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Chapter 4.8 Time Reversible Markov Chains

Consider an ergodic Markov chain with transition probabilities P; and
stationary probabilities 7, i,j € S.

Then let nbe so large that we have reached a stationary state, i.e. Pj ~ ;.

We then consider the backwards chain X,, X,_1, Xp_2, ...

The backwards chain is also a Markov chain with transitions probabilities Qj,
i,j € S given by:

O’/ = P(Xm :j | Xm+1 = I) = P(Xm+1 — I)

PO =P =i [ Xn=J) _ TPy

P(Xme1 = 1) i
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We say that { X} is time reversible if Q; = Pjforall i,j € S.

Hence, {X,} is time reversible if and only if:

B _ P;, foralli,jeS.
i

or equivalently if and only if:

7T,'P,'j = 7TjP/',', foralli,j e S.
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem (Time reversible chain)
Assume that we can find non-negative numbers x;, i € S such that:

XiPj=xP;, forallijeS, and xi=1. (1)
ies

Then the Markov chain is time reversible.

PROOF: If x;, i € S satisfy (1), then it follows that:

Y XPj=xY Pi=x, foralljesS and > x=1. )
ieS ieS ieS
We have proved that the equations (2) have the unique solution:
xi=m;, forallies,

which completes the proof.
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Example 4.37

Consider a Markov chain {X,} with state space S = {0,1,..., M} and
transition probabilities:

Piiy1 =ai=1-=Pjjy, i=1,....M-1,
Pojg=a0=1-"Fop,
Pum =am=1— Puuy-1

In matrix form we have

_1—a0 (&%) 0 0 0 0 0
1 — oy 0 ar 0 ... 0 0 0
0 1—a2 0 a ... 0 0 0
P: . . . . . :
0 0 0 0 0 apm—2 0
0 0 0 0 ... 1—am_ 0 ap—1
. O 0 o 0 ... 0 1—ay am |
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Example 4.37 (cont.)

In this case the long run rate of transitions from i to i + 1 must be equal to the
long run rate of transitions from i 4+ 1 to /. From this it can be shown that:

TPt = Tig1 Pigaiy 1=0,1,...,(M—1).

That is, the Markov chain is time reversible.

In order to find the stationary probabilities we solve the following equations:
moao = m(1 — o),

T = 71'2(1 — Oég),

mm—1am—1 = (1 — am)
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Example 4.37 (cont.)

Hence, we get:

g
™ = 7o,
1—0[1
Qq Q1O
o — —— T4 — i
2T (—a) (I —aq)
T = ap— Tieq = apm—1 -1 Qo
T—aw = (T—am) (1 —a2)(1 —a1)

0
A. B. Huseby (Univ. of Oslo)
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Example 4.37 (cont.)

We then use that Zino mj = 1 and get:

and that:

aj_1 QO

(1—aj) (1 —a2)(1 —ar)
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Example 4.37 (cont.)

Assume in particular that a; = a, j = 0,1,..., M and let 8 = a/(1 — «).

We then get:

- 1
1 S
T — +j=Z1(1—Oé)/

'1_5M+1 -1 1_6
1 1_/3] — 1 gm
and:
i1-p)
’/Tj:_IB(_—IBMf?, j=1,,M
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Example 4.37 (cont.)

SPECIAL CASE: Two urns with a total of M items (molecules). At each step

one item is sampled from the total population and moved from this urn to the
other.

X, = The number of items in urn 1 at the nth step.

In this case we get:
M—j j .
ajz—l, (1—0[/)2,{—/, j:0,1,...,M.

NOTE: ag =1 and ay = 0.
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Example 4.37 (cont.)

Hence, we get:

- 1
_ Q10100
Sl Ml e (e G —ou)]

—1

M
_ 1+Z(/\/7—/+1) (M =1)M

=R
~ —1 —1
G| ENGRES

Il
—
—
+
—
N—r
=
|
Il
~/~
N =
~
<
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Example 4.37 (cont.)

