STK2130 - Lecture 1

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Chapter 4 - Markov Chains

Section 4.1 - Introduction

Discrete Time Stochastic Processes

- A discrete time stochastic process is a sequence $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ of random variables with values in some set \mathcal{S}.
- The process is sometimes denoted by $\left\{X_{n}: n \geq 0\right\}$, or by $\left\{X_{n}\right\}$.
- The index n is interpreted as time, and is a non-negative integer.
- If \mathcal{S} is finite or countable, the process has a discrete (state) space.
- The elements of \mathcal{S} are referred to as states. Thus, X_{n} is the state of the process at time $n, n=0,1,2, \ldots$

In simple cases X_{0}, X_{1}, \ldots are independent. However, in this course we will focus on cases where X_{0}, X_{1}, \ldots are dependent.

Markov Chains

A discrete time, discrete space stochastic process $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ is called a time homogenuous Markov chain if the transition probabilities satisfy the following:

$$
P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)=P_{i j}
$$

for all states $i_{0}, i_{1}, \ldots, i_{n-1}, i, j$ and all $n \geq 0$.
NOTE: The Markov assumption implies that given X_{n}, the next state, X_{n+1}, is independent of all previous states $X_{0}, X_{1}, \ldots, X_{n-1}$. The process is time homogenuous since $P_{i j}$ is independent of n.

One-step transition probability matrix:

$$
\boldsymbol{P}=\left[P_{i j}\right]_{i, j \in \mathcal{S}}
$$

where $P_{i j} \geq 0$ for all $i, j \in \mathcal{S}$, and $\sum_{j \in \mathcal{S}} P_{i j}=1$ for all $i \in \mathcal{S}$.

Example 4.1 - Forcasting the Weather

Consider a Markov chain with state space $\mathcal{S}=\{0,1\}$, where 0 represents rain and 1 represents no rain.
We assume that:

- If it rains today, then it will rain tomorrow with probability α
- If it does not rain today, then it will rain tomorrow with probability β.

Mathematically, this can be expressed as follows:

$$
\begin{array}{ll}
P_{0,0}=P\left(X_{n+1}=0 \mid X_{n}=0\right)=\alpha, & n=0,1,2 \ldots \\
P_{1,0}=P\left(X_{n+1}=0 \mid X_{n}=1\right)=\beta, & n=0,1,2 \ldots
\end{array}
$$

This implies that we also have:

$$
\begin{array}{ll}
P_{0,1}=P\left(X_{n+1}=1 \mid X_{n}=0\right)=1-\alpha, & n=0,1,2 \ldots \\
P_{1,1}=P\left(X_{n+1}=1 \mid X_{n}=1\right)=1-\beta, & n=0,1,2 \ldots
\end{array}
$$

Example 4.1 - Forcasting the Weather (cont.)

NOTE 1: We implicitly assume that the transition probabilities do not change over time, i.e., that the process is time-homogenous.

NOTE 2: Since we have assumed that $\left\{X_{n}\right\}$ is a Markov chain, this implies that given the weather today, the weather tomorrow is independent of the weather in past days.

The one-step transition probability matrix for $\left\{X_{n}\right\}$ is given by:

$$
\boldsymbol{P}=\left[\begin{array}{ll}
P_{0,0} & P_{0,1} \\
P_{1,0} & P_{1,1}
\end{array}\right]=\left[\begin{array}{ll}
\alpha & (1-\alpha) \\
\beta & (1-\beta)
\end{array}\right]
$$

Example 4.2 - A Communications System

A communications system transmits the digits 0 and 1. Each digit transmitted must pass through several stages, at each of which there is a probability p that the digit entered will be unchanged when it leaves.

We let X_{n} denote the digit entering the nth stage.
Then $\left\{X_{n}: n \geq 0\right\}$ is a Markov chain with state space $\mathcal{S}=\{0,1\}$, and with a transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{ll}
P_{0,0} & P_{0,1} \\
P_{1,0} & P_{1,1}
\end{array}\right]=\left[\begin{array}{cc}
p & (1-p) \\
(1-p) & p
\end{array}\right]
$$

Example 4.3-Mood swings

A person (Gary) has three mood states: cheerful, co-so and glum. The "mood" state space is denoted by $\mathcal{S}=\{0,1,2\}$, where 0 represents cheerful, 1 represents so-so and 2 represents glum.

