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6.8 Uniformization

In this section we consider the special case where the Markov chain
{X(t) : t > 0}, with state space X, has the property that:

vi=v, forallie X,
where v; as usual denotes the transition rate in state /, i € X.
We can the introduce a new process {N(t) : t > 0}, where:
N(t) = The number of transitions in [0,f], t>0.

It is then easy to see that {N(f) : t > 0} is a homogeneous Poisson process
with rate v.
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6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning
on N(t):

Pj(t) = P(X(t) = j|X(0) = i)
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6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning
on N(t):

Py(t) = P(X(t) = j|X(0) = /)

- Z P(X(t) = jIX(0) = i, N(t) = n) - P(N(t) = n|X(0) = i)

A. B. Huseby (Univ. of Oslo) STK2130 — Chapter 6.8 4/28



6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning
on N(t):

Py(t) = P(X(t) = j|X(0) = /)

= P(X(t) = j|1X(0) = i, N(t) = n) - P(N(t) = n|X(0) = i)
n=0

=Y P(X(t) = j|1X(0) = i, N(t) = n) - P(N(t) = n)
n=0
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6.8 Uniformization (cont.)

We then derive an expression for the transition probabilities by conditioning
on N(t):

Py(t) = P(X(t) = j|X(0) = /)

M 1Me 1M

P(X(t) = j|X(0) = i, N(t) = n) - P(N(t) = n|X(0) = /)

P(X(t) = j|X(0) = i, N(t) = n) - P(N(t) = n)
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where O;/? denotes the n-step transition probability from state i to state j for
the built-in discete-time Markov chain.
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6.8 Uniformization (cont.)

Since P(N(t) = n) typically is small if nis large, we have the following
approximation:

v .
e

N
n=0

provided that N is large.
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6.8 Uniformization (cont.)

Since P(N(t) = n) typically is small if nis large, we have the following
approximation:

N
vt)"
Pi(t)~ > Qp- (n!) eV
n=0
provided that N is large.

NOTE: If the built-in discete-time Markov chain is ergodic, i.e., irreducible,
positive recurrent and aperiodic, we have:

. n_
Nim Qj =m, jeX.
Hence, the approximation can be improved by using:

ZN ()"
P,](t) ~ 0,7 g eV + 7 - P(N(t) > N)
n=0 ’
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6.8 Uniformization (cont.)

In fact we have:

N ()
Pi(ty~ Q)" + ;- P(N(t) > N)
n=0 ’

L ()
=S Q- e[ - PN(t) < N)]
n=0

nl
N N
vt)" vt)"
:ZQ}]-(nI) 37Vt+ﬂj—ﬂjz%eiw
n=0 ' n=0 ’
N
(vt)" _
=7+ (Qf —m) e
n=0 ’

which typically is a very good approximation even for moderately sized N.
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6.8 Uniformization (cont.)
Assume (far) more generally that v; < v for all j € X, and let:

1-Y j=j
O;;:{V,' ’
v Qi

J#i
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6.8 Uniformization (cont.)

Assume (far) more generally that v; < v forall j € X, and let:

1_vu j—
vQi J#I

{X(t) : t > 0} can now be interpreted as a Markov chain, where the transition
rate is v for all states i € X. However, only a fraction of the transitions results
in actual state changes.
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6.8 Uniformization (cont.)

Assume (far) more generally that v; < v forall j € X, and let:

1% j—j
vQp  JAI

{X(t) : t > 0} can now be interpreted as a Markov chain, where the transition
rate is v for all states i € X. However, only a fraction of the transitions results
in actual state changes.

If the chain is in state i/, the probability that a transition results in a state
change is v;/v, while the probability of no state change is 1 — v;/v.
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6.8 Uniformization (cont.)

Assume (far) more generally that v; < v forall i € X, and let:

—Y =

]
vQi J#I

{X(t) : t > 0} can now be interpreted as a Markov chain, where the transition
rate is v for all states i € X. However, only a fraction of the transitions results
in actual state changes.

If the chain is in state i/, the probability that a transition results in a state
change is v;/v, while the probability of no state change is 1 — v;/v.

Given that a transition results in a state change from state /i, the probability
that the next state is state j is Q; as before.
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6.8 Uniformization (cont.)

Assume (far) more generally that v; < v forall i € X, and let:

—Y =

]
vQi J#I

{X(t) : t > 0} can now be interpreted as a Markov chain, where the transition
rate is v for all states i € X. However, only a fraction of the transitions results
in actual state changes.

