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Mean and variance of a Poisson distributed variable

We start out by showing how the mean and variance of a Poisson variable
can be calculated, and assume that X ~ Po(u). Thus, the probability
distribution of X is given by:

)

MX
P(X:x):;e‘“ x=0,1,2,...

In order to find the mean and the variance of X, we determine the moment
generating function:

e X b . eh)x
MX(t) = E[efX] = Z efX . %e_# — Z (IJ’ XI ) e—#
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Mean and variance (cont.)

The first derivative of the moment generating function is:

0

pMx(1) = %E[e’x] =E Pe“] = E[e¥ - X]

ot
By inserting t = 0, we get:

%MX(O) = E[e*¥ - X] = E[X].

Moreover, the second order derivative of Mx(t) is:

o2 P _ 9
S oMty = O Ele¥) = [W

etX:| — E[etX . X2]
By inserting t = 0, we get:
82
or
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My (0) = E[e>X - X?] = E[X?].



Mean and variance (cont.)

We then use this to calculate £[X] and E[X?] in the case where X ~ Po(u).

8 8 ¢ ‘
u(e'=1) _ gu(e=1) ot
implying that:
9 (1) .
E[X] = EMX(O) =e* ne® =p
Moreover,
82 2 t t 1
57 My (t) = 61‘2 et(e'=1) _ gu(e'=1) (ne')? + e =1 . el
implying that:
2 & 01 012 01 0 2
E[X?] = —5Mx(0) = e® =1 . (ue®)? + &€~V 1e® = 2 4 1.

or
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Mean and variance (cont.)

Hence, Var[X] becomes:

VarlX] = E[X?] — (EX)P = 1 + 1 — 1 = .

Thus, if X ~ Po(u), then E[X] = Var[X] = p.

If {N(t): t > 0} is a homogeneous Poisson process with rate A, we have
shown that:

N(t) ~ Po(\t).
Hence, we get that:

E[N(t)] = Var[N(£)] = At
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Sums of Poisson variables

Let Xi,..., X, be independent and assume that X; ~ Po(y;), i =1,...,n. We
then consider:

n
S=> X
i=1
Since the Xjs are independent, the moment generating function of S is given
by:
Ms(t) = E[e'S] = E[eX+ %] = E[e™]... E[e™]
— (e =) gun(e'=1) _ gt tpn)(e'=1)

This is the moment generating function of a Po(uy + - - - + un)-distribution.
Thus, we conclude that:

S~ Po(p1 + -+ + pn).
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Compound Poisson Process

Let {N(t) : t > 0} be a Poisson process, and let Y;, Y, ... be a sequence of
independent and identically distributed variables, and independent of
{N(t): t > 0}.

We then define a new stochastic process {X(t) : t > 0} such that:

®
X(t)y=)_ Y, t=0.
i=1

The process {X(t) : t > 0} is said to be a compound Poisson process.

NOTE: If P(Y;=1)=1,i=1,2,..., then obviously X(t) = N(t). Thus, a
(regular) Poisson process is a special case of a compound Poisson process.
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Compound Poisson Process (cont.)

EXAMPLE 1. An insurance company receives claims from its clients at
random points of time. We let:

N(t) = The number of claims in [0,t], t>0

and assume that {N(f) : t > 0} is a Poisson process with rate A\. Moreover,
we let:

Y; = The size in NOK of the ith claim, i=1,2,...,
and assume that Y, Yo, ... are independent and identically distributed
variables and independent of {N(t) : t > 0}.

We then introduce:

N(?)
X(t)=>"Y;=The sumof claims in [0, ], t>0.
i=1

Then {X(t) : t > 0} is a compound Poisson process.
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Compound Poisson Process (cont.)

EXAMPLE 2. A stock is traded at random points in time. We let:
N(t) = The number of trades in [0,f], t>0

and assume that {N(t) : t > 0} is a Poisson process with rate A. Moreover,
we let:

Y; = The change in stock price the ith time the stock is traded, i=1,2,...,

and assume that Y, Ys, ... are independent and identically distributed
variables and independent of {N(t) : t > 0}.

