STK2130 - Lecture 10, part 1

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

The non-homogeneous Poisson Process

Definition

A counting process $\{N(t): t \geq 0\}$ is said to be a non-homogeneous Poisson process with intensity function $\lambda(t), t \geq 0$, if:
(i) $\quad N(0)=0$
(ii) $\quad\{N(t), t \geq 0\}$ has independent increments.
(iii) $\quad P(N(t+h)-N(t)=1)=\lambda(t) h+o(h)$
(iv) $\quad P(N(t+h)-N(t) \geq 2)=o(h)$

We also introduce the mean value function $m(t)$ defined by:

$$
m(t)=\int_{0}^{t} \lambda(u) d u
$$

The non-homogeneous Poisson Process (cont.)

Lemma (5.3)

If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then:

$$
P(N(t)=0)=e^{-m(t)}, \quad t \geq 0
$$

Corollary
If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, and let T_{1} be the time of the first event. Then we have:

$$
P\left(T_{1}>t\right)=P(N(t)=0)=e^{-m(t)}, \quad t \geq 0 .
$$

Moreover, the density of T_{1} is given by:

$$
f_{T_{1}}(t)=\lambda(t) e^{-m(t)}, \quad t \geq 0 .
$$

The non-homogeneous Poisson Process (cont.)

If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process, and $s>0$, we define:

$$
N_{s}(t)=N(s+t)-N(s) .
$$

Lemma (5.4)
If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then $\left\{N_{s}(t): t \geq 0\right\}$ is a non-homogeneous Poisson process with intensity function $\lambda_{s}(t)=\lambda(s+t), t \geq 0$.

NOTE:

$$
N_{s}(t-s)=N(t-s+s)-N(s)=N(t)-N(s)
$$

The non-homogeneous Poisson Process (cont.)

The mean value function of $\left\{N_{s}(t): t \geq 0\right\}$ is given by:

$$
\begin{aligned}
m_{s}(t) & =\int_{0}^{t} \lambda_{s}(u) d u \\
& =\int_{0}^{t} \lambda(s+u) d u \quad \text { Subst.: } v=s+u, d v=d u . \\
& =\int_{s}^{s+t} \lambda(v) d v \\
& =m(s+t)-m(s)
\end{aligned}
$$

NOTE:

$$
m_{s}(t-s)=m(t-s+s)-m(s)=m(t)-m(s)=\int_{s}^{t} \lambda(u) d u
$$

The non-homogeneous Poisson Process (cont.)

Theorem (5.3)
If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then:

$$
P(N(t)=n)=\frac{(m(t))^{n}}{n!} e^{-m(t)}, \quad t \geq 0, \quad n=0,1,2, \ldots
$$

PROOF: Induction with respect to n. By Lemma 5.3 the theorem holds for $n=0$.

We then assume that we have shown that:

$$
P(N(t)=n)=\frac{(m(t))^{n}}{n!} e^{-m(t)}, \quad t \geq 0
$$

and consider the probability $P(N(t)=n+1)$.

The non-homogeneous Poisson Process (cont.)

 In order to calculate this probability we condition on T_{1}, noting that if $s>t$, then obviously $P\left(N(t)=n+1 \mid T_{1}=s\right)=0$.$$
\begin{aligned}
P(N(t)=n+1) & =\int_{0}^{t} P\left(N(t)=n+1 \mid T_{1}=s\right) f_{T_{1}}(s) d s \\
& =\int_{0}^{t} P\left(N(t)=n+1 \mid T_{1}=s\right) \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} P\left(N(t)-N(s)=n \mid T_{1}=s\right) \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} P(N(t)-N(s)=n) \lambda(s) e^{-m(s)} d s \quad \text { (Indep. incr.) } \\
& =\int_{0}^{t} P\left(N_{s}(t-s)=n\right) \lambda(s) e^{-m(s)} d s
\end{aligned}
$$

The non-homogeneous Poisson Process (cont.)

By Lemma 5.4 and the induction hypothesis it follows that:

$$
\begin{aligned}
P\left(N_{s}(t-s)=n\right) & =\frac{\left(m_{s}(t-s)\right)^{n}}{n!} e^{-m_{s}(t-s)} \\
& =\frac{(m(t)-m(s)))^{n}}{n!} e^{-(m(t)-m(s))}
\end{aligned}
$$

By inserting this into the integral we get:

$$
\begin{aligned}
P(N(t)=n+1) & =\int_{0}^{t} P\left(N_{s}(t-s)=n\right) \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} \frac{(m(t)-m(s)))^{n}}{n!} e^{-(m(t)-m(s))} \lambda(s) e^{-m(s)} d s
\end{aligned}
$$

The non-homogeneous Poisson Process (cont.)

