2}\left(1-\alpha_{2}\right), \\
\vdots & \\
\pi_{M-1} \alpha_{M-1} & =\pi_{M}\left(1-\alpha_{M}\right)
\end{aligned}
$$

Example 4.37 (cont.)

Hence, we get:

$$
\begin{aligned}
\pi_{1} & =\frac{\alpha_{0}}{1-\alpha_{1}} \pi_{0} \\
\pi_{2} & =\frac{\alpha_{1}}{1-\alpha_{2}} \pi_{1}=\frac{\alpha_{1} \alpha_{0}}{\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0} \\
& \vdots \\
\pi_{M} & =\frac{\alpha_{M-1}}{1-\alpha_{M}} \pi_{M-1}=\frac{\alpha_{M-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{M}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0}
\end{aligned}
$$

Example 4.37 (cont.)

We then use that $\sum_{j=0}^{M} \pi_{j}=1$ and get:

$$
\pi_{0}\left[1+\sum_{j=1}^{M} \frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)}\right]=1
$$

From this it follows that:

$$
\pi_{0}=\left[1+\sum_{j=1}^{M} \frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)}\right]^{-1}
$$

and that:

$$
\pi_{j}=\frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0}, \quad j=1, \ldots, M .
$$

Example 4.37 (cont.)

Assume in particular that $\alpha_{j}=\alpha, j=0,1, \ldots, M$ and let $\beta=\alpha /(1-\alpha)$.
We then get:

$$
\begin{aligned}
\pi_{0} & =\left[1+\sum_{j=1}^{M} \frac{\alpha^{j}}{(1-\alpha)^{j}}\right]^{-1} \\
& =\left[\frac{1-\beta^{M+1}}{1-\beta}\right]^{-1}=\frac{1-\beta}{1-\beta^{M+1}},
\end{aligned}
$$

and:

$$
\pi_{j}=\frac{\beta^{j}(1-\beta)}{1-\beta^{M+1}}, \quad j=1, \ldots, M
$$

Example 4.37 (cont.)

SPECIAL CASE: Two urns with a total of M items (molecules). At each step one item is sampled from the total population and moved from this urn to the other.

$$
X_{n}=\text { The number of items in urn } 1 \text { at the } n \text {th step. }
$$

In this case we get:

$$
\alpha_{j}=\frac{M-j}{M}, \quad\left(1-\alpha_{j}\right)=\frac{j}{M}, \quad j=0,1, \ldots, M
$$

NOTE: $\alpha_{0}=1$ and $\alpha_{M}=0$.

Example 4.37 (cont.)

Hence, we get:

$$
\begin{aligned}
\pi_{0} & =\left[1+\sum_{j=1}^{M} \frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)}\right]^{-1} \\
& =\left[1+\sum_{j=1}^{M} \frac{(M-j+1) \cdots(M-1) M}{j(j-1) \cdots 2 \cdot 1}\right]^{-1} \\
& =\left[\sum_{j=0}^{M}\binom{M}{j}\right]^{-1}=\left[\sum_{j=0}^{M}\binom{M}{j} \cdot 1^{j} \cdot 1^{M-j}\right]^{-1} \\
& =\left[(1+1)^{M}\right]^{-1}=\left(\frac{1}{2}\right)^{M}
\end{aligned}
$$

Example 4.37 (cont.)

Furthermore, we get:

$$
\begin{aligned}
\pi_{j} & =\frac{\alpha_{j-1} \cdots \alpha_{1} \alpha_{0}}{\left(1-\alpha_{j}\right) \cdots\left(1-\alpha_{2}\right)\left(1-\alpha_{1}\right)} \pi_{0} \\
& =\frac{(M-j+1) \cdots(M-1) M}{j(j-1) \cdots 2 \cdot 1} \pi_{0} \\
& =\binom{M}{j}\left(\frac{1}{2}\right)^{M}, \quad j=0,1,2, \ldots, M .
\end{aligned}
$$

NOTE: This implies that $X_{n} \sim \operatorname{Bin}\left(M, \frac{1}{2}\right)$ when n is large.

Example 4.38

Undirected graph with weighted edges.