We let X_{n} denote Gary's mood state at day $n, n=0,1,2, \ldots$, and assume that $\left\{X_{n}\right\}$ is a Markov chain.

Thus, Gary's mood state tomorrow depends only on his mood state today, not on previous days.

The one-step transition probability matrix for $\left\{X_{n}\right\}$ is assumed to be:

$$
\boldsymbol{P}=\left[\begin{array}{lll}
P_{0,0} & P_{0,1} & P_{0,2} \\
P_{1,0} & P_{1,1} & P_{1,2} \\
P_{2,0} & P_{2,1} & P_{2,2}
\end{array}\right]=\left[\begin{array}{lll}
0.5 & 0.4 & 0.1 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.5
\end{array}\right]
$$

Example 4.3 - Mood swings (cont.)

$$
\boldsymbol{P}=\left[\begin{array}{lll}
P_{0,0} & P_{0,1} & P_{0,2} \\
P_{1,0} & P_{1,1} & P_{1,2} \\
P_{2,0} & P_{2,1} & P_{2,2}
\end{array}\right]=\left[\begin{array}{lll}
0.5 & 0.4 & 0.1 \\
0.3 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.5
\end{array}\right]
$$

NOTE 1: The highest numbers in this transition probability matrix are $P_{0,0}$ and $P_{2,2}$. Thus, if Gary is cheerful or glum one day, the most likely mood state the next day will be the same mood state.

NOTE 2: The lowest numbers in this transition probability matrix are $P_{2,0}$ and $P_{0,2}$. Thus, a change in mood state directly from cheerful to glum or the other way around are the least likely changes to occur.

Example 4.4 - Making a Process into a Markov chain

In this example consider a case where the weather conditions tomorrow depends on previous weather conditions through the last two days:

- If it rained today and yesterday, then the probability of rain tomorrow is 0.7.
- If it rained today but not yesterday, then the probability of rain tomorrow is 0.5 .
- If it did not rain today but it rained yesterday, then the probability of rain tomorrow is 0.4 .
- If it did not rain today and yesterday, then the probability of rain tomorrow is 0.2 .

To make this into a Markov chain, we modify the state space so that each state describes the weather conditions in two consecutive days.

Making a Process into a Markov chain (cont.)

State space $\mathcal{S}=\{R R, \bar{R} R, R \bar{R}, \bar{R} \bar{R}\}$ where:
$R R=$ Rain yesterday, Rain today,
$\bar{R} R=$ No rain yesterday, Rain today,
$R \bar{R}=$ Rain yesterday, No rain today,
$\bar{R} \bar{R}=$ No rain yesterday, No rain today.
NOTE: Assume that we e.g., are in state $R R$ today, i.e., that it rained today and yesterday. Then for tomorrow's state, there are only two possibilities:
$R R$ if it rains tomorrow
$R \bar{R} \quad$ if it does not rain tomorrow
By the above assumptions, the probabilities of rain or not rain tomorrow given that we are in state state $R R$ today, are:

$$
P(R R \mid R R)=0.70, \quad P(R \bar{R} \mid R R)=1-0.70=0.3
$$

Making a Process into a Markov chain (cont.)

Following similar arguments, we get the following transition probabilities:

$$
\begin{array}{rlrl}
P\{R R \mid R R\} & =0.70 & & P\{R \bar{R} \mid R R\}=1-0.70=0.30 \\
P\{R R \mid \bar{R} R\} & =0.50 & & P\{R \bar{R} \mid \bar{R} R\}=1-0.50=0.50 \\
P\{\bar{R} R \mid R \bar{R}\}=0.40 & & P\{\bar{R} \bar{R} \mid R \bar{R}\}=1-0.40=0.60 \\
P\{\bar{R} R \mid \bar{R} \bar{R}\}=0.20 & P\{\bar{R} \bar{R} \mid \bar{R} \bar{R}\}=1-0.20=0.80
\end{array}
$$

Thus, we have the following transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
0.70 & 0.00 & 0.30 & 0.00 \\
0.50 & 0.00 & 0.50 & 0.00 \\
0.00 & 0.40 & 0.00 & 0.60 \\
0.00 & 0.20 & 0.00 & 0.80
\end{array}\right]
$$

where the row and column order is: $R R, \bar{R} R, R \bar{R}, \bar{R} \bar{R}$.

