
STK2130 – Lecture 6 - part 2

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 6 - part 2 1 / 31



Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities Pij and
stationary probabilities πi , i , j ∈ S.

Then let n be so large that we have reached a stationary state, i.e. Pn
ij ≈ πj .

We then consider the backwards chain Xn,Xn−1,Xn−2, . . .

The backwards chain is also a Markov chain with transitions probabilities Qij ,
i , j ∈ S given by:

Qij = P(Xm = j | Xm+1 = i) =
P(Xm = j ∩ Xm+1 = i)

P(Xm+1 = i)

=
P(Xm = j)P(Xm+1 = i | Xm = j)

P(Xm+1 = i)
=
πjPji

πi
.
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We say that {Xn} is time reversible if Qij = Pij for all i , j ∈ S.

Hence, {Xn} is time reversible if and only if:

πjPji

πi
= Pij , for all i , j ∈ S.

or equivalently if and only if:

πiPij = πjPji , for all i , j ∈ S.
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem (Time reversible chain)

Assume that we can find non-negative numbers xi , i ∈ S such that:

xiPij = xjPji , for all i , j ∈ S, and
∑
i∈S

xi = 1. (1)

Then the Markov chain is time reversible.

PROOF: If xi , i ∈ S satisfy (1), then it follows that:∑
i∈S

xiPij = xj

∑
i∈S

Pji = xj , for all j ∈ S and
∑
i∈S

xi = 1. (2)

We have proved that the equations (2) have the unique solution:

xi = πi , for all i ∈ S,

which completes the proof.
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Example 4.37
Consider a Markov chain {Xn} with state space S = {0,1, . . . ,M} and
transition probabilities:

Pi,i+1 = αi = 1− Pi,i−1, i = 1, . . . ,M − 1,

P0,1 = α0 = 1− P0,0,

PM,M = αM = 1− PM,M−1

In matrix form we have

P =



1− α0 α0 0 0 . . . 0 0 0
1− α1 0 α1 0 . . . 0 0 0

0 1− α2 0 α2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 αM−2 0
0 0 0 0 . . . 1− αM−1 0 αM−1
0 0 0 0 . . . 0 1− αM αM
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Example 4.37 (cont.)

In this case the long run rate of transitions from i to i + 1 must be equal to the
long run rate of transitions from i + 1 to i . From this it can be shown that:

πiPi,i+1 = πi+1Pi+1,i , i = 0,1, . . . , (M − 1).

That is, the Markov chain is time reversible.

In order to find the stationary probabilities we solve the following equations:

π0α0 = π1(1− α1),

π1α1 = π2(1− α2),

...
πM−1αM−1 = πM(1− αM)
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Example 4.37 (cont.)

Hence, we get:

π1 =
α0

1− α1
π0,

π2 =
α1

1− α2
π1 =

α1α0

(1− α2)(1− α1)
π0,

...

πM =
αM−1

1− αM
πM−1 =

αM−1 · · ·α1α0

(1− αM) · · · (1− α2)(1− α1)
π0.
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Example 4.37 (cont.)
We then use that

∑M
j=0 πj = 1 and get:

π0

1 +
M∑

j=1

αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)

 = 1

From this it follows that:

π0 =

1 +
M∑

j=1

αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)

−1

and that:

πj =
αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)
π0, j = 1, . . . ,M.
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Example 4.37 (cont.)

Assume in particular that αj = α, j = 0,1, . . . ,M and let β = α/(1− α).

We then get:

π0 =

1 +
M∑

j=1

αj

(1− α)j

−1

=

[
1− βM+1

1− β

]−1

=
1− β

1− βM+1 ,

and:

πj =
β j(1− β)
1− βM+1 , j = 1, . . . ,M.
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Example 4.37 (cont.)

SPECIAL CASE: Two urns with a total of M items (molecules). At each step
one item is sampled from the total population and moved from this urn to the
other.

Xn = The number of items in urn 1 at the nth step.

In this case we get:

αj =
M − j

M
, (1− αj) =

j
M
, j = 0,1, . . . ,M.

NOTE: α0 = 1 and αM = 0.
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Example 4.37 (cont.)

Hence, we get:

π0 =

1 +
M∑

j=1

αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)

−1

=

1 +
M∑

j=1

(M − j + 1) · · · (M − 1)M
j(j − 1) · · · 2 · 1

−1

=

 M∑
j=0

(
M
j

)−1

=

 M∑
j=0

(
M
j

)
· 1j · 1M−j

−1

=
[
(1 + 1)M]−1

=

(
1
2

)M
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Example 4.37 (cont.)

