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Mean and variance of a Poisson distributed variable

We start out by showing how the mean and variance of a Poisson variable
can be calculated, and assume that X ∼ Po(µ). Thus, the probability
distribution of X is given by:

P(X = x) =
µx

x!
e−µ, x = 0,1,2, . . .

In order to find the mean and the variance of X , we determine the moment
generating function:

MX (t) = E [etX ] =
∞∑

x=0

etx · µ
x

x!
e−µ =

∞∑
x=0

(µ · et)x

x!
e−µ

= e−µ · eµet
·
∞∑

x=0

(µ · et)x

x!
e−µet

= eµ(et−1).
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Mean and variance (cont.)
The first derivative of the moment generating function is:

∂

∂t
MX (t) =

∂

∂t
E [etX ] = E

[
∂

∂t
etX
]
= E [etX · X ]

By inserting t = 0, we get:

∂

∂t
MX (0) = E [e0·X · X ] = E [X ].

Moreover, the second order derivative of MX (t) is:

∂2

∂t2 MX (t) =
∂2

∂t2 E [etX ] = E
[
∂2

∂t2 etX
]
= E [etX · X 2]

By inserting t = 0, we get:

∂2

∂t2 MX (0) = E [e0·X · X 2] = E [X 2].
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Mean and variance (cont.)
We then use this to calculate E [X ] and E [X 2] in the case where X ∼ Po(µ).

∂

∂t
MX (t) =

∂

∂t
eµ(et−1) = eµ(et−1) · µet ,

implying that:

E [X ] =
∂

∂t
MX (0) = eµ(e0−1) · µe0 = µ

Moreover,

∂2

∂t2 MX (t) =
∂2

∂t2 eµ(et−1) = eµ(et−1) · (µet)2 + eµ(et−1) · µet ,

implying that:

E [X 2] =
∂2

∂t2 MX (0) = eµ(e0−1) · (µe0)2 + eµ(e0−1) · µe0 = µ2 + µ.
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Mean and variance (cont.)

Hence, Var[X ] becomes:

Var[X ] = E [X 2]− (E [X ])2 = µ2 + µ− µ2 = µ.

Thus, if X ∼ Po(µ), then E [X ] = Var[X ] = µ.

If {N(t) : t ≥ 0} is a homogeneous Poisson process with rate λ, we have
shown that:

N(t) ∼ Po(λt).

Hence, we get that:

E [N(t)] = Var[N(t)] = λt
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Sums of Poisson variables
Let X1, . . . ,Xn be independent and assume that Xi ∼ Po(µi), i = 1, . . . ,n. We
then consider:

S =
n∑

i=1

Xi

Since the Xis are independent, the moment generating function of S is given
by:

MS(t) = E [etS] = E [etX1+···+tXn ] = E [etX1 ] · · ·E [etXn ]

= eµ1(et−1) · · · eµn(et−1) = e(µ1+···+µn)(et−1)

This is the moment generating function of a Po(µ1 + · · ·+ µn)-distribution.
Thus, we conclude that:

S ∼ Po(µ1 + · · ·+ µn).
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Compound Poisson Process

Let {N(t) : t ≥ 0} be a Poisson process, and let Y1,Y2, . . . be a sequence of
independent and identically distributed variables, and independent of
{N(t) : t ≥ 0}.

We then define a new stochastic process {X (t) : t ≥ 0} such that:

X (t) =
N(t)∑
i=1

Yi , t ≥ 0.

The process {X (t) : t ≥ 0} is said to be a compound Poisson process.

NOTE: If P(Yi = 1) = 1, i = 1,2, . . ., then obviously X (t) = N(t). Thus, a
(regular) Poisson process is a special case of a compound Poisson process.
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Compound Poisson Process (cont.)
EXAMPLE 1. An insurance company receives claims from its clients at
random points of time. We let:

N(t) = The number of claims in [0, t ], t ≥ 0

and assume that {N(t) : t ≥ 0} is a Poisson process with rate λ. Moreover,
we let:

Yi = The size in NOK of the i th claim, i = 1,2, . . . ,

and assume that Y1,Y2, . . . are independent and identically distributed
variables and independent of {N(t) : t ≥ 0}.

We then introduce:

X (t) =
N(t)∑
i=1

Yi = The sum of claims in [0, t ], t ≥ 0.

Then {X (t) : t ≥ 0} is a compound Poisson process.
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Compound Poisson Process (cont.)

EXAMPLE 2. A stock is traded at random points in time. We let:

N(t) = The number of trades in [0, t ], t ≥ 0

and assume that {N(t) : t ≥ 0} is a Poisson process with rate λ. Moreover,
we let:

Yi = The change in stock price the i th time the stock is traded, i = 1,2, . . . ,

and assume that Y1,Y2, . . . are independent and identically distributed
variables and independent of {N(t) : t ≥ 0}.