Simplifying the integrand yields:

$$
\begin{aligned}
P(N(t)=n+1) & =\int_{0}^{t} \frac{(m(t)-m(s)))^{n}}{n!} e^{-(m(t)-m(s))} \lambda(s) e^{-m(s)} d s \\
& =\frac{e^{-m(t)}}{n!} \int_{0}^{t}(m(t)-m(s))^{n} \lambda(s) d s
\end{aligned}
$$

Substitute: $\quad u=m(t)-m(s)=\int_{s}^{t} \lambda(v) d v$ and $d u=-\lambda(s) d s$, and get:

$$
\begin{aligned}
P(N(t)=n+1) & =-\frac{e^{-m(t)}}{n!} \int_{m(t)}^{0} u^{n} d u=\frac{e^{-m(t)}}{n!} \int_{0}^{m(t)} u^{n} d u \\
& =\frac{e^{-m(t)}}{n!} \cdot \frac{(m(t))^{n+1}}{n+1}=\frac{(m(t))^{n+1}}{(n+1)!} e^{-m(t)}
\end{aligned}
$$

which completes the induction proof

The non-homogeneous Poisson Process (cont.)

REMARK

We recall that $\left\{N_{s}(t): t \geq 0\right\}$ is a non-homogeneous Poisson Process with mean function:

$$
m_{s}(t)=m(s+t)-m(s)=\int_{0}^{s+t} \lambda(u) d u-\int_{0}^{s} \lambda(u) d u=\int_{s}^{s+t} \lambda(u) d u
$$

By Theorem 5.3 this implies that $N_{s}(t)=N(s+t)-N(s) \sim \operatorname{Po}\left(m_{s}(t)\right)$, and:

$$
E\left[N_{s}(t)\right]=m_{s}(t)=\int_{s}^{s+t} \lambda(u) d u
$$

Moreover, $N_{s}(t-s)=N(t)-N(s) \sim P o\left(m_{s}(t-s)\right)=P o(m(t)-m(s))$, and:

$$
E\left[N_{s}(t-s)\right]=m_{s}(t-s)=m(t)-m(s)=\int_{s}^{t} \lambda(u) d u
$$

Example 5.24

Hot dog stand, opens at 08 A.M., closes at 05 P.M.

- 08 A.M. - 11 A.M.: Steadily increasing intensity from 5 to 20
- 11 A.M. - 01 P.M.: Constant intensity of 20
- 01 P.M. - 05 P.M.: Steadily decreasing intensity from 20 to 12

By letting $t=0$ represent 8 a.m. the customer arrival intensity function, denoted $\lambda(t)$, can be expressed as:

$$
\lambda(t)= \begin{cases}5+5 t & 0 \leq t \leq 3 \\ 20 & 3 \leq t \leq 5 \\ 20-2(t-5) & 5 \leq t \leq 9\end{cases}
$$

Hence, we have:

$$
\begin{aligned}
& \lambda(0)=5+5 \cdot 0=5, \quad \lambda(3)=5+5 \cdot 3=20, \\
& \lambda(5)=20-2 \cdot(5-5)=20, \quad \lambda(9)=20-2 \cdot(9-5)=12 .
\end{aligned}
$$

Example 5.24 (cont.)

Figure: Customer arrival intensity function

Example 5.24 (cont.)

For $0 \leq s \leq t$ we let:
$N(t)=$ Number of arrivals at the hot dog stand in $[0, t]$
$N(s, t)=$ Number of arrivals at the hot dog stand in $[s, t]=N(t)-N(s)$.
By Theorem 5.3 $N(t) \sim \operatorname{Po}(m(t))$ and $N(s, t) \sim P o(m(t)-m(s))$, where:

$$
\begin{aligned}
& m(t)=\int_{0}^{t} \lambda(u) d u, \quad 0 \leq t \\
& m(t)-m(s)=\int_{s}^{t} \lambda(u) d u, \quad 0 \leq s \leq t
\end{aligned}
$$

Example 5.24 (cont.)

