STK2130 – Chapter 6.8

A. B. Huseby

Department of Mathematics University of Oslo, Norway

6.8 Uniformization

In this section we consider the special case where the Markov chain $\{X(t): t \geq 0\}$, with state space \mathcal{X} , has the property that:

$$v_i = v$$
, for all $i \in \mathcal{X}$,

where v_i as usual denotes the transition rate in state $i, i \in \mathcal{X}$.

We can the introduce a new process $\{N(t): t \ge 0\}$, where:

N(t) =The number of transitions in $[0, t], t \ge 0$.

It is then easy to see that $\{N(t): t \ge 0\}$ is a homogeneous Poisson process with rate v.

We then derive an expression for the transition probabilities by conditioning on N(t):

$$P_{ij}(t) = P(X(t) = j | X(0) = i)$$

We then derive an expression for the transition probabilities by conditioning on N(t):

$$P_{ij}(t) = P(X(t) = j | X(0) = i)$$

$$= \sum_{n=0}^{\infty} P(X(t) = j | X(0) = i, N(t) = n) \cdot P(N(t) = n | X(0) = i)$$

We then derive an expression for the transition probabilities by conditioning on N(t):

$$P_{ij}(t) = P(X(t) = j | X(0) = i)$$

$$= \sum_{n=0}^{\infty} P(X(t) = j | X(0) = i, N(t) = n) \cdot P(N(t) = n | X(0) = i)$$

$$= \sum_{n=0}^{\infty} P(X(t) = j | X(0) = i, N(t) = n) \cdot P(N(t) = n)$$

We then derive an expression for the transition probabilities by conditioning on N(t):

$$P_{ij}(t) = P(X(t) = j|X(0) = i)$$

$$= \sum_{n=0}^{\infty} P(X(t) = j|X(0) = i, N(t) = n) \cdot P(N(t) = n|X(0) = i)$$

$$= \sum_{n=0}^{\infty} P(X(t) = j|X(0) = i, N(t) = n) \cdot P(N(t) = n)$$

$$= \sum_{n=0}^{\infty} Q_{ij}^{n} \cdot \frac{(vt)^{n}}{n!} e^{-vt}$$

where Q_{ij}^n denotes the *n*-step transition probability from state *i* to state *j* for the built-in discete-time Markov chain.

Since P(N(t) = n) typically is small if n is large, we have the following approximation:

$$P_{ij}(t) pprox \sum_{n=0}^{N} Q_{ij}^{n} \cdot rac{(vt)^{n}}{n!} e^{-vt}$$

provided that N is large.

Since P(N(t) = n) typically is small if n is large, we have the following approximation:

$$P_{ij}(t) \approx \sum_{n=0}^{N} Q_{ij}^{n} \cdot \frac{(vt)^{n}}{n!} e^{-vt}$$

provided that N is large.

NOTE: If the built-in discete-time Markov chain is ergodic, i.e., irreducible, positive recurrent and aperiodic, we have:

$$\lim_{n\to\infty} Q_{ij}^n = \pi_j, \quad j\in\mathcal{X}.$$

Hence, the approximation can be improved by using:

$$P_{ij}(t) pprox \sum_{n=0}^{N} Q_{ij}^n \cdot \frac{(vt)^n}{n!} e^{-vt} + \pi_j \cdot P(N(t) > N).$$

In fact we have:

$$P_{ij}(t) \approx \sum_{n=0}^{N} Q_{ij}^{n} \cdot \frac{(vt)^{n}}{n!} e^{-vt} + \pi_{j} \cdot P(N(t) > N)$$

$$= \sum_{n=0}^{N} Q_{ij}^{n} \cdot \frac{(vt)^{n}}{n!} e^{-vt} + \pi_{j} \cdot [1 - P(N(t) \le N)]$$

$$= \sum_{n=0}^{N} Q_{ij}^{n} \cdot \frac{(vt)^{n}}{n!} e^{-vt} + \pi_{j} - \pi_{j} \sum_{n=0}^{N} \frac{(vt)^{n}}{n!} e^{-vt}$$

$$= \pi_{j} + \sum_{n=0}^{N} (Q_{ij}^{n} - \pi_{j}) \frac{(vt)^{n}}{n!} e^{-vt}$$

which typically is a very good approximation even for moderately sized N.