Here the transition probabilities are given by:

$$
P_{i j}=\frac{w_{i j}}{\sum_{k \in \mathcal{S}} w_{i k}}, \quad i, j \in \mathcal{S} .
$$

Thus, e.g.,

$$
P_{1,2}=\frac{3}{6}, \quad P_{1,4}=\frac{1}{6}, \quad P_{1,5}=\frac{2}{6}
$$

Example 4.38 (cont.)

The nodes represent states of a Markov chain with state space \mathcal{S}.
Thus, we define:

$$
X_{n}=\text { The node where the process is at step } n, \quad n=0,1,2, \ldots
$$

We then introduce weights:
$w_{i j}=$ The weight associated with the edge between node i and $j, \quad i, j \in \mathcal{S}$. and let:

$$
P_{i j}=\frac{w_{i j}}{\sum_{k \in \mathcal{S}} w_{i k}}, \quad i, j \in \mathcal{S} .
$$

Example 4.38 (cont.)

The time reversibility equations:

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad i, j \in \mathcal{S}
$$

then become:

$$
{ }^{\pi_{i}} \frac{w_{i j}}{\sum_{k \in \mathcal{S}} w_{i k}}=\pi_{j} \frac{w_{j i}}{\sum_{k \in \mathcal{S}} w_{j k}}, \quad i, j \in \mathcal{S}
$$

Since $w_{i j}=w_{j i}$, the equations simplify to:

$$
\frac{\pi_{i}}{\sum_{k \in \mathcal{S}} w_{i k}}=\frac{\pi_{j}}{\sum_{k \in \mathcal{S}} w_{j k}}, \quad i, j \in \mathcal{S}
$$

which equivalent to:

$$
\frac{\pi_{i}}{\sum_{k \in \mathcal{S}} w_{i k}}=c, \quad i \in \mathcal{S}
$$

Example 4.38 (cont.)

Alternatively, these equations can be written as:

$$
\pi_{i}=c \sum_{k \in \mathcal{S}} w_{i k}, \quad i \in \mathcal{S}
$$

Summing over all i we get:

$$
\sum_{i \in \mathcal{S}} \pi_{i}=c \sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{S}} w_{i k}=1
$$

Hence,

$$
c=\left[\sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{S}} w_{i k}\right]^{-1}
$$

Thus, we get the stationary probabilities:

$$
\pi_{i}=\frac{\sum_{k \in \mathcal{S}} w_{i k}}{\sum_{i \in \mathcal{S}} \sum_{k \in \mathcal{S}} w_{i k}}, \quad i \in \mathcal{S}
$$

Example 4.38 (cont.)

In this graph we get:

$$
\pi_{1}=\frac{6}{32}, \quad \pi_{2}=\frac{3}{32}, \quad \pi_{3}=\frac{6}{32}, \quad \pi_{4}=\frac{5}{32}, \quad \pi_{5}=\frac{12}{32} .
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

We recall that the time reversibility equations implies that:

$$
\begin{aligned}
x_{i} P_{i j} & =x_{j} P_{j i} \\
x_{k} P_{k j} & =x_{j} P_{j k}
\end{aligned}
$$

Assuming that $P_{i j} P_{j k}>0$ these equations imply that:

$$
\begin{aligned}
x_{i} & =x_{j} \frac{P_{j i}}{P_{i j}} \\
x_{j} & =x_{k} \frac{P_{k j}}{P_{j k}}
\end{aligned}
$$

Hence,

$$
\frac{x_{i}}{x_{k}}=\frac{P_{k j} P_{j i}}{P_{i j} P_{j k}}
$$

At the same time the time reversibility equations implies that:

$$
\frac{x_{i}}{x_{k}}=\frac{P_{k i}}{P_{i k}}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

Thus, for a valid solution to the time reversibility equations we must have that:

$$
\frac{P_{k j} P_{j i}}{P_{i j} P_{j k}}=\frac{P_{k i}}{P_{i k}}
$$

or equivalently:

$$
P_{i k} P_{k j} P_{j i}=P_{i j} P_{j k} P_{k i}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem

A stationary Markov chain for which $P_{i j}=0$ whenever $P_{j i}=0$ is time reversible if and only if starting in state i, any path back to i has the same probability as the reversed path. That is, if:

$$
P_{i, i_{1}} P_{i_{1}, i_{2}} \cdots P_{i_{k}, i}=P_{i, i_{k}} P_{i_{k}, i_{k-1}} \cdots P_{i_{1}, i}
$$

for all states $i, i_{1}, \ldots, i_{k}, k=1,2, \ldots$.
PROOF: That this condition is necessary essentially follows from the argument above. We thus focus on proving sufficiency.
We fix i and j and write the condition in the theorem as:

$$
P_{i, i_{1}} P_{i_{1}, i_{2}} \cdots P_{i_{k}, j} P_{j, i}=P_{i, j} P_{j, i_{k}} P_{i_{k}, i_{k-1}} \cdots P_{i_{1}, i}
$$

By summing over all paths of length $k+1$ we get that:

$$
P_{i j}^{k+1} P_{j i}=P_{i j} P_{j i}^{k+1}
$$

Chapter 4.8 Time Reversible Markov Chains (cont.)

We then sum over k from 1 to m and divide by m :

$$
\frac{P_{i j} \sum_{k=1}^{m} P_{i j}^{k+1}}{m}=\frac{P_{i j} \sum_{k=1}^{m} P_{j i}^{k+1}}{m}
$$

By letting $m \rightarrow \infty$ this implies that:

$$
P_{j i} \pi_{j}=P_{i j} \pi_{i}
$$

Hence, we conclude that the chain is time reversible.

Doubly stochastic transition matrices

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} where $|\mathcal{S}|=n<\infty$. We then know that:

$$
\sum_{j \in \mathcal{S}} P_{i j} \cdot 1=1, \quad \text { for all } i \in \mathcal{S} .
$$

If $\boldsymbol{e}=(1, \ldots, 1)$ is an n-dimensional vector, we can rewrite this as:

$$
\boldsymbol{P} \boldsymbol{e}^{T}=\boldsymbol{e}^{T}
$$

We say that \boldsymbol{P} is doubly stochastic if we also have:

$$
\sum_{i \in \mathcal{S}} P_{i j} \cdot 1=1, \quad \text { for all } j \in \mathcal{S} .
$$

In matrix notation this condition can be expressed as:

$$
\boldsymbol{e} \boldsymbol{P}=\boldsymbol{e}
$$

Doubly stochastic transition matrices (cont.)

Proposition

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} where $|\mathcal{S}|=n<\infty$. Then \boldsymbol{P} is doubly stochastic if and only if the stationary distribution is uniform, i.e.: $\boldsymbol{\pi}=\frac{1}{n} \boldsymbol{e}$.

PROOF:
\boldsymbol{P} is doubly stochastic

The stationary distribution is uniform

Doubly stochastic transition matrices (cont.)

Proposition

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} where $|\mathcal{S}|=n<\infty$. Assume that \boldsymbol{P} is doubly stochastic. Then the Markov chain is time reversible if and only if \boldsymbol{P} is symmetric.

PROOF: Since \boldsymbol{P} is doubly stochastic $\pi_{i}=\frac{1}{n}$ for all $i \in \mathcal{S}$. Hence, we get:

$$
Q_{i j}=\frac{\pi_{j} P_{j i}}{\pi_{i}}=\frac{\frac{1}{n} P_{j i}}{\frac{1}{n}}=P_{j i} \quad i, j \in \mathcal{S}
$$

Thus, $\boldsymbol{Q}=\boldsymbol{P}$ if and only if $P_{j i}=P_{i j}$ for all $i, j \in \mathcal{S}$.
That is, $\boldsymbol{Q}=\boldsymbol{P}$ if and only if \boldsymbol{P} is symmetric.

Example

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1,2\}$, where:

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0.2 & 0.4 & 0.4 \\
0.4 & 0.2 & 0.4 \\
0.4 & 0.4 & 0.2
\end{array}\right]
$$

Since \boldsymbol{P} is doubly stochastic and symmetric, the Markov chain is time reversible.

Example

Let \boldsymbol{P} be the transition probability matrix of a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1,2\}$, where:

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0.0 & 0.1 & 0.9 \\
0.9 & 0.0 & 0.1 \\
0.1 & 0.9 & 0.0
\end{array}\right]
$$

Since \boldsymbol{P} is doubly stochastic and not symmetric, the Markov chain is not time reversible.

Time Reversible Markov Chains (cont.)