Ex. A. What is the expected number of arrivals between 8:30 A.M. and 9:30 A.M? What is the probability that no customers arrive in this period?

SOLUTION: 8:30 A.M. and 9:30 A.M. correspond to respectively $s=\frac{1}{2}$ and $t=\frac{3}{2}$. From this we get that:

$$
\begin{aligned}
E\left[N\left(\frac{1}{2}, \frac{3}{2}\right)\right] & =m\left(\frac{3}{2}\right)-m\left(\frac{1}{2}\right)=\int_{1 / 2}^{3 / 2} \lambda(u) d u=\int_{1 / 2}^{3 / 2}(5+5 u) d u \\
& =\left\lvert\, \begin{array}{l}
(3 / 2) \\
(1 / 2)
\end{array}\left(5 t+\frac{5}{2} t^{2}\right)\right. \\
& =\left(\frac{15}{2}+\frac{45}{8}\right)-\left(\frac{5}{2}+\frac{5}{8}\right)=\frac{105}{8}-\frac{25}{8}=10 .
\end{aligned}
$$

Moreover, we have:

$$
P\left(N\left(\frac{1}{2}, \frac{3}{2}\right)=0\right)=e^{-(m(t)-m(s))}=e^{-10} \approx 0.000045
$$

Example 5.24 (cont.)

Ex. B. What is the expected number of arrivals between 1:00 P.M. and 3:00 P.M? What is the probability that at least two customers arrive in this period? SOLUTION: 1:00 P.M. and 3:00 P.M correspond to respectively $s=5$ and $t=7$. From this we get that:

$$
\begin{aligned}
E[N(5,7)] & =m(7)-m(5)=\int_{5}^{7} \lambda(u) d u=\int_{5}^{7}(20-2(u-5)) d u \\
& \left.=\int_{5}^{7}(20-2 u+10) d u=\left.\right|_{5} ^{7}\left(20 t-t^{2}+10 t\right)\right) \\
& =(140-49+70)-(100-25+50) \\
& =161-125=36 .
\end{aligned}
$$

Example 5.24 (cont.)

Moreover, we have:

$$
\begin{aligned}
P(N(5,7) \geq 2) & =1-P(N(5,7) \leq 1) \\
& =1-[P(N(5,7)=0)+P(N(5,7)=1)] \\
& =1-\left[e^{-(m(7)-m(5))}+\frac{(m(7)-m(5))^{1}}{1!} e^{-(m(7)-m(5))}\right] \\
& =1-\left[1+\frac{36}{1}\right] \cdot e^{-36} \\
& =1-37 \cdot e^{-36} \approx 1
\end{aligned}
$$

Time sampling a homogeneous Poisson Process

We recall the following result (slightly modified):
Theorem (5.2)
We consider a Poisson process $\{N(t): t \geq 0\}$, and assume that $N(t)-N(s)=n$, where $s<t$. Then the arrival times $S_{1}<S_{2}<\cdots<S_{n}$ in (s, t] has the following joint density:

$$
f\left(s_{1}, s_{2}, \ldots, s_{n} \mid N(t)-N(s)=n\right)=\frac{n!}{(t-s)^{n}}, \quad s<s_{1}<s_{2}<\cdots<s_{n}<t
$$

The preceding result is often stated as follows:
Corollary (5.2)
Given that n events have occurred in the interval ($s, t]$, the times at which the events occur, considered as unordered random variables, are distributed independently and uniformly in the interval (s, t].

Time sampling a Poisson Process (cont.)

Let $\{N(t): t \geq 0\}$ be a homogeneous Poisson Process with rate λ where each event can be classified as either a Type 1 event or a Type 2 event.

If an event occurs at time t, then the probability that it is of type 1 is $p_{1}(t)$, and the probability that it is of type 2 is $p_{2}(t)=1-p_{1}(t)$.

We assume that the event type at time t is independent of the history of the Poisson process up to time t, and introduce:
$N_{i}(t)=$ The number of events of type i in $[0, t] \quad t \geq 0, \quad i=1,2$.

