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Chapter 4 – Markov Chains

Section 4.1 – Introduction
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Discrete Time Stochastic Processes

A discrete time stochastic process is a sequence {X0,X1,X2, . . .} of
random variables with values in some set S.

The process is sometimes denoted by {Xn : n ≥ 0}, or by {Xn}.

The index n is interpreted as time, and is a non-negative integer.

If S is finite or countable, the process has a discrete (state) space.

The elements of S are referred to as states. Thus, Xn is the state of the
process at time n, n = 0,1,2, . . .

In simple cases X0,X1, . . . are independent. However, in this course we will
focus on cases where X0,X1, . . . are dependent.
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Markov Chains
A discrete time, discrete space stochastic process {X0,X1,X2, . . .} is called a
time homogenuous Markov chain if the transition probabilities satisfy the
following:

P(Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X0 = i0) = P(Xn+1 = j |Xn = i) = Pij

for all states i0, i1, . . . , in−1, i , j and all n ≥ 0.

NOTE: The Markov assumption implies that given Xn, the next state, Xn+1, is
independent of all previous states X0,X1, . . . ,Xn−1. The process is time
homogenuous since Pij is independent of n.

One-step transition probability matrix:

P = [Pij ]i,j∈S

where Pij ≥ 0 for all i , j ∈ S, and
∑

j∈S Pij = 1 for all i ∈ S.
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Example 4.1 - Forcasting the Weather
Consider a Markov chain with state space S = {0,1}, where 0 represents
rain and 1 represents no rain.

We assume that:

If it rains today, then it will rain tomorrow with probability α

If it does not rain today, then it will rain tomorrow with probability β.

Mathematically, this can be expressed as follows:

P0,0 = P(Xn+1 = 0|Xn = 0) = α, n = 0,1,2 . . .

P1,0 = P(Xn+1 = 0|Xn = 1) = β, n = 0,1,2 . . .

This implies that we also have:

P0,1 = P(Xn+1 = 1|Xn = 0) = 1− α, n = 0,1,2 . . .

P1,1 = P(Xn+1 = 1|Xn = 1) = 1− β, n = 0,1,2 . . .
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Example 4.1 - Forcasting the Weather (cont.)

NOTE 1: We implicitly assume that the transition probabilities do not change
over time, i.e., that the process is time-homogenous.

NOTE 2: Since we have assumed that {Xn} is a Markov chain, this implies
that given the weather today, the weather tomorrow is independent of the
weather in past days.

The one-step transition probability matrix for {Xn} is given by:

P =

[
P0,0 P0,1

P1,0 P1,1

]
=

[
α (1− α)

β (1− β)

]
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Example 4.2 - A Communications System

A communications system transmits the digits 0 and 1. Each digit transmitted
must pass through several stages, at each of which there is a probability p
that the digit entered will be unchanged when it leaves.

We let Xn denote the digit entering the nth stage.

Then {Xn : n ≥ 0} is a Markov chain with state space S = {0,1}, and with a
transition probability matrix:

P =

[
P0,0 P0,1

P1,0 P1,1

]
=

[
p (1− p)

(1− p) p

]
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Example 4.3 - Mood swings

A person (Gary) has three mood states: cheerful, co-so and glum. The
“mood” state space is denoted by S = {0,1,2}, where 0 represents cheerful,
1 represents so-so and 2 represents glum.

We let Xn denote Gary’s mood state at day n, n = 0,1,2, . . ., and assume that
{Xn} is a Markov chain.

Thus, Gary’s mood state tomorrow depends only on his mood state today, not
on previous days.

The one-step transition probability matrix for {Xn} is assumed to be:

P =


P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

 =


0.5 0.4 0.1

0.3 0.4 0.3

0.2 0.3 0.5
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Example 4.3 - Mood swings (cont.)

P =


P0,0 P0,1 P0,2

P1,0 P1,1 P1,2

P2,0 P2,1 P2,2

 =


0.5 0.4 0.1

0.3 0.4 0.3

0.2 0.3 0.5



NOTE 1: The highest numbers in this transition probability matrix are P0,0
and P2,2. Thus, if Gary is cheerful or glum one day, the most likely mood state
the next day will be the same mood state.