Example 4.5 - A Random Walk

A Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is said to be a random walk if, for some number $p \in(0,1)$ we have:

$$
P_{i, i+1}=p=1-P_{i, i-1}, \quad \text { for all } i \in \mathcal{S}
$$

A random walk is a stochastic model for the prosition of an individual walking on a straight line who at each point of time either takes one step to the right with probability p or one step to the left with probability $1-p$.

NOTE: Assume that the initial state of the process, X_{0} is zero. Then we have:
X_{n} is odd if n is odd
X_{n} is even if n is even

Example 4.6 - A Gambling Model

A random walk model with absorbing states is a Markov chain $\left\{X_{n}\right\}$ with state space $\mathcal{S}=\{0,1,2, \ldots, N\}$ where for some $p \in(0,1)$:

$$
\begin{aligned}
P_{i, i+1} & =p=1-P_{i, i-1}, \quad i=1, \ldots, N-1 \\
P_{0,0} & =P_{N, N}=1
\end{aligned}
$$

This process behaves like an ordinary random walk, except that the states 0 and N are absorbing. If the process reaches one of these states, the process stays in the same state indefinitely.

- X_{n} represents the gambler's fortune at time n
- In each game the gambler either wins one unit or loses one unit
- If $X_{n}=0$, the gambler has spent his entire fortune, and cannot participate in the game.
- If $X_{n}=N$, the opponent has spent his entire fortune, and cannot participate in the game.

Example 4.7 - Automobile Insurance

The annual automobile insurance premium depends on the claim history of the client.

The client state in year n is modelled as a Markov chain $\left\{X_{n}\right\}$. This process can be in four different states $\mathcal{S}=\{1,2,3,4\}$.

The state in a given year depends on the state in the previous year as well as the number of claims in the previous year.

State	Annual Premium	Next state if			
		0 claims	1 claim	2 claims	$\geqslant \mathbf{3}$ claims
1	200	1	2	3	4
2	250	1	3	4	4
3	400	2	4	4	4
4	600	3	4	4	4

Figure: Annual premium given number of claims

Example 4.7 - Automobile Insurance (cont.)

Let Y_{n} denote the number of claims in year n. We assume that Y_{1}, Y_{2}, \ldots are independent and identically distributed variables with:

$$
P\left(Y_{n}=k\right)=a_{k}, \quad k=0,1,2, \ldots
$$

- If $X_{n}=1$ and $Y_{n}=0$, then $X_{n+1}=1$.

Thus, $P\left(X_{n+1}=1 \mid X_{n}=1\right)=a_{0}$

- If $X_{n}=2$ and $Y_{n}=0$, then $X_{n+1}=1$.

Thus, $P\left(X_{n+1}=1 \mid X_{n}=2\right)=a_{0}$

- If $X_{n}=2$ and $Y_{n}=1$, then $X_{n+1}=3$.

Thus, $P\left(X_{n+1}=3 \mid X_{n}=2\right)=a_{1}$

Example 4.7 - Automobile Insurance (cont.)

By similar arguments we find that the transition probability matrix of the process is:

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & 1-a_{0}-a_{1}-a_{2} \\
a_{0} & 0 & a_{1} & 1-a_{0}-a_{1} \\
0 & a_{0} & 0 & 1-a_{0} \\
0 & 0 & a_{0} & 1-a_{0}
\end{array}\right]
$$