NOTE: $N(t)=N_{1}(t)+N_{2}(t)$. Moreover, it can be shown that for $s<t$:

$$
\left(N_{i}(t)-N_{i}(s) \mid N(t)-N(s)=n\right) \sim \operatorname{Bin}\left(n, \bar{p}_{i}(s, t)\right), \quad i=1,2,
$$

where:

$$
\bar{p}_{i}(s, t)=\frac{1}{t-s} \int_{s}^{t} p_{i}(u) d u, \quad i=1,2 .
$$

Time sampling a Poisson Process (cont.)

In order to explain this, we recall that conditional on the event that $N(t)-N(s)=n$, the n arrival times in the interval ($s, t]$ are independent and uniformly distributed.

Given that the arrival time of an event is u, the probability that this event is of type i is $p_{i}(u)$. Hence, the unconditional probability that the event is of type i is:

$$
P(\text { Type } i \text { event })=\int_{s}^{t} p_{i}(u) \frac{1}{t-s} d u=\bar{p}_{i}(s, t) .
$$

Since all event types are classified independent of the Poisson process, we have a series of n binomial experiments with the same probability of success.

Hence, we have:

$$
\left(N_{i}(t)-N_{i}(s) \mid N(t)-N(s)=n\right) \sim \operatorname{Bin}\left(n, \bar{p}_{i}(s, t)\right), \quad i=1,2
$$

Time sampling a Poisson Process (cont.)

We will now show that:

- $\left\{N_{i}(t): t \geq 0\right\}$ is a non-homogeneous Poisson Process with intensity function $\lambda p_{i}(t), i=1,2$.
- $\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are independent of each other.

In order to show the first claim, we verify that $\left\{N_{i}(t): t \geq 0\right\}$ satisfies the axioms.

The proof of the second claim is similar to the corresponding result for the case where the probabilities $p_{1}(t)$ and $p_{2}(t)$ are constant.

Time sampling a Poisson Process (cont.)

PROOF: Since $N(0)=0$, it follows that $N_{i}(0)=0, i=1,2$ as well.
Let $\left(s_{1}, t_{1}\right]$ and $\left(s_{2}, t_{2}\right]$ be disjoint. Since $\{N(t): t \geq 0\}$ has independent increments, we have for $i=1,2$:

$$
\begin{aligned}
P(& \left.N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k \mid N_{i}\left(t_{1}\right)-N_{i}\left(s_{1}\right)=\ell\right) \\
= & \sum_{n=k}^{\infty} P\left(N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k \mid N\left(t_{2}\right)-N\left(s_{2}\right)=n, N_{i}\left(t_{1}\right)-N_{i}\left(s_{1}\right)=\ell\right) \\
& \cdot P\left(N\left(t_{2}\right)-N\left(s_{2}\right)=n \mid N_{i}\left(t_{1}\right)-N_{i}\left(s_{1}\right)=\ell\right) \\
= & \sum_{n=k}^{\infty} P\left(N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k \mid N\left(t_{2}\right)-N\left(s_{2}\right)=n\right) \cdot P\left(N\left(t_{2}\right)-N\left(s_{2}\right)=n\right) \\
\quad= & P\left(N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k\right)
\end{aligned}
$$

Hence, $\left\{N_{i}(t): t \geq 0\right\}$ have independent increments, $i=1,2$.

Time sampling a Poisson Process (cont.)

Moreover, we have:

$$
\begin{aligned}
& P\left(N_{1}(t+h)-N_{1}(t)=1\right) \\
& \quad=P\left(N_{1}(t+h)-N_{1}(t)=1 \mid N(t+h)-N(t)=1\right) \cdot P(N(t+h)-N(t)=1) \\
& \quad+P\left(N_{1}(t+h)-N_{1}(t)=1 \mid N(t+h)-N(t) \geq 2\right) \cdot P(N(t+h)-N(t) \geq 2) \\
& \quad=p_{1}(t) \cdot(\lambda h+o(h))+o(h) \\
& \quad=\lambda p_{1}(t) h+o(h)
\end{aligned}
$$

and:

$$
P\left(N_{1}(t+h)-N_{1}(t) \geq 2\right) \leq P(N(t+h)-N(t) \geq 2)=o(h) .
$$

By similar arguments we get that:

$$
\begin{aligned}
& P\left(N_{2}(t+h)-N_{2}(t)=1\right)=\lambda p_{2}(t) h+o(h) \\
& P\left(N_{2}(t+h)-N_{2}(t) \geq 2\right)=o(h) .
\end{aligned}
$$

Time sampling a Poisson Process (cont.)