Furthermore, we get:

Q1 aq10Q .
(T =a)- (= az)(1 —ar)

Mg (MM

G-1-2-1

M
_ (’;”) (%) , j=0,1,2,...,M.

NOTE: This implies that X, ~ Bin(M, }) when nis large.

T =
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Example 4.38

Undirected graph with weighted edges.

Here the transition probabilities are given by:

W
Pj

- jjes.
Dokes Wik

Thus, e.g.,

3 1 2
Pio=% Pia=5 Pis=3
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Example 4.38 (cont.)

The nodes represent states of a Markov chain with state space S.

Thus, we define:

X, = The node where the processisatstepn, n=0,1,2,...

We then introduce weights:

w; = The weight associated with the edge between node iandj, i,je S.

and let:

Wi

Pj=
I 9
> kes Wik

i,jes.
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Example 4.38 (cont.)
The time reversibility equations:
mPj =Py, i,j€S
then become:

Wi i ..
T =T , I,J€ S
> kes Wik 2 kes Wik

Since wj; = wj;, the equations simplify to:

T T ..
! = I jjeS
D okes Wik Dokes Wik
which equivalent to:
i .
————=¢, €S
> kes Wik
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Example 4.38 (cont.)

Alternatively, these equations can be written as:
F/ZCZW,‘/(, ieS
keS
Summing over all i we get:
Sr=eX S w=t
ieS i€S kes

Hence,

-S|

i€S keS

Thus, we get the stationary probabilities:

> kes Wik

fry = =
Zies Zkes Wik
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Example 4.38 (cont.)

In this graph we get:

6
™ = 32 2

Rleo

T4
A. B. Huseby (Univ. of Oslo)
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We recall that the time reversibility equations implies that:
XiPj = x;Pj
X Pig = X; Pk
Assuming that P;Py > 0 these equations imply that:

Pi
X; = XJF/U
X = Xk&
Pik
Hence,
X _ PgP
Xc PPy
At the same time the time reversibility equations implies that:
% _ Py
Xk P
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Chapter 4.8 Time Reversible Markov Chains (cont.)

Thus, for a valid solution to the time reversibility equations we must have that:

Pufs _ P

PiPi  Pi

or equivalently:

Pix Py Pji = Pij PPy

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 6 - part 2 19/31



I
Chapter 4.8 Time Reversible Markov Chains (cont.)

Theorem

A stationary Markov chain for which P = 0 whenever Pj; = 0 is time
reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if:

Piii Piy iy - Pici = PiiPici -

P

ik

for all states i, iy, ... ik, k=1,2,....

PROOF: That this condition is necessary essentially follows from the
argument above. We thus focus on proving sufficiency.

We fix i and j and write the condition in the theorem as:
PiiPie - PicjPii = PijPicPici - Pii
By summing over all paths of length k + 1 we get that:

k+1p. _ p. pk+1
P Pii = PP
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Chapter 4.8 Time Reversible Markov Chains (cont.)

We then sum over k from 1 to m and divide by m:

M Pk M pk
Pi > ke Pij _ P> ke Pji
m m

By letting m — oo this implies that:
Pjmj = Pymi

Hence, we conclude that the chain is time reversible.
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Doubly stochastic transition matrices

Let P be the transition probability matrix of a Markov chain {X,} with state
space S where |S| = n < co. We then know that:

Zpi/..1 =1, forallies.
jes

If e=(1,...,1)is an n-dimensional vector, we can rewrite this as:

Pe’ =e’.

We say that P is doubly stochastic if we also have:

> Pj-1=1, foralljes.
iesS

In matrix notation this condition can be expressed as:

eP=e.
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Doubly stochastic transition matrices (cont.)

Proposition

Let P be the transition probability matrix of a Markov chain {X,} with state

space S where |S| = n < co. Then P is doubly stochastic if and only if the
stationary distribution is uniform, i.e.: = = %e.

