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7.2 Distribution of N(t)

In order to determine the distribution of N(t), we note that:

N(t) ≥ n⇔ Sn ≤ t

Hence, we get:

P(N(t) = n) = P(N(t) ≥ n)− P(N(t) ≥ n + 1)

= P(Sn ≤ t)− P(Sn+1 ≤ t)

= Fn(t)− Fn+1(t)

where Fn denotes the distribution of Sn, i.e., the n-fold convolution of the
distribution F .
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Example 7.1

Assume that the interarrival distribution, F is geometric. That is:

P(Xn = i) = p(1− p)i−1, i = 1,2, . . .

Since sums of geometrically distributed variables have negative binomial
distributions, we get:

P(Sn = k) =


(k−1

n−1

)
pn(1− p)k−n k ≥ n

0 k < n
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Example 7.1 (cont.)

From this we get that:

P(N(t) = n) = Fn(t)− Fn+1(t) = P(Sn ≤ btc)− P(Sn+1 ≤ btc)

=

btc∑
k=n

(
k − 1
n − 1

)
pn(1− p)k−n

−
btc∑

k=n+1

(
k − 1

n

)
pn+1(1− p)k−n−1

where btc = max{n ∈ N : n ≤ t}.
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Example 7.1 (cont.)

In this case, however, we can find the distribution of N(t) much easier by
interpreting the process as an infinite series of binomial trials where p is the
probability that an event occurs at a given point in time.

At time t > 0, the number of trials is btc. Thus, N(t) ∼ Bin(btc,p), and we
have:

P(N(t) = n) =

(
btc
n

)
pn(1− p)btc−n, n = 0,1, . . . , btc.
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7.2 Distribution of N(t) (cont.)

We can also calculate P(N(t) = n) by conditioning on Sn and get:

P(N(t) = n) =

∫ ∞
0

P(N(t) = n|Sn = s)fSn (s)ds

=

∫ t

0
P(N(t) = n|Sn = s)fSn (s)ds +

∫ ∞
t

0 · fSn (s)ds

=

∫ t

0
P(Xn+1 > t − s|Sn = s)fSn (s)ds

=

∫ t

0
F̄ (t − s)fSn (s)ds

where F̄ (·) = 1− F (·).
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Example 7.2
Assume that Xn ∼ exp(λ), n = 1,2, . . .. Then Sn ∼ Gamma(n, λ) n = 1,2, . . ..

By conditioning on Sn we get:

P(N(t) = n) =

∫ t

0
e−λ(t−s) · λn

(n − 1)!
sn−1e−λsds

=
λne−λt

(n − 1)!

∫ t

0
sn−1ds

=
λne−λt

(n − 1)!

[
1
n

sn
]t

0

=
(λt)n

n!
e−λt

Thus, we get the well-known result that N(t) ∼ Po(λt).
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The mean value of N(t)

We recall that:

N(t) ≥ n⇔ Sn ≤ t

By using this we can calculate m(t) = E [N(t)] as:

m(t) =
∞∑

k=1

k · P(N(t) = k) =
∞∑

k=1

k∑
n=1

P(N(t) = k)

=
∞∑

n=1

∞∑
k=n

P(N(t) = k) =
∞∑

n=1

P(N(t) ≥ n)

=
∞∑

n=1

P(Sn ≤ t) =
∞∑

n=1

Fn(t)

The function m(t) is called the renewal function of the process {N(t) : t ≥ 0}.
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Properties of m(t)

Proposition (The renewal function)

Let m(t) be the renewal function of the renewal process {N(t) : t ≥ 0}. Then
the following holds:

m(t) <∞, for all t <∞

The stochastic properties of {N(t) : t ≥ 0} are uniquely determined by
m(t).

NOTE: We have shown earlier that P(N(t) <∞) = 1. From this result alone
we cannot infer that m(t) <∞ as well, as there are many distributions for
which the mean values are infinite. Thus, the result that we in fact have
m(t) <∞ is a stronger result.
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Properties of m(t) (cont.)

EXAMPLE: Let {N(t) : t ≥ 0} be a homogeneous Poisson process with rate
λ. Then we know that:

N(t) ∼ Po(λt)

Hence, it follows that:

m(t) = E [N(t)] = λt

Since m(t) uniquely determines the stochastic properties of {N(t) : t ≥ 0}, it
follows that no other renewal process can have a linear renewal function.
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Integral equation for m(t)

We F denote the cumulative distribution, and f the density of X1.

An integral equation for m(t) can be found by conditioning on X1:

m(t) =

∫ ∞
0

E [N(t)|X1 = x ]f (x)dx

=

∫ t

0
E [N(t)|X1 = x ]f (x)dx +

∫ ∞
t

0 · f (x)dx

=

∫ t

0
[1 + E [N(t − x)]]f (x)dx

= F (t) +

∫ t

0
m(t − x)f (x)dx

This equation is called the renewal equation.
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Example 7.3

Assume that Xn ∼ R[0,1] (the uniform distribution), and let t ≤ 1. Then the
renewal equation becomes:

m(t) = F (t) +

∫ t

0
m(t − x)f (x)dx

= t +

∫ t

0
m(t − x)dx = t +

∫ t

0
m(y)dy , by subst. y = t − x .

By differentiating on both sides of this equation we get:

m′(t) = 1 + m(t)

By letting h(t) = 1 + m(t), the equation becomes:

h′(t) = h(t)

A. B. Huseby (Univ. of Oslo) STK2130 – Chapter 7.2 13 / 14



Example 7.3 (cont.)

This is a homogeneous differential equation with solution h(t) = Cet , and
hence

m(t) = Cet − 1

Since obviously m(0) = C − 1 = 0, the constant C must be 1. Hence, the
renewal function becomes:

m(t) = et − 1, 0 ≤ t ≤ 1.
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