STK2130 - Lecture 11

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Discrete-time Markov Chains

We recall from Chapter 4:
Let $\left\{X_{n}: n \geq 0\right\}$ be a discrete-time stochastic process with discrete state space \mathcal{X}.

The process is a Markov chain if for $n=1,2, \ldots$ we have:

$$
\begin{aligned}
& P\left(X_{n+1}=j \mid X_{n}=i, X_{u}=x_{u}, 0 \leq u<n\right) \\
& \quad=P\left(X_{n+1}=j \mid X_{n}=i\right), \quad i, j, x_{u} \in \mathcal{X}
\end{aligned}
$$

If we also have that $P\left(X_{n+1}=j \mid X_{n}=i\right)$ is independent of n, then the Markov chain is said to have stationary (or homogeneous) transition probabilities.

6.2 Continuous-Time Markov Chains

Let $\{X(t): t \geq 0\}$ be a continuous-time stochastic process with discrete state space \mathcal{X}.

The process is a Markov chain if for $s, t>0$ we have:

$$
\begin{array}{r}
P(X(t+s)=j \mid X(s)=i, X(u)=x(u), 0 \leq u<s) \\
=P(X(t+s)=j \mid X(s)=i), \quad i, j, x(u) \in \mathcal{X}
\end{array}
$$

If we also have that $P(X(t+s)=j \mid X(s)=i)$ is independent of s, then the Markov chain is said to have stationary (or homogeneous) transition probabilities.

6.2 Continuous-Time Markov Chains (cont.)

EXAMPLE: Let $\{N(t): t \geq 0\}$ be a homogeneous Poisson process with rate λ. This process has independent and stationary increments. Hence, for $j \geq i$ and $s, t>0$ we have:

$$
\begin{aligned}
P(N(t & +s)=j \mid N(s)=i, N(u)=n(u), 0 \leq u<s) \\
& =P(N(t+s)=j \mid N(s)=i)=P(N(t+s)-N(s)=j-i) \\
& =\frac{(\lambda t)^{j-i}}{(j-i)!} e^{-\lambda t}, \quad \text { independent of } s
\end{aligned}
$$

For $j<i$ the corresponding probabilities are zero.
Hence, $\{N(t): t \geq 0\}$ is a Markov chain.

6.2 Continuous-Time Markov Chains (cont.)

Assume that $X(0)=i$, and define:

$$
T_{i}=\inf \{u \geq 0: X(u) \neq i\}
$$

Thus, T_{i} is the point of time when the process leaves state i.
We then let $s, t>0$, and consider:

$$
\begin{aligned}
P\left(T_{i}\right. & \left.>s+t \mid T_{i}>s\right) \\
& =P(X(u)=i, 0 \leq u \leq s+t \mid X(u)=i, 0 \leq u \leq s) \\
& =P(X(u)=i, s \leq u \leq s+t \mid X(s)=i), \quad \text { by the Markov property } \\
& =P(X(u)=i, 0 \leq u \leq t \mid X(0)=i), \quad \text { by the stationary property } \\
& =P\left(T_{i}>t\right) .
\end{aligned}
$$

This implies that T_{i} is memoryless, and hence T_{i} is exponentially distributed.

6.2 Continuous-Time Markov Chains (cont.)

Assume more generally that $X(r)=i$, and define:

$$
T_{i}=\inf \{u \geq 0: X(r+u) \neq i\}
$$

Thus, $T_{i}+r$ is the point of time when the process leaves state i.
We then let $s, t>0$, and consider:

$$
\begin{aligned}
P\left(T_{i}\right. & \left.>s+t \mid T_{i}>s\right) \\
& =P(X(u)=i, r \leq u \leq r+s+t \mid X(u)=i, r \leq u \leq r+s) \\
& =P(X(u)=i, r+s \leq u \leq r+s+t \mid X(r+s)=i), \quad \text { by Markov } \\
& =P(X(u)=i, r \leq u \leq r+t \mid X(r)=i), \quad \text { by stationarity } \\
& =P\left(T_{i}>t\right)
\end{aligned}
$$

This implies that T_{i} is memoryless, and hence T_{i} is exponentially distributed.