PROOF:

P is doubly stochastic

The stationary distribution is uniform
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Doubly stochastic transition matrices (cont.)

Proposition

Let P be the transition probability matrix of a Markov chain {X,} with state
space S where |S| = n < oco. Assume that P is doubly stochastic. Then the
Markov chain is time reversible if and only if P is symmetric.

PROOF: Since P is doubly stochastic 7; = ‘5 for all i € S. Hence, we get:

P ip. o
Q=" 5t _p jjes

T

3=

Thus, @ = Pifandonly if P; = Pjforalli,j € S.

That is, @ = P if and only if P is symmetric.
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Example

Let P be the transition probability matrix of a Markov chain {X,} with state
space S = {0, 1,2}, where:

04 02 04

02 04 04
P=
04 04 02

Since P is doubly stochastic and symmetric, the Markov chain is time
reversible.
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Example

Let P be the transition probability matrix of a Markov chain {X,} with state
space S = {0, 1,2}, where:

0.0 0.1 09
P=]09 00 0.1
0.1 09 0.0

Since P is doubly stochastic and not symmetric, the Markov chain is not time
reversible.
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Time Reversible Markov Chains (cont.)

Proposition (4.9)

Consider an irreducible Markov chain with transition probability matrix P and
state space S. If we can find a stationary distribution = on S, and a transition
probability matrix Q such that:

7T,'P,‘l':7TjC)j,', foralli,jeS,

then Q is the transition probability matrix of the reversed chain, and = is the
stationary distribution for both the original and reversed chain.

PROOF: The result is an immediate consequence of the previously
established formula:
Q=" foranijes
T
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Example 4.40

Let L denote the lifetime of a type of light bulb, and assume that the
distribution of L in days is:
PlL=)=p;, i=1,2,...

We have an infinite supply of light bulb of this kind, with lifetimes Ly, Lo, . ..
being independent and with the same distribution as L. Each time a bulb fails,
it is replaced by a new one the next day.

Xn = The age of the light bulb atday n, n=1,2,...

Then {X,} is a Markov chain with state space S = {1,2,...} and with
transition probabilities:

i) Pi .
S = =5— Piyi=1-PFy, i=12,...
I) Z]:ij INES ]
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Example 4.40 (cont.)

We then claim that the reversed chain has transition probabilities:

Qii—1=1, i>1
Qu=PL=i)=p, i>1

To show this we need to find a stationary distribution 7, 72, . .. such that:

7T,‘P,'j=7Tiji7 i,j=1,2,...

We start out by letting j = 1 and determine 71, 72, . .. such that:

P(L=i .
miPi1 = Wiﬁ =m Qi =mP(L=1).
This is equivalent to:
mi =mP(L>1)
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Example 4.40 (cont.)

Summing over all j and using that the 7;-s add up to 1, we get:

1 :iﬂi:ﬂ1iP(LZ I)
i—1 i—1
=Ty ZZP/’ZM ZZP/’/(/Z i)

=1 jfi i=1 j=1
= Ty ZZP/ (if<j)=m ZP/ZI(/ <J)
Jj=1 i=1
:7T1Zp/-j:7r1E[L].
j=1
Hence, it follows that my = (E[L])~", and thus:
B P(L> ) B
mi=mP(L>1)= E[] =1,2,...

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 6 - part 2 30/ 31



——
Example 4.40 (cont.)

We note that if j > 1, we have P;j = Q; = 0 for j # i + 1. Hence, it remains to
verify that:

W;P,}':W/jS, i:1,2,..., j=i+1.

Using the expressions for 71, w2, ... and that Q;1; = 1 for i > 1, this is
equivalent to:

PL20) (, PL=0)) _PL>i+1)
E[L] <_P(L2i)) E[L]

By simplifying this equation we get:
P(L>i)—P(L=i)=P(L>i+1)

which is trivially true.
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