Assume (far) more generally that $v_i \leq v$ for all $i \in \mathcal{X}$, and let:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

Assume (far) more generally that $v_i \leq v$ for all $i \in \mathcal{X}$, and let:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

 $\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

Assume (far) more generally that $v_i \leq v$ for all $i \in \mathcal{X}$, and let:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

 $\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

If the chain is in state i, the probability that a transition results in a state change is v_i/v , while the probability of no state change is $1 - v_i/v$.

Assume (far) more generally that $v_i \leq v$ for all $i \in \mathcal{X}$, and let:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

 $\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

If the chain is in state i, the probability that a transition results in a state change is v_i/v , while the probability of no state change is $1 - v_i/v$.

Given that a transition results in a state change from state i, the probability that the next state is state j is Q_{ij} as before.

Assume (far) more generally that $v_i \leq v$ for all $i \in \mathcal{X}$, and let:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

 $\{X(t): t \geq 0\}$ can now be interpreted as a Markov chain, where the transition rate is v for all states $i \in \mathcal{X}$. However, only a fraction of the transitions results in actual state changes.

If the chain is in state i, the probability that a transition results in a state change is v_i/v , while the probability of no state change is $1 - v_i/v$.

Given that a transition results in a state change from state i, the probability that the next state is state j is Q_{ij} as before.

The unconditional probability of a transition from state i to state j is then Q_{ij}^* .

Replacing the Q_{ij} s by the Q_{ij}^* s in the formula for the transition probabilities, we get:

$$P_{ij}(t) = \sum_{n=0}^{\infty} Q_{ij}^{*n} \cdot \frac{(vt)^n}{n!} e^{-vt}$$

Note that if $v_i = v$ for all $i \in \mathcal{X}$, we get:

$$Q_{ij}^* = \left\{ \begin{array}{l} 1 - \frac{v_i}{v}, & j = i \\ \frac{v_i}{v} Q_{ij}, & j \neq i \end{array} \right. = \left\{ \begin{array}{l} 0, & j = i \\ Q_{ij}, & j \neq i \end{array} \right.$$

Example 6.23

The lifetimes and repair times of a system are independent and exponentially distributed with rates respectively $v_1 = \lambda$ and $v_0 = \mu$. (See Example 6.11.)

The system is modelled as a continuous-time Markov chain $\{X(t): t \ge 0\}$ with state space $\mathcal{X} = \{0,1\}$, where¹:

 $X(t) = I(\text{The system is functioning at time } t), \quad t \ge 0.$

The matrix of transition probabilities of the built-in discrete-time Markov chain is:

$$\mathbf{Q} = \left[\begin{array}{cc} Q_{00} & Q_{01} \\ Q_{10} & Q_{11} \end{array} \right] = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

¹In the Ross(2019) state 0 is the functioning state and state 1₁ is the failed state. ⋄ < ○ ○

A uniformized version of this model, is obtained by letting $v = \lambda + \mu$, and:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

A uniformized version of this model, is obtained by letting $v = \lambda + \mu$, and:

$$Q_{ij}^* = \left\{ \begin{array}{ll} 1 - \frac{v_i}{v} & j = i \\ \frac{v_i}{v} Q_{ij} & j \neq i \end{array} \right.$$

Using that $v_0 = \mu$ and $v_1 = \lambda$, we get:

$$Q_{00}^* = 1 - \frac{v_0}{v} = 1 - \frac{\mu}{\lambda + \mu} = \frac{\lambda}{\lambda + \mu}$$

$$Q_{01}^* = \frac{v_0}{v} Q_{01} = \frac{\mu}{\lambda + \mu} \cdot 1 = \frac{\mu}{\lambda + \mu}$$

$$Q_{10}^* = \frac{v_1}{v} Q_{10} = \frac{\lambda}{\lambda + \mu} \cdot 1 = \frac{\lambda}{\lambda + \mu}$$

$$Q_{11}^* = 1 - \frac{v_1}{v} = 1 - \frac{\lambda}{\lambda + \mu} = \frac{\mu}{\lambda + \mu}$$