6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:

A continuous-time Markov chain with stationary transition probabilities and state space \mathcal{X} is a stochastic process such that:

- The times spent in the different states are independent random variables (because of the Markov property).
- The amount of time spent in state $i \in \mathcal{X}$ is exponentially distributed with some mean v_{i}^{-1} (because of the Markov property and stationarity).
- When the process leaves state i, it enters state j with some transition probability $Q_{i j}$ where:

$$
\begin{array}{cc}
Q_{i i}=0, & \text { for all } i \in \mathcal{X} \\
\sum_{j \in \mathcal{X}} Q_{i j}=1, & \text { for all } i \in \mathcal{X}
\end{array}
$$

- The transitions follow a discrete-time Markov chain.

Example 6.1 - A Shoe Shine Shop

A Markov chain $\{X(t): t \geq 0\}$ with state space $\mathcal{X}=\{0,1,2\}$ where:

- State 0. No customer
- State 1. Customer in chair 1 (clean and polish)
- State 2. Customer in chair 2 (polish is buffed)
$X(s)=0$: In this state customers arrive in accordance to a Poisson process with rate λ. The time spent in this state is $T_{0} \sim \exp (\lambda)$. Then the process transits to state 1 with probability $Q_{01}=1$.
$X(t)=1$: The time spent in this state is $T_{1} \sim \exp \left(\mu_{1}\right)$. Then the process transits to state 2 with probability $Q_{12}=1$.
$X(u)=2$: The time spent in this state is $T_{2} \sim \exp \left(\mu_{2}\right)$. Then the process transits to state 0 with probability $Q_{20}=1$, and then the process repeats the same cycle.

Example 6.1 (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov chain is:

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
0.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 0.0
\end{array}\right]
$$

Thus, the built-in discrete time Markov chain is periodic with a period length of 3 .

NOTE: Even though the built-in discrete time Markov chain is periodic, the continuous-time Markov chain $\{X(t): t \geq 0\}$ will have a well-defined limiting distribution.

Example: A multistate component

A Markov chain $\{X(t): t \geq 0\}$ with state space $\mathcal{X}=\{0,1,2\}$ where:

- State 0 . The component is failed
- State 1. The component is functioning but not perfectly
- State 2. The component is functioning perfectly
$X(s)=2$: The time spent in this state is $T_{2} \sim \exp \left(\mu_{2}\right)$. Then the process transits to state 1 with probability $Q_{21}=0.5$ or to state 0 with probability $Q_{20}=0.5$.
$X(t)=1$: The time spent in this state is $T_{1} \sim \exp \left(\mu_{1}\right)$. Then the process transits to state 0 with probability $Q_{10}=1$.
$X(u)=0$: The time spent in this state is $T_{0} \sim \exp \left(\mu_{0}\right)$. Then the component is repaired and the process transits to state 2 with probability $Q_{02}=1$, and then the process repeats the same cycle.

Example: A multistate component (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov chain is:

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
0.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 0.0 \\
0.5 & 0.5 & 0.0
\end{array}\right]
$$

In this case the built-in discrete time Markov chain is aperiodic, and the limiting distribution, $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$, found by solving:

$$
\begin{aligned}
\boldsymbol{\pi} \boldsymbol{Q} & =\boldsymbol{\pi} \\
\boldsymbol{\pi 1} & =1
\end{aligned}
$$

is given by:

$$
\pi_{0}=0.4, \quad \pi_{1}=0.2, \quad \pi_{2}=0.4
$$

6.3 Birth and Death Processes

A Birth and Death Process $\{X(t): t \geq 0\}$ has state space $\mathcal{X}=\{0,1,2, \ldots\}$.
Assume that $X(t)=n>0$. Then the next transition is determined as follows:

- Sample $V \sim \exp \left(\lambda_{n}\right)$ and $W \sim \exp \left(\mu_{n}\right)$ independent of each other with respective outcomes v and w.
- If $v<w$ then the process transits to state $n+1$ at time $t+v$, i.e., $X(t+v)=n+1$. This called a birth.
- If $w<v$ then the process transits to state $n-1$ at time $t+w$, i.e., $X(t+w)=n-1$. This called a death.