Chapter 4 - Markov Chains

Section 4.2 - Chapman-Kolmogorov Equations

Chapman-Kolmogorov Equations

n-step transition probabilities:

$$
P_{i j}^{n}=P\left\{X_{n+k}=j \mid X_{k}=i\right\}, \quad n \geq 1
$$

n-step transition probability matrix:

$$
\boldsymbol{P}^{(n)}=\left[P_{i j}^{n}\right]_{i, j \in \mathcal{S}}
$$

Chapman-Kolmogorov Equations: By conditioning on X_{n} we get:

$$
P_{i j}^{n+m}=\sum_{k \in \mathcal{S}} P_{i k}^{n} \cdot P_{k j}^{m}
$$

By using the definition of matrix products it follows that:

$$
\begin{aligned}
\boldsymbol{P}^{(n+m)} & =\boldsymbol{P}^{(n)} \cdot \boldsymbol{P}^{(m)} \\
\boldsymbol{P}^{(n)} & =\boldsymbol{P}^{(n-1)} \cdot \boldsymbol{P}^{(1)} \\
\boldsymbol{P}^{(n)} & =\boldsymbol{P}^{n}
\end{aligned}
$$

Example 4.8

$P\{$ Rain tomorrow \mid Rain today $\}=0.75$
$P\{$ Rain tomorrow \mid No rain today $\}=0.35$

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{ll}
0.75 & 0.25 \\
0.35 & 0.65
\end{array}\right] \\
\boldsymbol{P}^{(2)} & =\left[\begin{array}{ll}
0.65 & 0.35 \\
0.49 & 0.51
\end{array}\right] \\
\boldsymbol{P}^{(4)} & =\left[\begin{array}{ll}
0.5940 & 0.4060 \\
0.5684 & 0.4316
\end{array}\right] \\
\boldsymbol{P}^{(8)} & =\left[\begin{array}{ll}
0.5836 & 0.4164 \\
0.5830 & 0.4170
\end{array}\right]
\end{aligned}
$$

Example 4.9

$R R=$ Rain yesterday, Rain today,
$\bar{R} R=$ No rain yesterday, Rain today,
$R \bar{R}=$ Rain yesterday, No rain today,
$\bar{R} \bar{R}=$ No rain yesterday, No rain today.

$$
\begin{array}{lll}
P\{R R \mid R R\}=0.70 & & P\{R \bar{R} \mid R R\}=0.30 \\
P\{R R \mid \bar{R} R\}=0.50 & & P\{R \bar{R} \mid \bar{R} R\}=0.50 \\
P\{\bar{R} R \mid R \bar{R}\}=0.40 & & P\{\bar{R} \bar{R} \mid R \bar{R}\}=0.60 \\
P\{\bar{R} R \mid \bar{R} \bar{R}\}=0.20 & & P\{\bar{R} \bar{R} \mid \bar{R} \bar{R}\}=0.80
\end{array}
$$

Example 4.9 (cont.)

Row/Column order: $R R, \bar{R} R, R \bar{R}, \bar{R} \bar{R}$.

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{llll}
0.70 & 0.00 & 0.30 & 0.00 \\
0.50 & 0.00 & 0.50 & 0.00 \\
0.00 & 0.40 & 0.00 & 0.60 \\
0.00 & 0.20 & 0.00 & 0.80
\end{array}\right] \\
\boldsymbol{P}^{(2)} & =\left[\begin{array}{llll}
0.49 & 0.12 & 0.21 & 0.18 \\
0.35 & 0.20 & 0.15 & 0.30 \\
0.20 & 0.12 & 0.20 & 0.48 \\
0.10 & 0.16 & 0.10 & 0.64
\end{array}\right]
\end{aligned}
$$

$P\{$ Rain Thursday \mid Rain Monday \& Rain Tuesday $\}=0.49+0.12=0.61$

Example 4.9 (cont.)

Row/Column order: $R R, \bar{R} R, R \bar{R}, \bar{R} \bar{R}$.

$$
\boldsymbol{P}^{(7)}=\left[\begin{array}{llll}
0.2723 & 0.1465 & 0.1580 & 0.4233 \\
0.2633 & 0.1477 & 0.1549 & 0.4340 \\
0.2441 & 0.1511 & 0.1477 & 0.4571 \\
0.2352 & 0.1524 & 0.1447 & 0.4678
\end{array}\right]
$$

$P\{$ Rain next Tuesday|Rain Monday \& Rain Tuesday\}

$$
=0.2723+0.1465=0.4188
$$

Example 4.9 (cont.)

