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6.5 Limiting Probabilities

Let {X (t) : t ≥ 0} be continuous-time Markov chain with state space X and
transition probabilities Pij(t), t ≥ 0, i , j ∈ X .

The limiting distribution of this chain, denoted by πj , is defined by:

πj = lim
t→∞

Pij(t), j ∈ X ,

assuming that the limit exists.

Note that if Pj exists, we must have:

lim
t→∞

P ′ij(t) = lim
t→∞

lim
h→0

Pij(t + h)− Pij(t)
h

= lim
h→0

lim
t→∞

Pij(t + h)− Pij(t)
h

= lim
h→0

Pj − Pj

h
= 0.
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6.5 Limiting Probabilities (cont.)

To determine the limiting distribution, we use Kolmogorov’s forward equations:

P ′ij(t) =
∑

k∈X\j

Pik (t)qkj − Pij(t)vj .

By taking the limit on both sides when t goes to infinity, we get:

0 = lim
t→∞

P ′ij(t) = lim
t→∞

 ∑
k∈X\j

Pik (t)qkj − Pij(t)vj


=
∑

k∈X\j

πk qkj − πjvj , j ∈ X .

Combined with the equation
∑

j∈X πj = 1, we can determine the limiting
distribution.
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6.5 Limiting Probabilities (cont.)

In the case where X = {1, . . . ,n} we introduce:

R =


−v1 q1,2 q1,3 · · · q1,n
q2,1 −v2 q2,3 · · · q2,n
q3,1 q3,2 −v3 · · · q3,n

...
...

...
. . .

...
qn,1 qn,2 qn,3 · · · −vn


and let π = (π1, . . . , πn). Then the equations:∑

k∈X\j

πk qkj − πjvj = 0, j ∈ X .

can be written as:

πR = 0.

where 0 = (0, . . . ,0).
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6.5 Limiting Probabilities (cont.)

The limiting distribution for continuous-time Markov chains is found by using
the following equations:

πR = 0,
∑
j∈X

πj = 1

We compare this to the equations we use for discrete-time Markov chains:

πP = π,
∑
j∈X

πj = 1

or equivalently:

π(P − I) = 0,
∑
j∈X

πj = 1

where P denotes the matrix of transition probabilities for the chain.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.5 6 / 20



6.5 Limiting Probabilities (cont.)

The limiting distribution for continuous-time Markov chains is found by using
the following equations:

πR = 0,
∑
j∈X

πj = 1

We compare this to the equations we use for discrete-time Markov chains:

πP = π,
∑
j∈X

πj = 1

or equivalently:

π(P − I) = 0,
∑
j∈X

πj = 1

where P denotes the matrix of transition probabilities for the chain.

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 6.5 7 / 20



6.5 Limiting Probabilities (cont.)

NOTE: In order to determine the limiting distribution we used Kolmogorov’s
forward equations. What about Kolmogorov’s backward equations?

P ′ij(t) =
∑

k∈X\i

qik Pkj(t)− viPij(t).

By taking the limit on both sides when t goes to infinity, we then get:

0 = lim
t→∞

P ′ij(t) = lim
t→∞

 ∑
k∈X\i

qik Pkj(t)− viPij(t)


=
∑

k∈X\j

qkjπj − vjπj = πj

 ∑
k∈X\j

qkj − vj

 = 0.

Thus, in this case we do not get any non-trivial equations!!
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6.5 Limiting Probabilities (cont.)

When the limiting probabilities exist, we say that the chain is ergodic.

Necessary and sufficient conditions for the existence of the limiting
distribution are:

All states of the Markov chain communicate in the sense that starting in
state i there is a positive probability of ever being in state j , for all i , j ∈ X .

The Markov chain is positive recurrent in the sense that, starting in any
state, the mean time to return to that state is finite.

If these conditions hold, the limiting probabilities exist and satisfy the derived
equations.

In addition, the probability πj also has the interpretation of being the long-run
proportion of time that the process is in state j .
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6.5 Limiting Probabilities (cont.)

It is often useful to write the equations for the limiting distribution in the
following form: ∑

k∈X\j

πk qkj = πjvj , j ∈ X

This representation can be interpreted as follows:

The left-hand side of the equation is the rate at which the process enters
state j

The right-hand side of the equation is the rate at which the process
leaves state j

These equations, referred to as the balance equations, state that these
rates are the same for all states j ∈ X .
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Limiting distribution of a birth and death process
For a birth and death process the balance equations are as follows:

State Leave rate = Enter rate
0 λ0π0 = µ1π1
1 (λ1 + µ1)π1 = µ2π2 + λ0π0
2 (λ2 + µ2)π2 = µ3π3 + λ1π1
· · · · · · · · ·
n (λn + µn)πn = µn+1πn+1 + λn−1πn−1

We observe that the left-hand side of the equation for state 1 contains the
term µ1π1, while the right-hand side of the equation for state 1 contains the
term λ0π0.