NOTE 2: The lowest numbers in this transition probability matrix are P2,0 and
P0,2. Thus, a change in mood state directly from cheerful to glum or the other
way around are the least likely changes to occur.
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Example 4.4 - Making a Process into a Markov chain

In this example consider a case where the weather conditions tomorrow
depends on previous weather conditions through the last two days:

If it rained today and yesterday, then the probability of rain tomorrow is
0.7.

If it rained today but not yesterday, then the probability of rain tomorrow
is 0.5.

If it did not rain today but it rained yesterday, then the probability of rain
tomorrow is 0.4.

If it did not rain today and yesterday, then the probability of rain tomorrow
is 0.2.

To make this into a Markov chain, we modify the state space so that each
state describes the weather conditions in two consecutive days.
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Making a Process into a Markov chain (cont.)
State space S = {RR, R̄R,RR̄, R̄R̄} where:

RR = Rain yesterday, Rain today,

R̄R = No rain yesterday, Rain today,

RR̄ = Rain yesterday, No rain today,

R̄R̄ = No rain yesterday, No rain today.

NOTE: Assume that we e.g., are in state RR today, i.e., that it rained today
and yesterday. Then for tomorrow’s state, there are only two possibilities:

RR if it rains tomorrow

RR̄ if it does not rain tomorrow

By the above assumptions, the probabilities of rain or not rain tomorrow given
that we are in state state RR today, are:

P(RR|RR) = 0.70, P(RR̄|RR) = 1− 0.70 = 0.3
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Making a Process into a Markov chain (cont.)

Following similar arguments, we get the following transition probabilities:

P{RR|RR} = 0.70 P{RR̄|RR} = 1− 0.70 = 0.30

P{RR|R̄R} = 0.50 P{RR̄|R̄R} = 1− 0.50 = 0.50

P{R̄R|RR̄} = 0.40 P{R̄R̄|RR̄} = 1− 0.40 = 0.60

P{R̄R|R̄R̄} = 0.20 P{R̄R̄|R̄R̄} = 1− 0.20 = 0.80

Thus, we have the following transition probability matrix:

P =


0.70 0.00 0.30 0.00
0.50 0.00 0.50 0.00
0.00 0.40 0.00 0.60
0.00 0.20 0.00 0.80


where the row and column order is: RR, R̄R, RR̄, R̄R̄.
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Example 4.5 - A Random Walk

A Markov chain {Xn} with state space S = {. . . ,−2,−1,0,1,2, . . .} is said to
be a random walk if, for some number p ∈ (0,1) we have:

Pi,i+1 = p = 1− Pi,i−1, for all i ∈ S

A random walk is a stochastic model for the prosition of an individual walking
on a straight line who at each point of time either takes one step to the right
with probability p or one step to the left with probability 1− p.

NOTE: Assume that the initial state of the process, X0 is zero. Then we have:

Xn is odd if n is odd
Xn is even if n is even
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Example 4.6 - A Gambling Model
A random walk model with absorbing states is a Markov chain {Xn} with state
space S = {0,1,2, . . . ,N} where for some p ∈ (0,1):

Pi,i+1 = p = 1− Pi,i−1, i = 1, . . . ,N − 1
P0,0 = PN,N = 1

This process behaves like an ordinary random walk, except that the states 0
and N are absorbing. If the process reaches one of these states, the process
stays in the same state indefinitely.

Xn represents the gambler’s fortune at time n

In each game the gambler either wins one unit or loses one unit

If Xn = 0, the gambler has spent his entire fortune, and cannot
participate in the game.

If Xn = N, the opponent has spent his entire fortune, and cannot
participate in the game.
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Example 4.7 - Automobile Insurance
The annual automobile insurance premium depends on the claim history of
the client.

The client state in year n is modelled as a Markov chain {Xn}. This process
can be in four different states S = {1,2,3,4}.

The state in a given year depends on the state in the previous year as well as
the number of claims in the previous year.

Figure: Annual premium given number of claims
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Example 4.7 - Automobile Insurance (cont.)

Let Yn denote the number of claims in year n. We assume that Y1,Y2, . . . are
independent and identically distributed variables with:

P(Yn = k) = ak , k = 0,1,2, . . .

If Xn = 1 and Yn = 0, then Xn+1 = 1.
Thus, P(Xn+1 = 1|Xn = 1) = a0

If Xn = 2 and Yn = 0, then Xn+1 = 1.
Thus, P(Xn+1 = 1|Xn = 2) = a0

If Xn = 2 and Yn = 1, then Xn+1 = 3.
Thus, P(Xn+1 = 3|Xn = 2) = a1

· · ·

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 1 16 / 34



uiobmcrop

Example 4.7 - Automobile Insurance (cont.)