Row/Column order: $R R, \bar{R} R, R \bar{R}, \bar{R} \bar{R}$.

$$
\boldsymbol{P}^{(20)} \approx\left[\begin{array}{llll}
0.25 & 0.15 & 0.15 & 0.50 \\
0.25 & 0.15 & 0.15 & 0.50 \\
0.25 & 0.15 & 0.15 & 0.50 \\
0.25 & 0.15 & 0.15 & 0.50
\end{array}\right]
$$

$P\{$ Rain "some day" in the future $\}$
$\approx P\{$ Rain "some day" in the future \mid Rain Monday \& Rain Tuesday $\}$
$\approx 0.25+0.15=0.40$

Example 4.10

An urn always contains 2 balls. Ball colors are red and blue.
At each stage a ball is randomly chosen and then replaced by a new ball, which with probability 0.8 is the same color, and with probability 0.2 is the opposite color, as the ball it replaces.

If initially both balls are red, find the probability that the fifth ball selected is red.
$X_{n}=$ The number of red balls after the nth experiment. $\quad n=0,1,2, \ldots$

Example 4.10 (cont.)

NOTE: $X_{n} \in\{0,1,2\}$, for all $n=0,1,2, \ldots$
We then have:

$$
\begin{aligned}
& P_{00}=0.8, \quad P_{01}=0.2, \quad P_{02}=0.0 \\
& P_{10}=P\{\text { Red ball selected and replaced }\}=0.5 \cdot 0.2=0.1 \\
& P_{11}=P\{\text { Any ball selected and not replaced }\}=0.8 \\
& P_{12}=P\{\text { Blue ball selected and replaced }\}=0.5 \cdot 0.2=0.1 \\
& P_{20}=0.0, \quad P_{21}=0.2, \quad P_{22}=0.8 \\
& \qquad \boldsymbol{P}=\left[\begin{array}{lll}
0.8 & 0.2 & 0.0 \\
0.1 & 0.8 & 0.1 \\
0.0 & 0.2 & 0.8
\end{array}\right]
\end{aligned}
$$

Example 4.10 (cont.)

$$
\boldsymbol{P}^{(4)}=\left[\begin{array}{lll}
0.4872 & 0.4352 & 0.0776 \\
0.2176 & 0.5648 & 0.2176 \\
0.0776 & 0.4352 & 0.4872
\end{array}\right]
$$

$P($ Selection 5 is red)

$$
\begin{aligned}
& =\sum_{i=0}^{2} P\left(\text { Selection } 5 \text { is red } \mid X_{4}=i\right) \cdot P\left(X_{4}=i \mid X_{0}=2\right) \\
& =0.00 \cdot P_{2,0}^{4}+0.50 \cdot P_{2,1}^{4}+1.00 \cdot P_{2,2}^{4} \\
& =0.50 \cdot 0.4352+0.4872=0.7048
\end{aligned}
$$

Example 4.10 (cont.)

If we instead started out with one blue and one red ball, i.e., if $X_{0}=1$, we would get the following:

$$
\boldsymbol{P}^{(4)}=\left[\begin{array}{lll}
0.4872 & 0.4352 & 0.0776 \\
0.2176 & 0.5648 & 0.2176 \\
0.0776 & 0.4352 & 0.4872
\end{array}\right]
$$

$P($ Selection 5 is red)

$$
\begin{aligned}
& =\sum_{i=0}^{2} P\left(\text { Selection } 5 \text { is red } \mid X_{4}=i\right) \cdot P\left(X_{4}=i \mid X_{0}=1\right) \\
& =0.00 \cdot P_{1,0}^{4}+0.50 \cdot P_{1,1}^{4}+1.00 \cdot P_{1,2}^{4} \\
& =0.50 \cdot 0.5648+0.2176=0.5
\end{aligned}
$$

Example 4.10 (cont.)

$$
\boldsymbol{P}^{(30)} \approx\left[\begin{array}{lll}
0.25 & 0.50 & 0.25 \\
0.25 & 0.50 & 0.25 \\
0.25 & 0.50 & 0.25
\end{array}\right]
$$

$P($ Selection 31 is red)

$$
\begin{aligned}
& =\sum_{i=0}^{2} P\left(\text { Selection } 31 \text { is red } \mid X_{30}=i\right) \cdot P\left(X_{30}=i \mid X_{0}=2\right) \\
& =0.00 \cdot P_{2,0}^{30}+0.50 \cdot P_{2,1}^{30}+1.00 \cdot P_{2,2}^{30} \\
& \approx 0.50 \cdot 0.50+0.25=0.50
\end{aligned}
$$

Example 4.11

Suppose that balls are successively distributed among 8 urns, with each ball being equally likely to be put in any of these urns.