We then introduce:

X (t) =
N(t)∑
i=1

Yi = The cumulative change in stock price [0, t ], t ≥ 0.

Then {X (t) : t ≥ 0} is a compound Poisson process.
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Compound Poisson Process (cont.)

Let E [Yi ] = µ and E [Y 2
i ] = ν, i = 1,2, . . .. Thus, Var[Yi ] = ν − µ2.

The expectation and variance of X (t), calculated by conditioning on N(t) is:

E [X (t)] = E [E [
n∑

i=1

Yi |N(t) = n]] = E [N(t)µ] = λt · µ = λt · E [Yi ]

Var[X (t)] = Var[E [
n∑

i=1

Yi |N(t) = n]] + E [Var[
n∑

i=1

Yi |N(t) = n]]

= Var[N(t)µ] + E [N(t)(ν − µ2)] = µ2 Var[N(t)] + (ν − µ2)E [N(t)]

= µ2λt + (ν − µ2)λt = λt · ν = λt · E [Y 2
i ]
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Example 5.26

Families migrating to an area following a Poisson process, {N(t) : t ≥ 0}, with
rate λ = 2 per week.

N(t) = Number of families migrating in [0, t ], t ≥ 0.

Yi = Number of people in the i th family, i = 1,2, . . .

We assume that the probability distribution for the Yis is given by:

P(Yi = 1) = 1
6 , P(Yi = 2) = 2

6 , P(Yi = 3) = 2
6 , P(Yi = 4) = 1

6 .

Hence, we get:

E [Yi ] = 1 · 1
6 + 2 · 2

6 + 3 · 2
6 + 4 · 1

6 =
1
6
[1 + 4 + 6 + 4] = 15

6 = 5
2

E [Y 2
i ] = 12 · 1

6 + 22 · 2
6 + 32 · 2

6 + 42 · 1
6 =

1
6
[1 + 8 + 18 + 16] = 43

6
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Example 5.26 (cont.)

We then consider the compound Poisson process {X (t) : t ≥ 0}, where:

X (t) = The number of people migrating in [0, t ], f ≥ 0.

We then have:

E [X (5)] = λ · 5 · E [Yi ] = 2 · 5 · 15
6 = 150

6 = 25

Var[X (5)] = λ · 5 · E [Y 2
i ] = 2 · 5 · 43

6 = 430
6 = 215

3 .
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Example 5.27 – An M/G/1 queue
We consider a server with capacity c = 1. Thus, the server can serve one
client at a time. The clients arrive according to a homogeneous Poisson
process with rate λ.

We assume that the clients are served according to a first come, first served
rule. That is, clients are served in the order in which they arrive, those who
arrive first are served first.

We let:

Si = The time it takes to serve the i th client, i = 1,2, . . .

Since we are considering an M/G/1 queue, S1,S2, . . . are independent and
identically distributed variables with cumulative distribution G.

In this case, however, we will only consider the mean and standard deviation
of this distribution:

E [Si ] = µ, Var[Si ] = σ2.
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Example 5.27 (cont.)
We let:

Bi = The time from the service of the i th client starts,
until the queue is empty, i = 1,2, . . .

Since the clients arrive according to a homogeneous Poisson process, and
since we apply a first come, first served rule, all the Bis are identically
distributed unless the size of the queue explodes.

Our goal is to find E [B] and Var[B], where B is a random variable having the
same distribution as the Bis.

Assuming that the i th client arrives at time u, we then argue that:

Bi = Si +

Nu(Si )∑
j=1

Bi+j ,

where Nu(t) = N(t)− N(u) as usual.
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Example 5.27 (cont.)

NOTE 1. Nu(Si) is the number of clients arriving while the i th client is being
served. Each of these clients starts a new busy period for the server, and all
these periods have to be added to the time it takes to serve the i th client
before the queue is empty.

NOTE 2. {Nu(t) : t ≥ 0} is also a homogeneous Poisson process with rate λ.
Hence, the process {Xu(t) : t ≥ 0}, where:

Xu(t) =
Nu(t)∑
j=1

Bi+j , t ≥ 0,

is a compound Poisson process.
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Example 5.27 (cont.)
By conditioning on Si we then get:

E [Bi |Si ] = Si + E

Nu(Si )∑
j=1

Bi+j |Si

 = Si + λSiE [B] = (1 + λE [B])Si

Hence, it follows that:

E [B] = E [E [Bi |Si ]] = (1 + λE [B])E [Si ] = (1 + λE [B])µ

We then try to solve this equation with respect to E [B] and obtain:

E [B](1− λµ) = µ

Since we obviously cannot have E [B] < 0, this equation only makes sense if
λµ < 1, in which case we get:

E [B] =
µ

1− λµ
.
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Example 5.27 (cont.)