By similar arguments we find that the transition probability matrix of the
process is:

P =


a0 a1 a2 1− a0 − a1 − a2
a0 0 a1 1− a0 − a1
0 a0 0 1− a0
0 0 a0 1− a0
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Chapter 4 – Markov Chains

Section 4.2 – Chapman-Kolmogorov Equations
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Chapman-Kolmogorov Equations
n-step transition probabilities:

Pn
ij = P{Xn+k = j |Xk = i}, n ≥ 1

n-step transition probability matrix:

P(n) = [Pn
ij ]i,j∈S

Chapman-Kolmogorov Equations: By conditioning on Xn we get:

Pn+m
ij =

∑
k∈S

Pn
ik · Pm

kj

By using the definition of matrix products it follows that:

P(n+m) = P(n) · P(m)

P(n) = P(n−1) · P(1)

P(n) = Pn
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Example 4.8

P{Rain tomorrow|Rain today} = 0.75
P{Rain tomorrow|No rain today} = 0.35

P =

[
0.75 0.25
0.35 0.65

]

P(2) =

[
0.65 0.35
0.49 0.51

]

P(4) =

[
0.5940 0.4060
0.5684 0.4316

]

P(8) =

[
0.5836 0.4164
0.5830 0.4170

]
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Example 4.9

RR = Rain yesterday, Rain today,

R̄R = No rain yesterday, Rain today,

RR̄ = Rain yesterday, No rain today,

R̄R̄ = No rain yesterday, No rain today.

P{RR|RR} = 0.70 P{RR̄|RR} = 0.30

P{RR|R̄R} = 0.50 P{RR̄|R̄R} = 0.50

P{R̄R|RR̄} = 0.40 P{R̄R̄|RR̄} = 0.60

P{R̄R|R̄R̄} = 0.20 P{R̄R̄|R̄R̄} = 0.80
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Example 4.9 (cont.)
Row/Column order: RR, R̄R, RR̄, R̄R̄.

P =


0.70 0.00 0.30 0.00
0.50 0.00 0.50 0.00
0.00 0.40 0.00 0.60
0.00 0.20 0.00 0.80



P(2) =


0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64



P{Rain Thursday|Rain Monday & Rain Tuesday} = 0.49 + 0.12 = 0.61
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Example 4.9 (cont.)

Row/Column order: RR, R̄R, RR̄, R̄R̄.

P(7) =


0.2723 0.1465 0.1580 0.4233
0.2633 0.1477 0.1549 0.4340
0.2441 0.1511 0.1477 0.4571
0.2352 0.1524 0.1447 0.4678



P{Rain next Tuesday|Rain Monday & Rain Tuesday}

= 0.2723 + 0.1465 = 0.4188
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Example 4.9 (cont.)

Row/Column order: RR, R̄R, RR̄, R̄R̄.

P(20) ≈


0.25 0.15 0.15 0.50
0.25 0.15 0.15 0.50
0.25 0.15 0.15 0.50
0.25 0.15 0.15 0.50



P{Rain “some day” in the future}

≈ P{Rain “some day” in the future|Rain Monday & Rain Tuesday}

≈ 0.25 + 0.15 = 0.40
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Example 4.10

An urn always contains 2 balls. Ball colors are red and blue.

At each stage a ball is randomly chosen and then replaced by a new ball,
which with probability 0.8 is the same color, and with probability 0.2 is the
opposite color, as the ball it replaces.

If initially both balls are red, find the probability that the fifth ball selected is
red.

Xn = The number of red balls after the nth experiment. n = 0,1,2, . . .
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Example 4.10 (cont.)

NOTE: Xn ∈ {0,1,2}, for all n = 0,1,2, . . .

We then have:

P00 = 0.8, P01 = 0.2, P02 = 0.0

P10 = P{Red ball selected and replaced} = 0.5 · 0.2 = 0.1
P11 = P{Any ball selected and not replaced} = 0.8
P12 = P{Blue ball selected and replaced} = 0.5 · 0.2 = 0.1

P20 = 0.0, P21 = 0.2, P22 = 0.8

P =

 0.8 0.2 0.0
0.1 0.8 0.1
0.0 0.2 0.8
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Example 4.10 (cont.)