NOTE: When $X(t)=0$, only births are possible, so in this case we assume that $W=\infty$, which corresponds to the rate μ_{0} being zero, and $P_{01}=1$.

6.3 Birth and Death Processes (cont.)

The transition (either a birth or a death) happens at time $U=\min (V, W)$. Hence, the distribution of U can be derived as follows:

$$
\begin{aligned}
P(U>u) & =P(V>u \cap W>u) \\
& =P(V>u) \cdot P(W>u) \quad \text { since } V \text { and } W \text { are independent } \\
& =e^{-\left(\lambda_{n}\right) u} \cdot e^{-\left(\mu_{n}\right) u} \quad \text { since } V \sim \exp \left(\lambda_{n}\right) \text { and } W \sim \exp \left(\mu_{n}\right) \\
& =e^{-\left(\lambda_{n}+\mu_{n}\right) u}
\end{aligned}
$$

Hence, it follows that $U \sim \exp \left(\lambda_{n}+\mu_{n}\right)$.

6.3 Birth and Death Processes (cont.)

The transition probabilities for the built-in discrete-time Markov chain can be derived as follows:

$$
\begin{aligned}
P_{n, n+1} & =P(V<W)=\int_{0}^{\infty} P(V<W \mid V=v) \lambda_{n} e^{-\lambda_{n} v} d v \\
& =\int_{0}^{\infty} e^{-\mu_{n} v} \lambda_{n} e^{-\lambda_{n} v} d v \\
& =\frac{\lambda_{n}}{\lambda_{n}+\mu_{n}} \int_{0}^{\infty}\left(\lambda_{n}+\mu_{n}\right) e^{-\left(\lambda_{n}+\mu_{n}\right) v} d v \\
& =\frac{\lambda_{n}}{\lambda_{n}+\mu_{n}}
\end{aligned}
$$

Hence, we also get that:

$$
P_{n, n-1}=P(V>W)=1-P(V<W)=1-\frac{\lambda_{n}}{\lambda_{n}+\mu_{n}}=\frac{\mu_{n}}{\lambda_{n}+\mu_{n}}
$$

Example 6.2 - A Pure Birth Process

Assume that $\{X(t): t \geq 0\}$ is a birth and death process with:

$$
\begin{array}{lr}
\mu_{n}=0, & \text { for all } n \geq 0 \\
\lambda_{n}=\lambda, & \text { for all } n \geq 0
\end{array}
$$

Since the death rate is zero, this is a pure birth process with constant birth rate λ.

This implies that the time between transitions is exponentially distributed with rate λ.

Hence, $\{X(t): t \geq 0\}$ is a Poisson process with rate λ.

Example 6.3 - The Yule Process

Assume that $\{X(t): t \geq 0\}$ is a birth and death process with:

$$
\begin{aligned}
& \mu_{n}=0, \quad \text { for all } n \geq 0 \\
& \lambda_{n}=\lambda n, \quad \text { for all } n \geq 0
\end{aligned}
$$

Since the death rate is zero, this is a pure birth process. The birth rate λn is proportional to the state, i.e., number of individuals in the population.

This implies that the time the process stays in state n is exponentially distributed with rate λn. Thus, the expected time between transitions becomes smaller and smaller as n grows.

Example 6.5 - An $M / M / 1$-queue

An $M / M / 1$-queue is a queue where:

- Markov arrival process: The times between arrivals are independent and exponentially distributed with rate λ.
- Markov service process: The service times are independent and exponentially distributed with rate μ.
- 1 server: The maximal number of customers that can be served at a time is 1
- $X(t)$ be the number of customers in the queue at time t.