Before we prove that $\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are independent, we note that, as a consequence of the first part of the proof, we have for $s<t$ that:

$$
P\left(N_{i}(t)-N_{i}(s)=k\right)=\frac{\left(m_{i}(t)-m_{i}(s)\right)^{k}}{k!} e^{-\left(m_{i}(t)-m_{i}(s)\right)}, \quad k=0,1,2, \ldots
$$

where:

$$
\begin{aligned}
m_{i}(t)-m_{i}(s) & =\int_{0}^{t} \lambda p_{i}(u) d u-\int_{0}^{s} \lambda p_{i}(u) d u \\
& =\int_{s}^{t} \lambda p_{i}(u) d u=\lambda(t-s) \int_{s}^{t} p_{i}(u) \frac{1}{t-s} d u=\lambda \bar{p}_{i}(s, t)(t-s) .
\end{aligned}
$$

Note also that since $p_{1}(t)+p_{2}(t)=1$, we also have $\bar{p}_{1}(s, t)+\bar{p}_{2}(s, t)=1$.

Time sampling a Poisson Process (cont.)

To show that $\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are independent we let $s<t$, and consider:

$$
\begin{aligned}
P & {\left[\left(N_{1}(t)-N_{1}(s)=k\right) \cap\left(N_{2}(t)-N_{2}(s)=\ell\right)\right] } \\
& =P\left[\left(N_{1}(t)-N_{1}(s)=k\right) \cap(N(t)-N(s)=k+\ell)\right] \\
& =\binom{k+\ell}{k} \bar{p}_{1}(s, t)^{k} \cdot \bar{p}_{2}(s, t)^{\ell} \cdot \frac{[\lambda(t-s)]^{k+\ell}}{(k+\ell)!} e^{-\lambda(t-s)} \\
& =\frac{\left(\lambda \bar{p}_{1}(s, t)(t-s)\right)^{k}}{k!} e^{-\lambda \bar{p}_{1}(s, t)(t-s)} \cdot \frac{\left(\lambda \bar{p}_{2}(s, t)(t-s)\right)^{\ell}}{\ell!} e^{-\lambda \bar{p}_{2}(s, t)(t-s)} \\
& =P\left(N_{1}(t)-N_{1}(s)=k\right) \cdot P\left(N_{2}(t)-N_{2}(s)=\ell\right)
\end{aligned}
$$

Hence, we conclude that $\left(N_{1}(t)-N_{1}(s)\right)$ and $\left(N_{2}(t)-N_{2}(s)\right)$ are independent for all $s<t$, implying that $\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are independent.

Example 5.25 - An $M / G / \infty$ queue

Clients arrive at a server according to homogeneous Poisson process $\{N(t): t \geq 0\}$ with rate λ :

$$
N(t)=\text { Number of clients arriving in }[0, t], \quad t \geq 0 .
$$

We then introduce:
$X_{n}=$ The amount time it takes to serve the nth client, $\quad n=1,2, \ldots$
We assume that X_{1}, X_{2}, \ldots are independent and identically distributed with cumulative distribution function G, and also that X_{1}, X_{2}, \ldots are independent of $\{N(t): t \geq 0\}$.

Example 5.25 (cont.)

An $M / G / c$ queue is a stochastic process where:

- Clients arrive according to a Markovian counting process, (i.e. a Poisson process), which explains the M in the notation
- The amount time it takes to serve a client has cdf G
- The server has a capacity of c, i.e., c clients can be served at the same time.

In this case X_{1}, X_{2}, \ldots are independent and identically distributed, which is justified by assuming that the server has an infinite capacity, i.e., $c=\infty$. Thus, the time it takes to serve a client is not affected by the number of clients presently being served.

So in this particular case we have an $M / G / \infty$ queue.

Example 5.25 (cont.)

We then assume that $0 \leq s<t$, and introduce:

$$
D(s, t)=\text { Number of clients departing in }(s, t] .
$$

In order to find the probability distribution of $D(s, t)$ we start by arguing that:

$$
(D(s, t) \mid N(t)=n) \sim \operatorname{Bin}(n, \bar{p}(s, t)), \quad t \geq 0
$$

where:

$$
\bar{p}(s, t)=\frac{1}{t} \int_{s}^{t} G(u) d u
$$

In order to explain this, we recall that conditional on the event that $N(t)=n$, the n arrival times in the interval $[0, t]$ are independent and uniformly distributed.