We then introduce:

N(t)
X(t) = Z Y; = The cumulative change in stock price [0,], t>0.
i=1

Then {X(t) : t > 0} is a compound Poisson process.
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Compound Poisson Process (cont.)

Let E[Y]] = pand E[Y?] =v,i=1,2,.... Thus, Var[Y]] = v — pi2.

The expectation and variance of X(t), calculated by conditioning on N(f) is:

EIX(t)] = E[E[Y_ YiIN(t)=n]] = E[N()u] = At-p = At-E[Y]

i=1

Var[X(£)] = Var[E[Y YiIN(t) = n]] + E[Var[>_ YiIN(t) = n]]

i=1 i=1
— Var[N(t)] + EIN(t)(v — 12)] = 2 Var[N(t)] + (v — p2)EIN(D)]

= (P4 (v — p2)At = At-v = At-E[Y?]
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Example 5.26

Families migrating to an area following a Poisson process, {N(t) : t > 0}, with
rate A = 2 per week.

N(t) = Number of families migrating in [0,1], > 0.
Y; = Number of people in the jth family, i=1,2,...
We assume that the probability distribution for the Y;s is given by:
P(Yi=1)=1 P(Yi=2)=2 P,=3)=% P(Yi=4)=1,
Hence, we get:

E[Y,-]:1-%+2-%+3-§+4g:—[1+4+6+4] 5=3

E[YA]=12-1+2%.2+32. 2442 —77[1+8+18+16]
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Example 5.26 (cont.)

We then consider the compound Poisson process {X(t) : t > 0}, where:

X(t) = The number of people migrating in [0,t], f>0.

We then have:

EIX(5)] = A-5-E[Y] = 2.5.15 = 120 _ 25
Var[X(5)] = A-5-E[Y?] = 2.5- 4 = 40 — 215
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Example 5.27 — An M/G/1 queue

We consider a server with capacity ¢ = 1. Thus, the server can serve one
client at a time. The clients arrive according to a homogeneous Poisson
process with rate \.

We assume that the clients are served according to a first come, first served
rule. That is, clients are served in the order in which they arrive, those who
arrive first are served first.

We let:
Si = The time it takes to serve the ith client, i=12,...

Since we are considering an M/G/1 queue, Si, So, ... are independent and
identically distributed variables with cumulative distribution G.

In this case, however, we will only consider the mean and standard deviation
of this distribution:

E[S,] = W, Var[S,-] = 0'2.

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 10, part 2 13/33



|
Example 5.27 (cont.)

We let:

B; = The time from the service of the ith client starts,
until the queue is empty, i=1,2,...
Since the clients arrive according to a homogeneous Poisson process, and

since we apply a first come, first served rule, all the B;s are identically
distributed unless the size of the queue explodes.

Our goal is to find E[B] and Var[B], where B is a random variable having the
same distribution as the B;s.

Assuming that the ith client arrives at time u, we then argue that:

Nu(S:)
Bi=Si+ Y By
j=1
where N,(t) = N(t) — N(u) as usual.
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Example 5.27 (cont.)

NOTE 1. N,(S;) is the number of clients arriving while the ith client is being
served. Each of these clients starts a new busy period for the server, and all
these periods have to be added to the time it takes to serve the ith client
before the queue is empty.

NOTE 2. {N,(t) : t > 0} is also a homogeneous Poisson process with rate ).
Hence, the process {X,(f) : t > 0}, where:

Ny(t)

Z Bl+ja tZ ’

is a compound Poisson process.
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Example 5.27 (cont.)
By conditioning on S; we then get:

Ny(Si)
E[BilS]|=Si+E [ > Bujl 3/] =S+ ASE[B] = (1 + AE[B])S;
j=1

Hence, it follows that:
E[B] = E[E[B/ S]] = (1 + AE[B)E[S] = (1 + AE[Bl)u
We then try to solve this equation with respect to E[B] and obtain:
E[BJ(1 — Au) = p

Since we obviously cannot have E[B] < 0, this equation only makes sense if
Ap < 1, in which case we get:

N
Bl = 5
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Example 5.27 (cont.)