Then $\{X(t): t \geq 0\}$ is a birth and death process with:

$$
\begin{aligned}
& \mu_{n}=\mu \cdot \min (n, 1), \quad \text { for all } n \geq 0 \\
& \lambda_{n}=\lambda, \quad \text { for all } n \geq 0
\end{aligned}
$$

Example 6.6 - An $M / M / s$-queue

An $M / M / s$-queue is a queue where:

- Markov arrival process: The times between arrivals are independent and exponentially distributed with rate λ.
- Markov service process: The service times are independent and exponentially distributed with rate μ.
- s server: The maximal number of customers that can be served at a time is s
- $X(t)$ be the number of customers in the queue at time t.

Then $\{X(t): t \geq 0\}$ is a birth and death process with:

$$
\begin{aligned}
& \mu_{n}=\mu \cdot \min (n, s), \quad \text { for all } n \geq 0 \\
& \lambda_{n}=\lambda, \quad \text { for all } n \geq 0
\end{aligned}
$$

Example 6.4 - Linear Growth with Immigration

Assume that $\{X(t): t \geq 0\}$ is a birth and death process with:

$$
\begin{aligned}
& \mu_{n}=\mu n, \quad \text { for all } n \geq 1 \\
& \lambda_{n}=\lambda n+\theta, \quad \text { for all } n \geq 0
\end{aligned}
$$

Each member of the population gives birth with a rate λ.
In addition the population also increases due to immigration (independent of the births in the population) at a rate of θ.

Deaths occur at a rate of μ for each member of the population.

Example 6.4 - Linear Growth with Immigration (cont.)

We assume that $X(0)=i$ and introduce:

$$
M(t)=E[X(t)]
$$

We will determine $M(t)$ by solving a differential equation, and start by establishing the following:

$$
M(t+h)=E[X(t+h)]=E[E[X(t+h) \mid X(t)]]
$$

Since the time between transitions is exponentially distributed, the probability of more than one transition in an interval of length h is $o(h)$. Hence, we have:

$$
\begin{aligned}
& P(X(t+h)=X(t)+1 \mid X(t))=[X(t) \lambda+\theta] h+o(h) \\
& P(X(t+h)=X(t)-1 \mid X(t))=X(t) \mu h+o(h) \\
& P(X(t+h)=X(t) \mid X(t))=1-[X(t) \lambda+\theta+X(t) \mu] h+o(h)
\end{aligned}
$$

Example 6.4 - Linear Growth with Immigration (cont.)

From this it follows that:

$$
\begin{aligned}
E[X(t+h) \mid X(t)] & =X(t)+[X(t) \lambda+\theta] h-X(t) \mu h+o(h) \\
& =X(t)+(\lambda-\mu) X(t) h+\theta h+o(h)
\end{aligned}
$$

Hence, by taking expectations on both sides, we get:

$$
M(t+h)=M(t)+(\lambda-\mu) M(t) h+\theta h+o(h)
$$

and thus:

$$
\frac{M(t+h)-M(t)}{h}=(\lambda-\mu) M(t)+\theta+\frac{o(h)}{h}
$$

By taking the limit as $h \rightarrow 0$, we obtain the following differential equation:

$$
M^{\prime}(t)=(\lambda-\mu) M(t)+\theta
$$

Example 6.4 - Linear Growth with Immigration (cont.)

We rewrite the equation as:

$$
M^{\prime}(t)-(\lambda-\mu) M(t)=\theta
$$

Assuming that $\lambda \neq \mu$, we can solve this by multiplying both sides by the integrating factor $e^{-(\lambda-\mu) t}$:

$$
M^{\prime}(t) e^{-(\lambda-\mu) t}-(\lambda-\mu) e^{-(\lambda-\mu) t} M(t)=\theta e^{-(\lambda-\mu) t}
$$

This equation can be expressed as:

$$
\left[M(t) \cdot e^{-(\lambda-\mu) t}\right]^{\prime}=\theta e^{-(\lambda-\mu) t}
$$

Integrating both sides yields:

$$
M(t) \cdot e^{-(\lambda-\mu) t}=-\frac{\theta}{\lambda-\mu} e^{-(\lambda-\mu) t}+C
$$

Example 6.4 - Linear Growth with Immigration (cont.)