PROBLEM: What is the probability that there will be exactly 3 nonempty urns after 9 balls have been distributed?

To solve this problem we introduce a Markov chain $\left\{X_{n}\right\}$, where:
$X_{n}=$ Number of nonempty urns after n distributions $n=0,1,2 \ldots$
In particular, we have that $X_{0}=0$.
Moreover, we have the following transition probabilities:

$$
P_{i, i}=\frac{i}{8}, \quad P_{i, i+1}=\frac{8-i}{8}, \quad i=0,1, \ldots, 8 .
$$

Example 4.11 (cont.)

$$
\boldsymbol{P}=\left[\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 8 & 7 / 8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 / 8 & 6 / 8 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 / 8 & 5 / 8 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 / 8 & 4 / 8 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 5 / 8 & 3 / 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 6 / 8 & 2 / 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 / 8 & 1 / 8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

By calculating $\boldsymbol{P}^{(9)}$ we find the solution to the problem:

$$
P\left(X_{9}=3 \mid X_{0}=0\right)=P_{03}^{9}=0.00756
$$

However, there are some significant shortcuts here.

Example 4.11 (cont.)

The first transition of $\left\{X_{n}\right\}$ is deterministic (from state 0 to 1). Thus, we may instead consider the Markov chain $\left\{Y_{n}\right\}$ instead:

$$
Y_{n}=X_{n+1}, \quad n=0,1,2, \ldots,
$$

with state space $\{1,2, \ldots, 8\}$ and use that:

$$
P\left(X_{9}=3 \mid X_{0}=0\right)=P\left(Y_{8}=3 \mid Y_{0}=1\right)
$$

We can simplify the problem even further by letting:

$$
Z_{n}=\min \left\{Y_{n}, 4\right\}, \quad n=0,1,2, \ldots,
$$

and use that:

$$
P\left(X_{9}=3 \mid X_{0}=0\right)=P\left(Y_{8}=3 \mid Y_{0}=1\right)=P\left(Z_{8}=3 \mid Z_{0}=1\right)
$$

Example 4.11 (cont.)

The state space of the Markov chain $\left\{Z_{n}\right\}$ is $\{1,2,3,4\}$ and its transition matrix is:

$$
\boldsymbol{Q}=\left[\begin{array}{cccc}
1 / 8 & 7 / 8 & 0 & 0 \\
0 & 2 / 8 & 6 / 8 & 0 \\
0 & 0 & 3 / 8 & 5 / 8 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 4.11 (cont.)

We first calculate:

$$
\boldsymbol{Q}^{(4)}=\left[\begin{array}{llll}
0.0002 & 0.0256 & 0.2563 & 0.7178 \\
0.0000 & 0.0039 & 0.0952 & 0.9009 \\
0.0000 & 0.0000 & 0.0198 & 0.9802 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

In order to find $\boldsymbol{Q}^{(8)}$, we may use that:

$$
\boldsymbol{Q}^{(8)}=\boldsymbol{Q}^{(4)} \cdot \boldsymbol{Q}^{(4)}
$$

However, since we only need to find $P\left(X_{9}=3 \mid X_{0}=0\right)$, we only need to calculate:

$$
\begin{aligned}
P\left(X_{9}\right. & \left.=3 \mid X_{0}=0\right)=P\left(Z_{8}=3 \mid Z_{0}=1\right)=Q_{1,3}^{8}=\sum_{k=1}^{4} Q_{1, k}^{4} \cdot Q_{k, 3}^{4} \\
& =0.0002 \cdot 0.2563+0.0256 \cdot 0.0952+0.2563 \cdot 0.0198=0.00756
\end{aligned}
$$