Furthermore, we get:

πj =
αj−1 · · ·α1α0

(1− αj) · · · (1− α2)(1− α1)
π0

=
(M − j + 1) · · · (M − 1)M

j(j − 1) · · · 2 · 1
π0

=

(
M
j

)(
1
2

)M

, j = 0,1,2, . . . ,M.

NOTE: This implies that Xn ∼ Bin(M, 1
2 ) when n is large.
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Example 4.38
Undirected graph with weighted edges.

1 2

3 5 4

1
2

6 4

3

Here the transition probabilities are given by:

Pij =
wij∑

k∈S wik
, i , j ∈ S.

Thus, e.g.,

P1,2 = 3
6 , P1,4 = 1

6 , P1,5 = 2
6
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Example 4.38 (cont.)

The nodes represent states of a Markov chain with state space S.

Thus, we define:

Xn = The node where the process is at step n, n = 0,1,2, . . .

We then introduce weights:

wij = The weight associated with the edge between node i and j , i , j ∈ S.

and let:

Pij =
wij∑

k∈S wik
, i , j ∈ S.
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Example 4.38 (cont.)
The time reversibility equations:

πiPij = πjPji , i , j ∈ S

then become:

πi
wij∑

k∈S wik
= πj

wji∑
k∈S wjk

, i , j ∈ S

Since wij = wji , the equations simplify to:

πi∑
k∈S wik

=
πj∑

k∈S wjk
, i , j ∈ S

which equivalent to:

πi∑
k∈S wik

= c, i ∈ S
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Example 4.38 (cont.)
Alternatively, these equations can be written as:

πi = c
∑
k∈S

wik , i ∈ S

Summing over all i we get:∑
i∈S

πi = c
∑
i∈S

∑
k∈S

wik = 1.

Hence,

c =

[∑
i∈S

∑
k∈S

wik

]−1

Thus, we get the stationary probabilities:

πi =

∑
k∈S wik∑

i∈S
∑

k∈S wik
, i ∈ S
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Example 4.38 (cont.)

1 2

3 5 4

1
2

6 4

3

In this graph we get:

π1 = 6
32 , π2 = 3

32 , π3 = 6
32 , π4 = 5

32 , π5 = 12
32 .
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Chapter 4.8 Time Reversible Markov Chains (cont.)
We recall that the time reversibility equations implies that:

xiPij = xjPji

xk Pkj = xjPjk

Assuming that PijPjk > 0 these equations imply that:

xi = xj
Pji

Pij

xj = xk
Pkj

Pjk

Hence,
xi

xk
=

PkjPji

PijPjk

At the same time the time reversibility equations implies that:

xi

xk
=

Pki

Pik
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Thus, for a valid solution to the time reversibility equations we must have that:

PkjPji

PijPjk
=

Pki

Pik

or equivalently:

Pik PkjPji = PijPjk Pki .
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem
A stationary Markov chain for which Pij = 0 whenever Pji = 0 is time
reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if:

Pi,i1Pi1,i2 · · ·Pik ,i = Pi,ik Pik ,ik−1 · · ·Pi1,i

for all states i , i1, . . . , ik , k = 1,2, . . ..

PROOF: That this condition is necessary essentially follows from the
argument above. We thus focus on proving sufficiency.

We fix i and j and write the condition in the theorem as:

Pi,i1Pi1,i2 · · ·Pik ,jPj,i = Pi,jPj,ik Pik ,ik−1 · · ·Pi1,i

By summing over all paths of length k + 1 we get that:

Pk+1
ij Pji = PijPk+1

ji
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We then sum over k from 1 to m and divide by m:

Pji
∑m

k=1 Pk+1
ij

m
=

Pij
∑m

k=1 Pk+1
ji

m

By letting m→∞ this implies that:

Pjiπj = Pijπi

Hence, we conclude that the chain is time reversible.
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Doubly stochastic transition matrices
Let P be the transition probability matrix of a Markov chain {Xn} with state
space S where |S| = n <∞. We then know that:∑

j∈S

Pij · 1 = 1, for all i ∈ S.

If e = (1, . . . ,1) is an n-dimensional vector, we can rewrite this as:

PeT = eT .

We say that P is doubly stochastic if we also have:∑
i∈S

Pij · 1 = 1, for all j ∈ S.

In matrix notation this condition can be expressed as:

eP = e.
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Doubly stochastic transition matrices (cont.)

Proposition

Let P be the transition probability matrix of a Markov chain {Xn} with state
space S where |S| = n <∞. Then P is doubly stochastic if and only if the
stationary distribution is uniform, i.e.: π = 1

n e.