P(4) =

 0.4872 0.4352 0.0776
0.2176 0.5648 0.2176
0.0776 0.4352 0.4872



P(Selection 5 is red)

=
2∑

i=0

P(Selection 5 is red|X4 = i) · P(X4 = i |X0 = 2)

= 0.00 · P4
2,0 + 0.50 · P4

2,1 + 1.00 · P4
2,2

= 0.50 · 0.4352 + 0.4872 = 0.7048
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Example 4.10 (cont.)
If we instead started out with one blue and one red ball, i.e., if X0 = 1, we
would get the following:

P(4) =

 0.4872 0.4352 0.0776
0.2176 0.5648 0.2176
0.0776 0.4352 0.4872



P(Selection 5 is red)

=
2∑

i=0

P(Selection 5 is red|X4 = i) · P(X4 = i |X0 = 1)

= 0.00 · P4
1,0 + 0.50 · P4

1,1 + 1.00 · P4
1,2

= 0.50 · 0.5648 + 0.2176 = 0.5
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Example 4.10 (cont.)

P(30) ≈

 0.25 0.50 0.25
0.25 0.50 0.25
0.25 0.50 0.25



P(Selection 31 is red)

=
2∑

i=0

P(Selection 31 is red|X30 = i) · P(X30 = i |X0 = 2)

= 0.00 · P30
2,0 + 0.50 · P30

2,1 + 1.00 · P30
2,2

≈ 0.50 · 0.50 + 0.25 = 0.50
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Example 4.11

Suppose that balls are successively distributed among 8 urns, with each ball
being equally likely to be put in any of these urns.

PROBLEM: What is the probability that there will be exactly 3 nonempty urns
after 9 balls have been distributed?

To solve this problem we introduce a Markov chain {Xn}, where:

Xn = Number of nonempty urns after n distributions n = 0,1,2 . . .

In particular, we have that X0 = 0.

Moreover, we have the following transition probabilities:

Pi,i =
i
8
, Pi,i+1 =

8− i
8

, i = 0,1, . . . ,8.
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Example 4.11 (cont.)

P =



0 1 0 0 0 0 0 0 0
0 1/8 7/8 0 0 0 0 0 0
0 0 2/8 6/8 0 0 0 0 0
0 0 0 3/8 5/8 0 0 0 0
0 0 0 0 4/8 4/8 0 0 0
0 0 0 0 0 5/8 3/8 0 0
0 0 0 0 0 0 6/8 2/8 0
0 0 0 0 0 0 0 7/8 1/8
0 0 0 0 0 0 0 0 1


By calculating P(9) we find the solution to the problem:

P(X9 = 3|X0 = 0) = P9
03 = 0.00756.

However, there are some significant shortcuts here.
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Example 4.11 (cont.)
The first transition of {Xn} is deterministic (from state 0 to 1).
Thus, we may instead consider the Markov chain {Yn} instead:

Yn = Xn+1, n = 0,1,2, . . . ,

with state space {1,2, . . . ,8} and use that:

P(X9 = 3|X0 = 0) = P(Y8 = 3|Y0 = 1)

We can simplify the problem even further by letting:

Zn = min{Yn,4}, n = 0,1,2, . . . ,

and use that:

P(X9 = 3|X0 = 0) = P(Y8 = 3|Y0 = 1) = P(Z8 = 3|Z0 = 1)
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Example 4.11 (cont.)

The state space of the Markov chain {Zn} is {1,2,3,4} and its transition
matrix is:

Q =


1/8 7/8 0 0
0 2/8 6/8 0
0 0 3/8 5/8
0 0 0 1
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Example 4.11 (cont.)
We first calculate:

Q(4) =


0.0002 0.0256 0.2563 0.7178
0.0000 0.0039 0.0952 0.9009
0.0000 0.0000 0.0198 0.9802
0.0000 0.0000 0.0000 1.0000


In order to find Q(8), we may use that:

Q(8) = Q(4) ·Q(4)

However, since we only need to find P(X9 = 3|X0 = 0), we only need to
calculate:

P(X9 = 3|X0 = 0) = P(Z8 = 3|Z0 = 1) = Q8
1,3 =

4∑
k=1

Q4
1,k ·Q4

k,3

= 0.0002 · 0.2563 + 0.0256 · 0.0952 + 0.2563 · 0.0198 = 0.00756.
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