Similarly, by conditioning on S; we also get:

Nu(Si)
Var[B;|Sj] = Var [ Z Bi+f | Si] = )\S,-E[B2]
j=1
Hence, it follows that:
Var[B] = Var[E[B;| S]] + E[Var[B;|Sj]]

= Var[(1 + AE[B])S]] + E]NSE[B?]]

(1 + AE[B])? Var[Si] + \E[S)]E[B?]

(1 + ME[B])?c® + \uE[B?]

(1 + AE[B])202 + Au(Var[B] + (E[B])?)
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Example 5.27 (cont.)

Thus, we have arrived at the following equation:
Var[B] = (1 + AE[B])?0? + \u(Var[B] + (E[B])?),
which we solve with respect to Var[B] and obtain:

(1 + \E[B])?02 + \u(E[B])?

Var[B] = T

By inserting that E[B] = n/(1 — Au), and simplifying we eventually get:

o 4+ B

A= T
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Example 5.27 (cont.)

NOTE: When calculating E[B] and Var[B], we made the assumption that:
A <1

This condition is equivalent to:
pw<1/A

Thus, for the solutions to be valid, the expected service time must be less
than the expected time between arrivals.

If © > 1/A, the clients will arrive too frequently compared to the average
service time (on average), and as a result the size of the queue will eventually
explode.

Under such circumstances the B;s will not have a stable distribution. Instead
the B;s will tend to get higher and higher as i grows.
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Compound Poisson Process (cont.)

As before, we let {N(t) : t > 0} be a homogeneous Poisson process with rate
A, andlet Yy, Yo, ... be a sequence of independent and identically distributed
variables, and independent of {N(t) : t > 0}.

Finally, let {X(¢) : t > 0} be the resulting compound Poisson process. That is:

We now consider the special case where:

where the set ) is finite or countably infinite, and Zjey pj=1.
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Compound Poisson Process (cont.)

We then let:
N;(t) = The number of events in [0, f] where Y; = y;, je .
Then it follows from previous results that {N(t) : t > 0} is a homogeneous

Poisson process with rate Ap;. Moreover, the processes are independent of
each other.

Hence it also follows that for any given t > 0, Nj(t), Nx(t), ... are independent
Poisson variables, and that:

EIN(t)] = Apjt, t>0, je.
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Compound Poisson Process (cont.)

Moreover, it follows that we have:

X(t)=>"yN(1)

jey
Hence, we get that:
EIX(O] = E | 2_yN(0)| = >_ %EIN ()]
jey jey
=Y ydpit = M- yP(Yi=y) = At-E[Y],
jey jey
as before.
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Compound Poisson Process (cont.)

Similarly, by using that X(t) = >_,,, y;N;(t) we also get:

Var[X(t)] = Var

> yiNi(h)

jeY

= ny Var[N;(t)] by the independence of the N;(t)s

jey
=Y yPpit = M- > yEP(Yi=y) = At-E[Y7],
jey jey

as before.
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Compound Poisson Process (cont.)

If Z ~ Po(u), it can be shown that Z ~ N(u, 1) provided that the expected
value, p is large.

Hence, by using the above representation for the compound Poisson process
{X(t) : t > 0}, it follows that when t is large, we have:

= > ViNi(t) = N(Atp, Atv)
jey

where = E[Y;] and v = E[Y?].
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Example 5.28 — Normal approximation

From Example 5.26 we recall that {N(t) : t > 0} is a homogeneous Poisson
process with rate A\ = 2 per week, where:

N(t) = Number of families migrating in [0,1], > 0.
Y: = Number of people in the ith family, i=1,2,...
Moreover, we calculated that E[Y;] = 3, and E[Y?] = £.

We want to calculate the approximate probability that at least 240 people
migrate within the next 50 weeks.