Proposition (4.9)

Consider an irreducible Markov chain with transition probability matrix \mathbf{P} and state space \mathcal{S}. If we can find a stationary distribution π on \mathcal{S}, and a transition probability matrix \boldsymbol{Q} such that:

$$
\pi_{i} P_{i j}=\pi_{j} Q_{j i}, \quad \text { for all } i, j \in \mathcal{S},
$$

then \boldsymbol{Q} is the transition probability matrix of the reversed chain, and π is the stationary distribution for both the original and reversed chain.

PROOF: The result is an immediate consequence of the previously established formula:

$$
Q_{j i}=\frac{\pi_{i} P_{i j}}{\pi_{j}}, \quad \text { for all } i, j \in \mathcal{S} .
$$

Example 4.40

Let L denote the lifetime of a type of light bulb, and assume that the distribution of L in days is:

$$
P(L=i)=p_{i}, \quad i=1,2, \ldots
$$

We have an infinite supply of light bulb of this kind, with lifetimes L_{1}, L_{2}, \ldots being independent and with the same distribution as L. Each time a bulb fails, it is replaced by a new one the next day.

$$
X_{n}=\text { The age of the light bulb at day } n, \quad n=1,2, \ldots
$$

Then $\left\{X_{n}\right\}$ is a Markov chain with state space $\mathcal{S}=\{1,2, \ldots\}$ and with transition probabilities:

$$
P_{i, 1}=\frac{P(L=i)}{P(L \geq i)}=\frac{p_{i}}{\sum_{j=i}^{\infty} p_{j}}, \quad P_{i, i+1}=1-P_{i, 1}, \quad i=1,2, \ldots
$$

Example 4.40 (cont.)

We then claim that the reversed chain has transition probabilities:

$$
\begin{aligned}
Q_{i, i-1} & =1, \quad i>1 \\
Q_{1, i} & =P(L=i)=p_{i}, \quad i \geq 1
\end{aligned}
$$

To show this we need to find a stationary distribution π_{1}, π_{2}, \ldots such that:

$$
\pi_{i} P_{i j}=\pi_{j} Q_{j i}, \quad i, j=1,2, \ldots
$$

We start out by letting $j=1$ and determine π_{1}, π_{2}, \ldots such that:

$$
\pi_{i} P_{i, 1}=\pi_{i} \frac{P(L=i)}{P(L \geq i)}=\pi_{1} Q_{1, i}=\pi_{1} P(L=i)
$$

This is equivalent to:

$$
\pi_{i}=\pi_{1} P(L \geq i)
$$

Example 4.40 (cont.)

Summing over all i and using that the π_{i}-s add up to 1 , we get:

$$
\begin{aligned}
1 & =\sum_{i=1}^{\infty} \pi_{i}=\pi_{1} \sum_{i=1}^{\infty} P(L \geq i) \\
& =\pi_{1} \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} p_{j}=\pi_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{j} I(j \geq i) \\
& =\pi_{1} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} p_{j} I(i \leq j)=\pi_{1} \sum_{j=1}^{\infty} p_{j} \sum_{i=1}^{\infty} I(i \leq j) \\
& =\pi_{1} \sum_{j=1}^{\infty} p_{j} \cdot j=\pi_{1} E[L] .
\end{aligned}
$$

Hence, it follows that $\pi_{1}=(E[L])^{-1}$, and thus:

$$
\pi_{i}=\pi_{1} P(L \geq i)=\frac{P(L \geq i)}{E[L]}, \quad i=1,2, \ldots
$$

Example 4.40 (cont.)

We note that if $j>1$, we have $P_{i j}=Q_{j i}=0$ for $j \neq i+1$. Hence, it remains to verify that:

$$
\pi_{i} P_{i j}=\pi_{j} Q_{j i}, \quad i=1,2, \ldots, \quad j=i+1
$$

Using the expressions for π_{1}, π_{2}, \ldots and that $Q_{i+1, i}=1$ for $i>1$, this is equivalent to:

$$
\frac{P(L \geq i)}{E[L]}\left(1-\frac{P(L=i)}{P(L \geq i)}\right)=\frac{P(L \geq i+1)}{E[L]}
$$

By simplifying this equation we get:

$$
P(L \geq i)-P(L=i)=P(L \geq i+1)
$$

which is trivially true.

