STK2130 - Chapter 6.9

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

6.9 Computing Transition Probabilities

We start out by introducing the following notation:

$$
r_{i j}= \begin{cases}q_{i j} & \text { if } i \neq j \\ -v_{i} & \text { if } i=j\end{cases}
$$

6.9 Computing Transition Probabilities

We start out by introducing the following notation:

$$
r_{i j}= \begin{cases}q_{i j} & \text { if } i \neq j \\ -v_{i} & \text { if } i=j\end{cases}
$$

Kolmogorov's backward equations can then be written as:

$$
\begin{aligned}
P_{i j}^{\prime}(t) & =\sum_{k \in \mathcal{X} \backslash i} q_{i k} P_{k j}(t)-v_{i} P_{i j}(t) \\
& =\sum_{k \in \mathcal{X}} r_{i k} P_{k j}(t)
\end{aligned}
$$

6.9 Computing Transition Probabilities

We start out by introducing the following notation:

$$
r_{i j}= \begin{cases}q_{i j} & \text { if } i \neq j \\ -v_{i} & \text { if } i=j\end{cases}
$$

Kolmogorov's backward equations can then be written as:

$$
\begin{aligned}
P_{i j}^{\prime}(t) & =\sum_{k \in \mathcal{X} \backslash i} q_{i k} P_{k j}(t)-v_{i} P_{i j}(t) \\
& =\sum_{k \in \mathcal{X}} r_{i k} P_{k j}(t)
\end{aligned}
$$

Similarly, Kolmogorov's forward equations can then be written as:

$$
\begin{aligned}
P_{i j}^{\prime}(t) & =\sum_{k \in \mathcal{X} \backslash i} P_{i k}(t) q_{k j}-P_{i j}(t) v_{j} \\
& =\sum_{k \in \mathcal{X}} P_{i k}(t) r_{k j}
\end{aligned}
$$

6.9 Computing Transition Probabilities (cont.)

Now, let $\boldsymbol{R}=\left[r_{i j}\right]_{i, j \in \mathcal{X}}$ be the matrix of the $r_{i j}$'s.
Then Kolmogorov's backward equations can then be written in matrix form as:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{R} \boldsymbol{P}(t)
$$

while Kolmogorov's forward equations can then be written in matrix form as:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{P}(t) \boldsymbol{R}
$$

6.9 Computing Transition Probabilities (cont.)

Now, let $\boldsymbol{R}=\left[r_{i j}\right]_{i, j \in \mathcal{X}}$ be the matrix of the $r_{i j}$'s.
Then Kolmogorov's backward equations can then be written in matrix form as:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{R} \boldsymbol{P}(t)
$$

while Kolmogorov's forward equations can then be written in matrix form as:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{P}(t) \boldsymbol{R}
$$

Both sets of equations can be viewed as a matrix version of a scalar differential equation of the form:

$$
P^{\prime}(t)=r P(t)=P(t) r
$$

This scalar differential equation has the solution $P(t)=P(0) e^{r t}$.

6.9 Computing Transition Probabilities (cont.)

It can be shown that Kolmogorov's backward and forward equations have a similar solution:

$$
\boldsymbol{P}(t)=\boldsymbol{P}(0) e^{\boldsymbol{R} t}
$$

Using the boundary condition that $\boldsymbol{P}(0)=\boldsymbol{I}$, we get that:

$$
\boldsymbol{P}(t)=e^{\boldsymbol{R} t}
$$

where the matrix $e^{\boldsymbol{R} t}$ is given by:

$$
e^{\boldsymbol{R} t}=\sum_{n=0}^{\infty} \boldsymbol{R}^{n} \frac{t^{n}}{n!}=\lim _{n \rightarrow \infty}\left(\boldsymbol{I}+\boldsymbol{R} \cdot \frac{t}{n}\right)^{n} \approx\left(\boldsymbol{I}+\boldsymbol{R} \cdot \frac{t}{N}\right)^{N}
$$

where N is large.