By the equation for state 0 these two terms are equal, and thus we may
remove them so that the equation for state 1 becomes:

λ1π1 = µ2π2
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Limiting distribution of a birth and death process (c.)

By repeated use of this argument we obtain the following simplified set of
equations:

λ0π0 = µ1π1

λ1π1 = µ2π2

λ2π2 = µ3π3

· · · · · ·

λnπn = µn+1πn+1

· · · · · ·
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Limiting distribution of a birth and death process (c.)

We can then express π1, π2, . . . in terms of π0 as follows:

π1 =
λ0

µ1
π0

π2 =
λ1

µ2
π1 =

λ1λ0

µ2µ1
π0

π3 =
λ2

µ3
π2 =

λ2λ1λ0

µ3µ2µ1
π0

...

πn =
λn−1

µn
πn−1 =

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1
π0
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Limiting distribution of a birth and death process (c.)

Nest step is to determine π0 by using that the limiting probabilities must add
up to one:

1 = π0 + π0

∞∑
n=1

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1

Solving this equation with respect to π0 yields:

π0 =
1

1 +
∑∞

n=1
λn−1λn−2···λ1λ0
µnµn−1···µ2µ1

For n ≥ 1 we have:

πn =
λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1

(
1 +

∑∞
n=1

λn−1λn−2···λ1λ0
µnµn−1···µ2µ1

)
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Limiting distribution of a birth and death process (c.)

NOTE: A necessary and sufficient condition for the limiting distribution to exist
is that:

∞∑
n=1

λn−1λn−2 · · ·λ1λ0

µnµn−1 · · ·µ2µ1
<∞

Example 6.14 Assume that λi = λ, i = 0,1,2, . . . and that µi = µ, i = 1,2, . . ..

Then the limiting distribution exists if and only if:

∞∑
n=1

λn

µn <∞

which holds if and only if λ < µ.
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Limiting distribution of a birth and death process (c.)

Note that by using the formula for an infinite geometric series and assuming
λ < µ we have:

1 +
∞∑

n=1

(λ/µ)n =
∞∑

n=0

(λ/µ)n =
1

1− λ/µ
= (1− λ/µ)−1

Thus, the limiting distribution can be written as:

πn =
(λ/µ)n

1 +
∑∞

n=1(λ/µ)
n

=
(λ/µ)n

(1− λ/µ)−1

= (λ/µ)n · (1− λ/µ), n ≥ 0.
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Example 6.1 – A Shoe Shine Shop

A Markov chain {X (t) : t ≥ 0} with state space X = {0,1,2} where:

State 0. No customer

State 1. Customer in chair 1 (clean and polish)

State 2. Customer in chair 2 (polish is buffed)

X (s) = 0: In this state customers arrive in accordance to a Poisson process
with rate λ. The time spent in this state is T0 ∼ exp(λ). Then the process
transits to state 1 with probability Q01 = 1.

X (t) = 1: The time spent in this state is T1 ∼ exp(µ1). Then the process
transits to state 2 with probability Q12 = 1.

X (u) = 2: The time spent in this state is T2 ∼ exp(µ2). Then the process
transits to state 0 with probability Q20 = 1, and then the process repeats the
same cycle.
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Example 6.15 – A Shoe Shine Shop

State Leave rate = Enter rate
0 λπ0 = µ2π2
1 µ1π1 = λπ0
2 µ2π2 = µ1π1

We can then express π1, π2 in terms of π0 as follows:

π1 =
λ

µ1
π0, π2 =

λ

µ2
π0

Since π0 + π1 + π2 = 1, we get the following equation for π0:

π0

[
1 +

λ

µ1
+

λ

µ2

]
= π0

µ1µ2 + λµ2 + λµ1

µ1µ2
= 1
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Example 6.16 – A Shoe Shine Shop (cont.)

From this it follows that:

π0 =
µ1µ2

µ1µ2 + λ(µ2 + µ1)

π1 =
λ

µ1
π0 =

λµ2

µ1µ2 + λ(µ2 + µ1)

π2 =
λ

µ2
π0 =

λµ1

µ1µ2 + λ(µ2 + µ1)
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Stationary probabilities

Assume that P(X (0) = j) = πj , j ∈ X , and let t > 0. Then we have:

P(X (t) = j) =
∑
k∈X

P(X (t) = j |X (0) = k)P(X (0) = k)

=
∑
k∈X

Pkj(t)πk

=
∑
k∈X

Pkj(t) lim
s→∞

Pik (s)

= lim
s→∞

∑
k∈X

Pkj(t)Pik (s)

= lim
s→∞

Pij(t + s) = πj
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