If the chain is in state i/, the probability that a transition results in a state
change is v;/v, while the probability of no state change is 1 — v;/v.

Given that a transition results in a state change from state /i, the probability
that the next state is state j is Q; as before.

The unconditional probability of a transition from state / to state j is then C);jk
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6.8 Uniformization (cont.)

Replacing the Qjs by the Qj's in the formula for the transition probabilities, we
get:

Zo*n (Vt 7Vt

Note that if v = v for all i € X, we get:

S B L
! YQy, jAI Qj, j#i
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Example 6.23

The lifetimes and repair times of a system are independent and exponentially
distributed with rates respectively vi = A and vp = u. (See Example 6.11.)

The system is modelled as a continuous-time Markov chain {X(t) : t > 0}
with state space X = {0, 1}, where':
X(t) = I(The system is functioning at time t), t> 0.

The matrix of transition probabilities of the built-in discrete-time Markov chain

is:
Q- Qoo Qo1 . 0 1
S| Qo 1| |10

'In the Ross(2019) state 0 is the functioning state and state 1.is the failed state.
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Example 6.23 (cont.)

A uniformized version of this model, is obtained by letting v = X + u, and

1-% j=j
Q;/k:{ Vi ’
v Qi

j#i
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Example 6.23 (cont.)

A uniformized version of this model, is obtained by letting v = X\ + p, and:

1% j—j
o;;-:{v, o
TQp jEI

Using that vp = p and vy = A, we get:

Q§0=1—@:1—ﬁ:ﬁ
051=L£Q°‘:Aiu'1zxiu
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Example 6.23 (cont.)

In matrix form we get:
Q*:{oa;o oaa}: s :[a (1—a>]
Qi Qf S waril v a (1-a
where we have introduced a = \/(\ + p).

From this it follows that the 2-step transition probability matrix is:

RS SIS

:{(a+(1—a))a (a+(1—a))(1—a)]:[a (1—a)}:0
(a+(1—a)a (a+(1—-a)(1—-a) a (1—-a

Repeating this argument, we get that QM =@ n=12...
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Example 6.23 (cont.)

We also recall that:

«0) _ | 1T 0] _
o =[5 9]

Using the formula for the transition probabilities, we get:

Pj(t) = ZQ*" (‘;5) —Vt:Q;]k,O —vt+zo*n (Vt eVt

n=0

(A + p)t)"
— QP e g Y (A4 D"~y

n!
n=1

= (i =j) - et 4 Q-(1- e~ (At
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Example 6.23 (cont.)
We then use that:

Q;, Q
fo A 00 o1 ]
[ Qi @
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Example 6.23 (cont.)

We then use that:

N * A Bk
Q* _ [ ng 021 ] — )\4>:,u A—lf-u
Qi Q@ Swmril o
Inserting this we get:
Poo(t) = e~ (At LU _ ef(/\+u)t) = A + _H Ot
A+ Ad+p A+p
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Example 6.23 (cont.)
We then use that:

* sk A p
Q* _ |: 020 021 :| — )\-)l\-p, )\-lf-;t
C210 011 Ap X—Q—L’u
Inserting this we get:
_ _H Oty M B Ot
Poi(t) = —L—(1— e On S
[m] = = =
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Example 6.23 (cont.)

We then use that:

*
C200

Q= 0
&

Inserting this we get:

Pro(t) = ——(1- e =

+p
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Example 6.23 (cont.)

We then use that:

£ * A
=[G F]-|y 5
Qi Q@ Sweril v
Inserting this we get:
A
Poi(f) = e-OFmt P (g Omty — _H
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Example 6.24

We consider the same two-state system as in Example 6.23, and assume
that X(0) = 1. We then define:

t
ut) = / X(s)ds = The fraction of the interval [0, t] where X(s) = 1
0

We can then calculate E[U(t)] as follows:

t t
El /0 X(s)ds] - /0 E[X(s)|ds

t t
= / P(X(s) = 1|X(0) = 1)ds = / P11(s)ds
0 0

E[U()]
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Example 6.24 (cont.)

Hence, since we have shown that:

we get that:

t
_ K A (s
ElU)] = /o L\+u+>\+/¢e ds

_ut+)\
At (A +p)

s - e~
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Example 6.24 (cont.)

Hence, since we have shown that:

Iz A Ot
P. = e\
11(1) /\+IJ+)\+,U

we get that:

t
_ I A (s
E[U(1)] = /0 [/\+u+/\+ue ds

_ pt A 2[1 _ e—()\+u)t]

= +
At (At p)

We note that this also implies that:

lim E [@] =P im Py ()

t—oo
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