Similarly, by conditioning on Si we also get:

Var[Bi |Si ] = Var

Nu(Si )∑
j=1

Bi+j |Si

 = λSiE [B2]

Hence, it follows that:

Var[B] = Var[E [Bi |Si ]] + E [Var[Bi |Si ]]

= Var[(1 + λE [B])Si ] + E [λSiE [B2]]

= (1 + λE [B])2 Var[Si ] + λE [Si ]E [B2]

= (1 + λE [B])2σ2 + λµE [B2]

= (1 + λE [B])2σ2 + λµ(Var[B] + (E [B])2)
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Example 5.27 (cont.)

Thus, we have arrived at the following equation:

Var[B] = (1 + λE [B])2σ2 + λµ(Var[B] + (E [B])2),

which we solve with respect to Var[B] and obtain:

Var[B] =
(1 + λE [B])2σ2 + λµ(E [B])2

1− λµ

By inserting that E [B] = µ/(1− λµ), and simplifying we eventually get:

Var[B] =
σ2 + λµ3

(1− λµ)3
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Example 5.27 (cont.)

NOTE: When calculating E [B] and Var[B], we made the assumption that:

λµ < 1

This condition is equivalent to:

µ < 1/λ

Thus, for the solutions to be valid, the expected service time must be less
than the expected time between arrivals.

If µ ≥ 1/λ, the clients will arrive too frequently compared to the average
service time (on average), and as a result the size of the queue will eventually
explode.

Under such circumstances the Bis will not have a stable distribution. Instead
the Bis will tend to get higher and higher as i grows.
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Compound Poisson Process (cont.)

As before, we let {N(t) : t ≥ 0} be a homogeneous Poisson process with rate
λ, and let Y1,Y2, . . . be a sequence of independent and identically distributed
variables, and independent of {N(t) : t ≥ 0}.

Finally, let {X (t) : t ≥ 0} be the resulting compound Poisson process. That is:

X (t) =
N(t)∑
i=1

Yi , t ≥ 0.

We now consider the special case where:

P(Yi = yj) = pj , j ∈ Y,

where the set Y is finite or countably infinite, and
∑

j∈Y pj = 1.
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Compound Poisson Process (cont.)

We then let:

Nj(t) = The number of events in [0, t ] where Yi = yj , j ∈ Y.

Then it follows from previous results that {Nj(t) : t ≥ 0} is a homogeneous
Poisson process with rate λpj . Moreover, the processes are independent of
each other.

Hence it also follows that for any given t > 0, N1(t),N2(t), . . . are independent
Poisson variables, and that:

E [Nj(t)] = λpj t , t ≥ 0, j ∈ Y.
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Compound Poisson Process (cont.)

Moreover, it follows that we have:

X (t) =
∑
j∈Y

yjNj(t).

Hence, we get that:

E [X (t)] = E

∑
j∈Y

yjNj(t)

 =
∑
j∈Y

yjE [Nj(t)]

=
∑
j∈Y

yjλpj t = λt ·
∑
j∈Y

yjP(Yi = yj) = λt · E [Yi ],

as before.
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Compound Poisson Process (cont.)

Similarly, by using that X (t) =
∑

j∈Y yjNj(t) we also get:

Var[X (t)] = Var

∑
j∈Y

yjNj(t)


=
∑
j∈Y

y2
j Var[Nj(t)] by the independence of the Nj(t)s

=
∑
j∈Y

y2
j λpj t = λt ·

∑
j∈Y

y2
j P(Yi = yj) = λt · E [Y 2

i ],

as before.
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Compound Poisson Process (cont.)

If Z ∼ Po(µ), it can be shown that Z ≈ N(µ, µ) provided that the expected
value, µ is large.

Hence, by using the above representation for the compound Poisson process
{X (t) : t ≥ 0}, it follows that when t is large, we have:

X (t) =
∑
j∈Y

yjNj(t) ≈ N(λtµ, λtν)

where µ = E [Yi ] and ν = E [Y 2
i ].
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Example 5.28 – Normal approximation

From Example 5.26 we recall that {N(t) : t ≥ 0} is a homogeneous Poisson
process with rate λ = 2 per week, where:

N(t) = Number of families migrating in [0, t ], t ≥ 0.

Yi = Number of people in the i th family, i = 1,2, . . .

Moreover, we calculated that E [Yi ] =
5
2 , and E [Y 2

i ] =
43
6 .

We want to calculate the approximate probability that at least 240 people
migrate within the next 50 weeks.

E [X (50)] = λtE [Yi ] = 2 · 50 · 5
2 = 250,

Var[X (50)] = λt · E [Y 2
i ] = 2 · 50 · 43

6 = 4300
6 .
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Example 5.28 – Normal approximation

Using the so-called continuity correction we then have:

P(X (50) ≥ 240) = P(X (50) > 239) ≈ P(U ≥ 239.5)

where U ∼ N(250, 4300
6 ).