Hence, by multiplying both sides by $e^{(\lambda-\mu) t}$ we get:

$$
M(t)=-\frac{\theta}{\lambda-\mu}+C e^{(\lambda-\mu) t}
$$

In order to determine the constant C, we use the boundary condition that $X(0)=i$, which also implies that $M(0)=E[X(0)]=i$. By inserting this we get:

$$
i=-\frac{\theta}{\lambda-\mu}+C
$$

which implies that:

$$
C=\frac{\theta}{\lambda-\mu}+i
$$

Example 6.4 - Linear Growth with Immigration (cont.)

By inserting this into the expression for $M(t)$, we get:

$$
\begin{aligned}
M(t) & =-\frac{\theta}{\lambda-\mu}+\left[\frac{\theta}{\lambda-\mu}+i\right] e^{(\lambda-\mu) t} \\
& =\frac{\theta}{\lambda-\mu}\left[e^{(\lambda-\mu) t}-1\right]+i e^{(\lambda-\mu) t}
\end{aligned}
$$

For the case where $\lambda=\mu$ the differential equation:

$$
M^{\prime}(t)-(\lambda-\mu) M(t)=\theta
$$

simplifies to $M^{\prime}(t)=\theta$, which have the solution:

$$
M(t)=\theta t+i
$$

6.3 Birth and Death Processes (cont.)

We consider a general birth and death process, $\{X(t): t \geq 0\}$, with birth rates $\lambda_{0}, \lambda_{1}, \ldots$ and death rates μ_{0}, μ_{1}, \ldots, where $\mu_{0}=0$.

Assume that $X(0)=i$, where $i \geq 0$, and define T_{i} to be the time until the process enters state $i+1$ for the first time.

GOAL: Calculate $E\left[T_{i}\right]$.
Since $T_{0} \sim \exp \left(\lambda_{0}\right)$, we know that:

$$
E\left[T_{0}\right]=\frac{1}{\lambda_{0}}
$$

6.3 Birth and Death Processes (cont.)

We then introduce:

$$
I_{i}= \begin{cases}1 & \text { if the first transition from } i \text { is to } i+1 \\ 0 & \text { if the first transition from } i \text { is to } i-1\end{cases}
$$

By conditioning on I_{i} being either 1 or 0 , and using that the expected time until the first transition is $\left(\lambda_{i}+\mu_{i}\right)^{-1}$, we get:

$$
\begin{aligned}
& E\left[T_{i} \mid I_{i}=1\right]=\frac{1}{\lambda_{i}+\mu_{i}}, \\
& E\left[T_{i} \mid I_{i}=0\right]=\frac{1}{\lambda_{i}+\mu_{i}}+E\left[T_{i-1}\right]+E\left[T_{i}\right]
\end{aligned}
$$

The unconditional expectation then becomes:

$$
E\left[T_{i}\right]=\frac{1}{\lambda_{i}+\mu_{i}} \cdot P\left(l_{i}=1\right)+\left(\frac{1}{\lambda_{i}+\mu_{i}}+E\left[T_{i-1}\right]+E\left[T_{i}\right]\right) \cdot P\left(l_{i}=0\right)
$$

6.3 Birth and Death Processes (cont.)

Furthermore, we have that:

$$
\begin{aligned}
& P\left(I_{i}=1\right)=\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}} \\
& P\left(I_{i}=0\right)=\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}
\end{aligned}
$$