PROOF:

P is doubly stochastic
m

eP = e
m

1
n eP = 1

n e
m

πP = π

m
The stationary distribution is uniform

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 6 - part 2 23 / 31



Doubly stochastic transition matrices (cont.)

Proposition

Let P be the transition probability matrix of a Markov chain {Xn} with state
space S where |S| = n <∞. Assume that P is doubly stochastic. Then the
Markov chain is time reversible if and only if P is symmetric.

PROOF: Since P is doubly stochastic πi =
1
n for all i ∈ S. Hence, we get:

Qij =
πjPji

πi
=

1
n Pji

1
n

= Pji i , j ∈ S

Thus, Q = P if and only if Pji = Pij for all i , j ∈ S.

That is, Q = P if and only if P is symmetric.
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Example

Let P be the transition probability matrix of a Markov chain {Xn} with state
space S = {0,1,2}, where:

P =

 0.2 0.4 0.4
0.4 0.2 0.4
0.4 0.4 0.2


Since P is doubly stochastic and symmetric, the Markov chain is time
reversible.
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Example

Let P be the transition probability matrix of a Markov chain {Xn} with state
space S = {0,1,2}, where:

P =

 0.0 0.1 0.9
0.9 0.0 0.1
0.1 0.9 0.0


Since P is doubly stochastic and not symmetric, the Markov chain is not time
reversible.
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Time Reversible Markov Chains (cont.)

Proposition (4.9)

Consider an irreducible Markov chain with transition probability matrix P and
state space S. If we can find a stationary distribution π on S, and a transition
probability matrix Q such that:

πiPij = πjQji , for all i , j ∈ S,

then Q is the transition probability matrix of the reversed chain, and π is the
stationary distribution for both the original and reversed chain.

PROOF: The result is an immediate consequence of the previously
established formula:

Qji =
πiPij

πj
, for all i , j ∈ S.
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Example 4.40

Let L denote the lifetime of a type of light bulb, and assume that the
distribution of L in days is:

P(L = i) = pi , i = 1,2, . . .

We have an infinite supply of light bulb of this kind, with lifetimes L1,L2, . . .
being independent and with the same distribution as L. Each time a bulb fails,
it is replaced by a new one the next day.

Xn = The age of the light bulb at day n, n = 1,2, . . .

Then {Xn} is a Markov chain with state space S = {1,2, . . .} and with
transition probabilities:

Pi,1 =
P(L = i)
P(L ≥ i)

=
pi∑∞
j=i pj

, Pi,i+1 = 1− Pi,1, i = 1,2, . . .
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Example 4.40 (cont.)

We then claim that the reversed chain has transition probabilities:

Qi,i−1 = 1, i > 1
Q1,i = P(L = i) = pi , i ≥ 1

To show this we need to find a stationary distribution π1, π2, . . . such that:

πiPij = πjQji , i , j = 1,2, . . .

We start out by letting j = 1 and determine π1, π2, . . . such that:

πiPi,1 = πi
P(L = i)
P(L ≥ i)

= π1Q1,i = π1P(L = i).

This is equivalent to:

πi = π1P(L ≥ i)
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Example 4.40 (cont.)
Summing over all i and using that the πi -s add up to 1, we get:

1 =
∞∑
i=1

πi = π1

∞∑
i=1

P(L ≥ i)

= π1

∞∑
i=1

∞∑
j=i

pj = π1

∞∑
i=1

∞∑
j=1

pj I(j ≥ i)

= π1

∞∑
j=1

∞∑
i=1

pj I(i ≤ j) = π1

∞∑
j=1

pj

∞∑
i=1

I(i ≤ j)

= π1

∞∑
j=1

pj · j = π1E [L].

Hence, it follows that π1 = (E [L])−1, and thus:

πi = π1P(L ≥ i) =
P(L ≥ i)

E [L]
, i = 1,2, . . .
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Example 4.40 (cont.)

We note that if j > 1, we have Pij = Qji = 0 for j 6= i + 1. Hence, it remains to
verify that:

πiPij = πjQji , i = 1,2, . . . , j = i + 1.

Using the expressions for π1, π2, . . . and that Qi+1,i = 1 for i > 1, this is
equivalent to:

P(L ≥ i)
E [L]

(
1− P(L = i)

P(L ≥ i)

)
=

P(L ≥ i + 1)
E [L]

By simplifying this equation we get:

P(L ≥ i)− P(L = i) = P(L ≥ i + 1)

which is trivially true.
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