By using this we get:

P(X (50) ≥ 240) ≈ P(U ≥ 239.5) = P

(
U − 250√

4300/6
≥ 239.5− 250√

4300/6

)

= 1− φ(−0.3922) = 0.6525
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Sums of compound Poisson Processes
Let {Xi(t) : t ≥ 0} be a compound Poisson process with rate λi , and where
the random variables associated with the events have a cumulative
distribution function Gi , i = 1, . . . ,n.

We assume that the processes {X1(t) : t ≥ 0}, . . . , {Xn(t) : t ≥ 0} are
independent, and let:

X (t) =
n∑

i=1

Xi(t), t ≥ 0.

Then {X (t) : t ≥ 0} is also a compound Poisson process with rate:

λ =
n∑

i=1

λi

and where the random variables associated with the events have a
cumulative distribution function:

G(y) =
n∑

i=1

λi

λ
Gi(y).
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Sums of compound Poisson Processes (cont.)
To explain why this is true, we first let {Ni(t) : t ≥ 0} denote the Poisson
process generating the events of the compound process {Xi(t) : t ≥ 0},
i = 1, . . . ,n.

We then let {N(t) : t ≥ 0} denote the process generating the events of the
process {X (t) : t ≥ 0}. Then we must have:

N(t) =
n∑

i=1

Ni(t), t ≥ 0.

Since we know that:

Ni(t) ∼ Po(λi t), t ≥ 0, i = 1, . . . ,n,

and a sum of independent Poisson variables is a Poisson variable with rate
equal to the sum of the independent variables, it follows that:

N(t) ∼ Po(λ1t + · · ·+ λnt), t ≥ 0.
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Sums of compound Poisson Processes (cont.)

By extending this argument, we may verify the axioms and show that
{N(t) : t ≥ 0} is a Poisson process with rate:

λ =
n∑

i=1

λi .

Moreover, it can be shown that for any given event, the probability that it is
generated by the Poisson process {Ni(t) : t ≥ 0} is λi/λ, i = 1, . . . ,n.

We now consider an arbitrary event with associated random variable Y , and
let I denote the index of the Poisson process generating this event. Then by
conditioning on I, we have:

P(Y ≤ y) =
n∑

i=1

P(Y ≤ y |I = i)P(I = i) =
n∑

i=1

λi

λ
Gi(y) �
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Sums of compound Poisson Processes (cont.)

EXAMPLE. As an extension of Example 5.26 we assume that {Ni(t) : t ≥ 0}
is a homogeneous Poisson process with rate λi , i = 1,2, where:

Ni(t) = Number of families from country i in [0, t ], t ≥ 0

Yij = Number of people in the j th family from country i , j = 1,2, . . .

We assume that λ1 = 2 per week, and λ2 = 3 per week, and that:

P(Y1j = 1) = 1
6 , P(Y1j = 2) = 2

6 , P(Y1j = 3) = 2
6 , P(Y1j = 4) = 1

6 ,

P(Y2j = 1) = 2
6 , P(Y2j = 2) = 2

6 , P(Y2j = 3) = 1
6 , P(Y2j = 4) = 1

6
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Sums of compound Poisson Processes (cont.)

We then let N(t) = N1(t) + N2(t), and define:

X (t) =
N(t)∑
j=1

Yj ,

where Yj denotes the number of people in the j th family in the combined
process.

Then {N(t) : t ≥ 0} is a Poisson process with rate λ = λ1 + λ2 = 2 + 3 = 5.

Moreover, {X (t) : t ≥ 0} is a compound Poisson process, and we note that:

λ1

λ
=

2
5
,

λ2

λ
=

3
5
.
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Sums of compound Poisson Processes (cont.)

The distribution of Yj is given by:

P(Yj = 1) = 1
6 ·

2
5 + 2

6 ·
3
5 = 8

30

P(Yj = 2) = 2
6 ·

2
5 + 2

6 ·
3
5 = 10

30

P(Yj = 3) = 2
6 ·

2
5 + 1

6 ·
3
5 = 7

30

P(Yj = 4) = 1
6 ·

2
5 + 1

6 ·
3
5 = 5

30

Hence, we get:

E [Yj ] = 1 · 8
30 + 2 · 10

30 + 3 · 7
30 + 4 · 5

30 = 69
30

E [Y 2
j ] = 12 · 8

30 + 22 · 10
30 + 32 · 7

30 + 42 · 5
30 = 191

30
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Sums of compound Poisson Processes (cont.)

We then have:

E [X (3)] = λ · 3 · E [Yi ] = 5 · 3 · 69
30 = 1035

30 = 34.5

Var[X (3)] = λ · 3 · E [Y 2
i ] = 5 · 3 · 191

30 = 2865
30 = 95.5.
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