Hence, we get that:

$$
\begin{aligned}
E\left[T_{i}\right] & =\frac{1}{\lambda_{i}+\mu_{i}} \cdot P\left(l_{i}=1\right)+\left(\frac{1}{\lambda_{i}+\mu_{i}}+E\left[T_{i-1}\right]+E\left[T_{i}\right]\right) \cdot P\left(I_{i}=0\right) \\
& =\frac{1}{\lambda_{i}+\mu_{i}}\left[P\left(l_{i}=1\right)+P\left(I_{i}=0\right)\right]+P\left(I_{i}=0\right)\left[E\left[T_{i-1}\right]+E\left[T_{i}\right]\right] \\
& =\frac{1}{\lambda_{i}+\mu_{i}}+\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}\left[E\left[T_{i-1}\right]+E\left[T_{i}\right]\right]
\end{aligned}
$$

6.3 Birth and Death Processes (cont.)

This equation:

$$
E\left[T_{i}\right]=\frac{1}{\lambda_{i}+\mu_{i}}+\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}\left[E\left[T_{i-1}\right]+E\left[T_{i}\right]\right]
$$

can alternatively be written as:

$$
E\left[T_{i}\right]\left(1-\frac{\mu_{i}}{\lambda_{i}+\mu_{i}}\right)=E\left[T_{i}\right]\left(\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}}\right)=\frac{1}{\lambda_{i}+\mu_{i}}+\frac{\mu_{i}}{\lambda_{i}+\mu_{i}} E\left[T_{i-1}\right]
$$

We then multiply both sides of the equation by $\left(\lambda_{i}+\mu_{i}\right)$, and get:

$$
E\left[T_{i}\right] \lambda_{i}=1+\mu_{i} E\left[T_{i-1}\right]
$$

Finally, we divide both sides by λ_{i} and get:

$$
E\left[T_{i}\right]=\frac{1}{\lambda_{i}}+\frac{\mu_{i}}{\lambda_{i}} E\left[T_{i-1}\right]
$$

6.3 Birth and Death Processes (cont.)

By using this recursive relation, and that $E\left[T_{0}\right]=\lambda_{0}^{-1}$, we get:

$$
\begin{aligned}
& E\left[T_{0}\right]=\frac{1}{\lambda_{0}} \\
& E\left[T_{1}\right]=\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1}} \frac{1}{\lambda_{0}} \\
& E\left[T_{2}\right]=\frac{1}{\lambda_{2}}+\frac{\mu_{2}}{\lambda_{2}}\left[\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1}} \frac{1}{\lambda_{0}}\right]
\end{aligned}
$$

6.3 Birth and Death Processes (cont.)

Assume more specifically that $\lambda_{i}=\lambda, i=0,1,2, \ldots$, and $\mu_{i}=\mu$, $i=1,2,3, \ldots$. Then we have:

$$
\begin{aligned}
E\left[T_{0}\right] & =\frac{1}{\lambda} \\
E\left[T_{1}\right] & =\frac{1}{\lambda}+\frac{\mu}{\lambda} \frac{1}{\lambda}=\frac{1}{\lambda}\left[1+\frac{\mu}{\lambda}\right] \\
E\left[T_{2}\right] & =\frac{1}{\lambda}+\frac{\mu}{\lambda}\left[\frac{1}{\lambda}+\frac{\mu}{\lambda} \frac{1}{\lambda}\right]=\frac{1}{\lambda}\left[1+\frac{\mu}{\lambda}+\left(\frac{\mu}{\lambda}\right)^{2}\right] \\
\ldots & \\
E\left[T_{i}\right] & =\frac{1}{\lambda}\left[1+\frac{\mu}{\lambda}+\left(\frac{\mu}{\lambda}\right)^{2}+\cdots+\left(\frac{\mu}{\lambda}\right)^{i}\right]
\end{aligned}
$$