Example 5.25 (cont.)

Given that the arrival time of a client is $u \in[0, t]$ and denoting the service time by X, the probability that this client departs in the interval ($s, t]$ is:

$$
P(s<u+X \leq t \mid u)= \begin{cases}G(t-u)-G(s-u) & \text { if } u<s \\ G(t-u) & \text { if } s \leq u<t\end{cases}
$$

Hence, the unconditional probability that the client departs in $[s, t]$ is:

$$
\begin{aligned}
P(s & <u+X \leq t)=\frac{1}{t} \cdot\left[\int_{0}^{s}(G(t-u)-G(s-u)) d u+\int_{s}^{t} G(t-u) d u\right] \\
& =\frac{1}{t} \cdot\left[\int_{0}^{t} G(t-u) d u-\int_{0}^{s} G(s-u) d u\right] \quad(\text { Subst.: } v=t-u \text { and } v=s-u .) \\
& =\frac{1}{t} \cdot\left[\int_{0}^{t} G(v) d v-\int_{0}^{s} G(v) d v\right]=\frac{1}{t} \int_{s}^{t} G(v) d v=\bar{p}(s, t)
\end{aligned}
$$

Example 5.25 (cont.)

Since X is independent of the Poisson process, we have a series of n binomial experiments with the same probability of success.

Hence, we have $(D(s, t) \mid N(t)=n) \sim \operatorname{Bin}(n, \bar{p}(s, t))$,
In the following we let $D(t)=D(0, t)$, and claim that $\{D(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function:

$$
\lambda(t)=\lambda \cdot G(t)
$$

In order to show this, we must verify that the axioms (i), (ii), (iii) and (iv) of the definition are satisfied. Axiom (i) states that $D(0)=0$, which is obviously satisfied.

In order to verify the other axioms we first find the unconditional probability distribution of $D(s, t)$.

Example 5.25 (cont.)

The probability distribution of $D(s, t)$ is obtained by conditioning on $N(t)$:

$$
\begin{aligned}
P(D(s, t)=k) & =\sum_{n=k}^{\infty} P(D(s, t)=k \mid N(t)=n) \cdot P(N(t)=n) \\
& =\sum_{n=k}^{\infty}\binom{n}{k}[\bar{p}(s, t)]^{k}[1-\bar{p}(s, t)]^{n-k} \cdot \frac{(\lambda t)^{n}}{n!} e^{-\lambda t} \\
& =\frac{(\bar{p}(s, t) \lambda t)^{k}}{k!} e^{-\bar{p}(s, t) \lambda t} \sum_{n=k}^{\infty} \frac{((1-\bar{p}(s, t)) \lambda t)^{n-k}}{(n-k)!} e^{-(1-\bar{p}(s, t)) \lambda t} \\
& =\frac{(\bar{p}(s, t) \lambda t)^{k}}{k!} e^{-\bar{p}(s, t) \lambda t} \sum_{j=0}^{\infty} \frac{((1-\bar{p}(s, t)) \lambda t)^{j}}{j!} e^{-(1-\bar{p}(s, t) \lambda t} \\
& =\frac{(\bar{p}(s, t) \lambda t)^{k}}{k!} e^{-\bar{p}(s, t) \lambda t}, \quad k=0,1,2, \ldots
\end{aligned}
$$

Example 5.25 (cont.)

Thus, we conclude that $D(s, t) \sim \operatorname{Po}(\bar{p}(s, t) \cdot \lambda t)$. By a similar argument it can also be shown that if $\left(s_{1}, t_{1}\right]$ and $\left(s_{2}, t_{2}\right]$ are disjoint intervals, then $D\left(s_{1}, t_{1}\right)$ and $D\left(s_{2}, t_{2}\right)$ are independent.

We recall that:

$$
\bar{p}(s, t)=\frac{1}{t} \int_{s}^{t} G(u) d u
$$

Hence, we get that:

$$
\bar{p}(s, t) \cdot \lambda t=\left[\frac{1}{t} \int_{s}^{t} G(u) d u\right] \cdot \lambda t=\int_{s}^{t} \lambda G(u) d u .
$$

From this we get that:

$$
D(s, t) \sim P o\left(\int_{s}^{t} \lambda G(u) d u\right)
$$

Example 5.25 (cont.)