In matrix form we get:

$$m{Q}^* = \left[egin{array}{cc} Q_{00}^* & Q_{01}^* \ Q_{10}^* & Q_{11}^* \end{array}
ight] = \left[egin{array}{cc} rac{\lambda}{\lambda + \mu} & rac{\mu}{\lambda + \mu} \ rac{\lambda}{\lambda + \mu} & rac{\mu}{\lambda + \mu} \end{array}
ight] = \left[egin{array}{cc} a & (1 - a) \ a & (1 - a) \end{array}
ight]$$

where we have introduced $a = \lambda/(\lambda + \mu)$.

From this it follows that the 2-step transition probability matrix is:

$$\mathbf{Q}^{*(2)} = \mathbf{Q}^* \cdot \mathbf{Q}^* = \begin{bmatrix} a & (1-a) \\ a & (1-a) \end{bmatrix} \cdot \begin{bmatrix} a & (1-a) \\ a & (1-a) \end{bmatrix}$$
$$= \begin{bmatrix} (a+(1-a))a & (a+(1-a))(1-a) \\ (a+(1-a))a & (a+(1-a))(1-a) \end{bmatrix} = \begin{bmatrix} a & (1-a) \\ a & (1-a) \end{bmatrix} = \mathbf{Q}^*$$

Repeating this argument, we get that $\mathbf{Q}^{*(n)} = \mathbf{Q}^*$, $n = 1, 2 \dots$

We also recall that:

$$\mathbf{Q}^{*(0)} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = \mathbf{I}$$

Using the formula for the transition probabilities, we get:

$$\begin{split} P_{ij}(t) &= \sum_{n=0}^{\infty} Q_{ij}^{*n} \cdot \frac{(vt)^n}{n!} e^{-vt} = Q_{ij}^{*0} \cdot e^{-vt} + \sum_{n=1}^{\infty} Q_{ij}^{*n} \cdot \frac{(vt)^n}{n!} e^{-vt} \\ &= Q_{ij}^{*0} \cdot e^{-(\lambda + \mu)t} + Q_{ij}^* \cdot \sum_{n=1}^{\infty} \frac{((\lambda + \mu)t)^n}{n!} e^{-(\lambda + \mu)t} \\ &= I(i = j) \cdot e^{-(\lambda + \mu)t} + Q_{ij}^* \cdot (1 - e^{-(\lambda + \mu)t}) \end{split}$$

We then use that:

$$oldsymbol{Q}^* = \left[egin{array}{cc} Q^*_{00} & Q^*_{01} \ Q^*_{10} & Q^*_{11} \end{array}
ight] = \left[egin{array}{cc} rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \ rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \end{array}
ight]$$

We then use that:

$$oldsymbol{Q}^* = \left[egin{array}{cc} Q^*_{00} & Q^*_{01} \ Q^*_{10} & Q^*_{11} \end{array}
ight] = \left[egin{array}{cc} rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \ rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \end{array}
ight]$$

$$P_{00}(t) = e^{-(\lambda+\mu)t} + \frac{\lambda}{\lambda+\mu}(1-e^{-(\lambda+\mu)t}) = \frac{\lambda}{\lambda+\mu} + \frac{\mu}{\lambda+\mu}e^{-(\lambda+\mu)t}$$

We then use that:

$$oldsymbol{Q}^* = \left[egin{array}{cc} Q^*_{00} & Q^*_{01} \ Q^*_{10} & Q^*_{11} \end{array}
ight] = \left[egin{array}{cc} rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \ rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \end{array}
ight]$$

$$P_{00}(t) = e^{-(\lambda+\mu)t} + \frac{\lambda}{\lambda+\mu}(1-e^{-(\lambda+\mu)t}) = \frac{\lambda}{\lambda+\mu} + \frac{\mu}{\lambda+\mu}e^{-(\lambda+\mu)t}$$

$$P_{01}(t) = \frac{\mu}{\lambda + \mu} (1 - e^{-(\lambda + \mu)t}) = \frac{\mu}{\lambda + \mu} - \frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