6.3 Birth and Death Processes (cont.)

In the case where $\lambda \neq \mu$, we can use the formula for the sum of a geometric series and obtain:

$$
\begin{aligned}
E\left[T_{i}\right] & =\frac{1}{\lambda}\left[1+\frac{\mu}{\lambda}+\left(\frac{\mu}{\lambda}\right)^{2}+\cdots+\left(\frac{\mu}{\lambda}\right)^{i}\right] \\
& =\frac{1}{\lambda} \cdot \frac{(\mu / \lambda)^{i+1}-1}{(\mu / \lambda)-1}=\frac{1-(\mu / \lambda)^{i+1}}{\lambda-\mu}, \quad i=0,1,2, \ldots
\end{aligned}
$$

NOTE: If $i=0$, we get $E\left[T_{i}\right]=\frac{1-\mu / \lambda}{\lambda-\mu}=\frac{\lambda-\mu}{\lambda(\lambda-\mu)}=\frac{1}{\lambda}=E\left[T_{0}\right]$ as before. In the case where $\lambda=\mu$, the formula can be simplified as follows:

$$
E\left[T_{i}\right]=\frac{1}{\lambda}\left[1+\frac{\mu}{\lambda}+\left(\frac{\mu}{\lambda}\right)^{2}+\cdots+\left(\frac{\mu}{\lambda}\right)^{i}\right]=\frac{i+1}{\lambda}
$$

NOTE: If $i=0$, we get $E\left[T_{i}\right]=\frac{1}{\lambda}=E\left[T_{0}\right]$ as before.

6.3 Birth and Death Processes (cont.)

More generally, assuming that $X(0)=i$, we let $T_{i j}$ be the time until the process enters state j for the first time, where $j>i$. Then we have:

$$
\begin{aligned}
E\left[T_{i j}\right] & =E\left[T_{i, i+1}\right]+E\left[T_{i+1, i+2}\right]+\cdots+E\left[T_{j-1, j}\right] \\
& =\sum_{k=i}^{j-1} E\left[T_{k}\right]
\end{aligned}
$$

If $\lambda \neq \mu$ it can be shown that:

$$
E\left[T_{i j}\right]=\frac{j-i}{\lambda-\mu}-\frac{(\mu / \lambda)^{i+1}}{\lambda-\mu} \frac{1-(\mu / \lambda)^{j-i}}{1-\mu / \lambda}
$$

If $\lambda=\mu$ it can be shown that:

$$
E\left[T_{i j}\right]=\frac{j(j+1)-i(i+1)}{2 \lambda}
$$

6.3 Birth and Death Processes (cont.)

We close this by verifying that these last expressions simplifies to the previous expressions when $j=i+1$:

In the case where $\lambda \neq \mu$ we insert $j=i+1$ and get:

$$
\begin{aligned}
E\left[T_{i, i+1}\right] & =\frac{j-i}{\lambda-\mu}-\frac{(\mu / \lambda)^{i+1}}{\lambda-\mu} \cdot \frac{1-(\mu / \lambda)^{j-i}}{1-\mu / \lambda} \\
& =\frac{i+1-i}{\lambda-\mu}-\frac{(\mu / \lambda)^{i+1}}{\lambda-\mu} \cdot \frac{1-(\mu / \lambda)^{i+1-i}}{1-\mu / \lambda} \\
& =\frac{1}{\lambda-\mu}-\frac{(\mu / \lambda)^{i+1}}{\lambda-\mu} \cdot \frac{1-\mu / \lambda}{1-\mu / \lambda} \\
& =\frac{1-(\mu / \lambda)^{i+1}}{\lambda-\mu}=E\left[T_{i}\right]
\end{aligned}
$$

6.3 Birth and Death Processes (cont.)

In the case where $\lambda=\mu$ we again insert $j=i+1$ and get:

$$
\begin{aligned}
E\left[T_{i, i+1}\right] & =\frac{j(j+1)-i(i+1)}{2 \lambda} \\
& =\frac{(i+1)(i+2)-i(i+1)}{2 \lambda} \\
& =\frac{(i+1)(i+2-i)}{2 \lambda} \\
& =\frac{i+1}{\lambda}=E\left[T_{i}\right]
\end{aligned}
$$