By Taylor expansion we have for a given function f and $h>0$ that:

$$
f(h)=f(0)+f^{\prime}(0) h+o(h)
$$

Hence, we get:

$$
\begin{aligned}
& f_{1}(h)=\int_{t}^{t+h} \lambda G(u) d u=\lambda G(t) h+o(h) \\
& f_{2}(h)=e^{-a h}=1-a h+o(h)
\end{aligned}
$$

Hence, we get:

$$
\begin{aligned}
& P(D(t, t+h)=0)=e^{-(\lambda G(t) h+o(h))}=1-\lambda G(t) h+o(h) \\
& P(D(t, t+h)=1)=\frac{\lambda G(t) h+o(h)}{1!} e^{-(\lambda G(t) h+o(h))}=\lambda G(t) h+o(h) \\
& P(D(t, t+h) \geq 2)=1-[1-\lambda G(t) h+o(h)+\lambda G(t) h+o(h)]=o(h)
\end{aligned}
$$

Example 5.25 (cont.)

By combining all the above results, it follows that $\{D(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function:

$$
\lambda(t)=\lambda \cdot G(t)
$$

NOTE:

$$
\lim _{t \rightarrow \infty} \lambda(t)=\lambda \cdot \lim _{t \rightarrow \infty} G(t)=\lambda
$$

Hence, when t is large, the intensity function of the departure process $\{D(t): t \geq 0\}$ is approximately equal to the arrival rate λ.

The non-homogeneous Poisson process (cont.)

Let $\{N(t): t \geq 0\}$ be a non-homogeneous Poisson process with intensity function $\lambda(t)$, and mean value function $m(t)$. Furthermore, let:

$$
S_{n}=\text { The time of the } n \text {th event, } \quad n=1,2, \ldots
$$

We have shown that the density of $S_{1}=T_{1}$ is given by:

$$
f_{S_{1}}(t)=\lambda(t) e^{-m(t)}, \quad t \geq 0 .
$$

We shall now derive the density of $S_{n}, n=1,2, \ldots$.
In order to do so, it is convenient once again to introduce:

$$
N(s, t)=N(t)-N(s), \quad 0 \leq s<t
$$

The non-homogeneous Poisson process (cont.)

Let $h>0$. We then have:

$$
\begin{aligned}
P\left(t<S_{n} \leq t+h\right) & =P(N(t)=n-1 \cap N(t, t+h)=1)+o(h) \\
& =P(N(t)=n-1) \cdot P(N(t, t+h)=1)+o(h) \\
& =\frac{[m(t)]^{n-1}}{(n-1)!} e^{-m(t)} \cdot[\lambda(t) h+o(h)]+o(h) \\
& =\frac{[m(t)]^{n-1}}{(n-1)!} \lambda(t) e^{-m(t)} h+o(h)
\end{aligned}
$$

Hence, the density of S_{n} becomes:

$$
\begin{aligned}
f_{S_{n}}(t) & =\lim _{h \rightarrow 0} \frac{P\left(t<S_{n} \leq t+h\right)}{h}=\lim _{h \rightarrow 0}\left[\frac{[m(t)]^{n-1}}{(n-1)!} \lambda(t) e^{-m(t)}+\frac{o(h)}{h}\right] \\
& =\frac{[m(t)]^{n-1}}{(n-1)!} \lambda(t) e^{-m(t)}
\end{aligned}
$$

The non-homogeneous Poisson process (cont.)

NOTE 1. If $n=1$, we as before get:

$$
f_{S_{1}}(t)=\frac{[m(t)]^{1-1}}{(1-1)!} \lambda(t) e^{-m(t)}=\lambda(t) e^{-m(t)} .
$$

NOTE 2. If $\lambda(t)=\lambda$, then $m(t)=\int_{0}^{t} \lambda d u=\lambda t$, and we get:

$$
\begin{aligned}
f_{S_{n}}(t) & =\frac{[m(t)]^{n-1}}{(n-1)!} \lambda(t) e^{-m(t)} \\
& =\frac{[\lambda t]^{n-1}}{(n-1)!} \lambda e^{-\lambda t}=\frac{\lambda^{n}}{\Gamma(n)} t^{n-1} e^{-\lambda t}
\end{aligned}
$$

Thus, in this case $S_{n} \sim \operatorname{Gamma}(n, \lambda)$ as before.