We then use that:

$$oldsymbol{Q}^* = \left[egin{array}{cc} Q^*_{00} & Q^*_{01} \ Q^*_{10} & Q^*_{11} \end{array}
ight] = \left[egin{array}{cc} rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \ rac{\lambda}{\lambda+\mu} & rac{\mu}{\lambda+\mu} \end{array}
ight]$$

$$P_{00}(t) = e^{-(\lambda+\mu)t} + \frac{\lambda}{\lambda+\mu} (1 - e^{-(\lambda+\mu)t}) = \frac{\lambda}{\lambda+\mu} + \frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu)t}$$

$$P_{01}(t) = \frac{\mu}{\lambda+\mu} (1 - e^{-(\lambda+\mu)t}) = \frac{\mu}{\lambda+\mu} - \frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu)t}$$

$$P_{10}(t) = \frac{\lambda}{\lambda+\mu} (1 - e^{-(\lambda+\mu)t}) = \frac{\lambda}{\lambda+\mu} - \frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu)t}$$

We then use that:

$$\mathbf{Q}^* = \left[\begin{array}{cc} Q_{00}^* & Q_{01}^* \\ Q_{10}^* & Q_{11}^* \end{array} \right] = \left[\begin{array}{cc} \frac{\lambda}{\lambda + \mu} & \frac{\mu}{\lambda + \mu} \\ \frac{\lambda}{\lambda + \mu} & \frac{\mu}{\lambda + \mu} \end{array} \right]$$

$$P_{00}(t) = e^{-(\lambda+\mu)t} + \frac{\lambda}{\lambda+\mu} (1 - e^{-(\lambda+\mu)t}) = \frac{\lambda}{\lambda+\mu} + \frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu)t}$$

$$P_{01}(t) = \frac{\mu}{\lambda+\mu} (1 - e^{-(\lambda+\mu)t}) = \frac{\mu}{\lambda+\mu} - \frac{\mu}{\lambda+\mu} e^{-(\lambda+\mu)t}$$

$$P_{10}(t) = \frac{\lambda}{\lambda+\mu} (1 - e^{-(\lambda+\mu)t}) = \frac{\lambda}{\lambda+\mu} - \frac{\lambda}{\lambda+\mu} e^{-(\lambda+\mu)t}$$

$$P_{11}(t) = e^{-(\lambda+\mu)t} + \frac{\mu}{\lambda+\mu}(1-e^{-(\lambda+\mu)t}) = \frac{\mu}{\lambda+\mu} + \frac{\lambda}{\lambda+\mu}e^{-(\lambda+\mu)t}$$

Example 6.24

We consider the same two-state system as in Example 6.23, and assume that X(0) = 1. We then define:

$$U(t) = \int_0^t X(s)ds$$
 = The fraction of the interval [0, t] where $X(s) = 1$

We can then calculate E[U(t)] as follows:

$$E[U(t)] = E\left[\int_0^t X(s)ds\right] = \int_0^t E[X(s)]ds$$
$$= \int_0^t P(X(s) = 1|X(0) = 1)ds = \int_0^t P_{11}(s)ds$$

Hence, since we have shown that:

$$P_{11}(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

we get that:

$$E[U(t)] = \int_0^t \left[\frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)s} \right] ds$$
$$= \frac{\mu t}{\lambda + \mu} + \frac{\lambda}{(\lambda + \mu)^2} [1 - e^{-(\lambda + \mu)t}]$$

Hence, since we have shown that:

$$P_{11}(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

we get that:

$$E[U(t)] = \int_0^t \left[\frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)s} \right] ds$$
$$= \frac{\mu t}{\lambda + \mu} + \frac{\lambda}{(\lambda + \mu)^2} [1 - e^{-(\lambda + \mu)t}]$$

We note that this also implies that:

$$\lim_{t \to \infty} E\left[\frac{\textit{U}(t)}{t}\right] = \frac{\mu}{\lambda + \mu} = \lim_{t \to \infty} \textit{P}_{11}(t)$$