E[X(50)] = ME[Y;] =250 3 = 250,

Var[X(50)] = \t- E[Y?] =250 4 = 4300,
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Example 5.28 — Normal approximation

Using the so-called continuity correction we then have:
P(X(50) > 240) = P(X(50) > 239) ~ P(U > 239.5)
where U ~ N(250, £90),

By using this we get:

P(X(50) > 240) ~ P(U > 239.5) = P U— 250 > 239.5 — 250
\/4300/6 ~ /4300/6

=1 - $(—0.3922) = 0.6525

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 10, part 2 26/33



——
Sums of compound Poisson Processes
Let {X(t) : t > 0} be a compound Poisson process with rate A;, and where

the random variables associated with the events have a cumulative
distribution function G;, i =1,...,n.

We assume that the processes {Xi(t) : t > 0}, ..., {Xp(t) : t > 0} are
independent, and let:

n
X(t)=>_X(t). t=o.
i=1
Then {X(t) : t > 0} is also a compound Poisson process with rate:
n
A=)
i=1

and where the random variables associated with the events have a
cumulative distribution function:

6) =Y VG
i=1
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Sums of compound Poisson Processes (cont.)

To explain why this is true, we first let {N;(t) : t > 0} denote the Poisson
process generating the events of the compound process {Xi(t) : t > 0},
i=1,...,n

We then let {N(t) : t > 0} denote the process generating the events of the
process {X(t) : t > 0}. Then we must have:

N(t) = an Ni(t), t>0.
i=1

Since we know that:
Ni(t) ~ Po(Nt), t>0, i=1,...,n,

and a sum of independent Poisson variables is a Poisson variable with rate
equal to the sum of the independent variables, it follows that:

N(t) ~ Po(Ait+ -+ Ant), t>0.
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Sums of compound Poisson Processes (cont.)

By extending this argument, we may verify the axioms and show that
{N(t) : t > 0} is a Poisson process with rate:

n
A=)\
i=1

Moreover, it can be shown that for any given event, the probability that it is
generated by the Poisson process {N;(t) : t > 0} is A\ij/A, i=1,...,n

We now consider an arbitrary event with associated random variable Y, and

let / denote the index of the Poisson process generating this event. Then by
conditioning on /, we have:

P(Y <y) ZP Y <yll=i)P Z)"G, u

i=1
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Sums of compound Poisson Processes (cont.)

EXAMPLE. As an extension of Example 5.26 we assume that {N;(f) : t > 0}
is a homogeneous Poisson process with rate \;, i = 1,2, where:

N;(t) = Number of families from country i in [0,f], >0

Y;j = Number of people in the jth family from country i/, j=1,2,...

We assume that Ay = 2 per week, and A\, = 3 per week, and that:
P(Yij=1)=¢, P(Yy=2)=% P(Y;;=3)=5 P(Yy=4)=g,

P(Vyy=1)=2 P(Yy=2)=3 P(Yy=3)=4 P(Vy=4)=1
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Sums of compound Poisson Processes (cont.)

We then let N(t) = Ny(t) + No(t), and define:
N(t)

Xt =>"v,
j=1

where Y; denotes the number of people in the jth family in the combined
process.

Then {N(t) : t > 0} is a Poisson process withrate A = Ay + .2 =2+ 3 =5.

Moreover, {X(t) : t > 0} is a compound Poisson process, and we note that:

A2 X3

A5 A5
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Sums of compound Poisson Processes (cont.)

The distribution of Y; is given by:

PlYi=1)=%}-2+2.3=2%
P(Yj=2)=2.242.8_10
P(Y,=3)=2.24+1.2-7
P(Yj=4)=1-24+1.2=-2%

Hence, we get:

ElV]=1-%+2-8+3-L+4.25=5

™
|on
|

E[YA =125 +22. 10 4+3%. L +42. 2 =
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Sums of compound Poisson Processes (cont.)

We then have:

E[X()] = A-3-E[Y] =5-3-8 = 185 — 345

Var[X(3)] = X\-3-E[Yf] = 5-3- 31 = 285 _ 955
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