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Discrete-time Markov Chains

We recall from Chapter 4:

Let {X, : n > 0} be a discrete-time stochastic process with discrete state
space .

The process is a Markov chain if forn=1,2,... we have:
P(Xni1 = j|IXn=1,Xy = x4,0 < u<n)

:P(Xn+1 :j|Xn:I)7 i,j,XUEX

If we also have that P(X,.1 = j|X, = i) is independent of n, then the Markov
chain is said to have stationary (or homogeneous) transition probabilities.
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6.2 Continuous-Time Markov Chains

Let {X(t) : t > 0} be a continuous-time stochastic process with discrete state
space X.

The process is a Markov chain if for s, t > 0 we have:
P(X(t+s)=jX(s) =i, X(u) =x(u),0<u<s)
= P(X(t+5) = IX(s) = i), ij.x(u)eX
If we also have that P(X(t + s) = j|X(s) = i) is independent of s, then the

Markov chain is said to have stationary (or homogeneous) transition
probabilities.
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6.2 Continuous-Time Markov Chains (cont.)

EXAMPLE: Let {N(t) : t > 0} be a homogeneous Poisson process with rate
A. This process has independent and stationary increments.

Hence, for j > i and s, t > 0 we have:
P(N(t+s) =jIN(s) =i,N(u) = n(u),0 <u<s)

= P(N(t+s) = jIN(s) = i) = P(N(t + s) — N(s) = j — i)

_ (At~ M

G- ’

For j < i the corresponding probabilities are zero.

independent of s

Hence, {N(t) : t > 0} is a Markov chain.
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6.2 Continuous-Time Markov Chains (cont.)

Assume that X(0) = i, and define:
T; =inf{u>0:X(u)# i}
Thus, T; is the point of time when the process leaves state i.
We then let s,t > 0, and consider:
P(T; > s+ t|T; > s)

=PX(u)y=i0<u<s+tX(u)=i0<u<s)
=P(X(u)=i,s<u<s+tX(s)=1), bythe Markov property
= P(X(u)=1i,0<u<tX(0)=1i), by the stationary property
=P(T;>1).

This implies that T; is memoryless, and hence T; is exponentially distributed.
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6.2 Continuous-Time Markov Chains (cont.)

Assume more generally that X(r) = i, and define:
Ti=inf{lu>0:X(r+u)#i}

Thus, T; + r is the point of time when the process leaves state i.

We then let s,t > 0, and consider:

P(T; > s+ t|T; > s)
=PX(u)y=ir<u<r+s+tX(u)=i,r<u<r+s)
=PX(u)=ir+s<u<r+s+HX(r+s)=1i), byMarkov
=P(X(u)=ir<u<r+tX(r)=1i), Dby stationarity
=P(Ti >1).

This implies that T; is memoryless, and hence T; is exponentially distributed.
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6.2 Continuous-Time Markov Chains (cont.)

ALTERNATIVE DEFINITION:

A continuous-time Markov chain with stationary transition probabilities and
state space X is a stochastic process such that:

@ The times spent in the different states are independent random variables
(because of the Markov property).

@ The amount of time spent in state i € X' is exponentially distributed with
some mean v,.‘1 (because of the Markov property and stationarity).

@ When the process leaves state J, it enters state j with some transition
probability Q; where:

Qi=0, foralieXx

ZQ,-,-:L forallie X

jex
@ The transitions follow a discrete-time Markov chain.
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Example 6.1 — A Shoe Shine Shop

A Markov chain {X(t) : t > 0} with state space X = {0, 1,2} where:
@ State 0. No customer
@ State 1. Customer in chair 1 (clean and polish)

@ State 2. Customer in chair 2 (polish is buffed)

X(s) = 0: In this state customers arrive in accordance to a Poisson process
with rate \. The time spent in this state is To ~ exp()). Then the process
transits to state 1 with probability Qp1 = 1.

X(t) = 1: The time spent in this state is T1 ~ exp(r1). Then the process
transits to state 2 with probability Q> = 1.

X(u) = 2: The time spent in this state is T, ~ exp(uz2). Then the process
transits to state 0 with probability Qxp = 1, and then the process repeats the
same cycle.
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Example 6.1 (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov
chain is:

Q=] 00 00 1.0

1.0 0.0 0.0

0.0 1.0 0.0]

Thus, the built-in discrete time Markov chain is periodic with a period length
of 3.

NOTE: Even though the built-in discrete time Markov chain is periodic, the

continuous-time Markov chain {X(t) : t > 0} will have a well-defined limiting
distribution.
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Example: A multistate component

A Markov chain {X(t) : t > 0} with state space X = {0, 1,2} where:
@ State 0. The component is failed
@ State 1. The component is functioning but not perfectly
@ State 2. The component is functioning perfectly

X(s) = 2: The time spent in this state is T, ~ exp(u2). Then the process
transits to state 1 with probability Q.1 = 0.5 or to state 0 with probability
020 =0.5.

X(t) = 1: The time spent in this state is T; ~ exp(u1). Then the process
transits to state 0 with probability Qo = 1.

X(u) = 0: The time spent in this state is Tp ~ exp(uo). Then the component

is repaired and the process transits to state 2 with probability Qy> = 1, and
then the process repeats the same cycle.
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Example: A multistate component (cont.)

Thus, the transition probability matrix of the built-in discrete time Markov
chain is:

Q=] 10 00 0.0

05 05 00

0.0 0.0 1.0]

In this case the built-in discrete time Markov chain is aperiodic, and the
limiting distribution, = = (mg, 71, m2), found by solving:

TQ=m

w1 =1
is given by:

T = 0.47 ™ = 0.27 o = 0.4
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6.3 Birth and Death Processes

A Birth and Death Process {X(t) : t > 0} has state space X = {0,1,2,...}.
Assume that X(t) = n > 0. Then the next transition is determined as follows:
@ Sample V ~ exp(\,) and W ~ exp(un) independent of each other with

respective outcomes v and w.

@ If v < w then the process transits to state n+ 1 attime t + v, i.e,,
X(t+v)=n+1. This called a birth.

@ If w < v then the process transits to state n — 1 attime t + w, i.e.,
X(t+ w) =n—1. This called a death.

NOTE: When X(t) = 0, only births are possible, so in this case we assume
that W = oo, which corresponds to the rate g being zero, and Py = 1.
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6.3 Birth and Death Processes (cont.)

The transition (either a birth or a death) happens at time U = min(V, W).
Hence, the distribution of U can be derived as follows:

PU>u)=P(V>unW>u)
=P(V>u) -P(W>u) since Vand W are independent
=g (. g=(n)l since V ~ exp(\,) and W ~ exp(sn)

— e—(An'hU‘n)Ll

Hence, it follows that U ~ exp(An + tn).
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6.3 Birth and Death Processes (cont.)

The transition probabilities for the built-in discrete-time Markov chain can be
derived as follows:

Prnit = P(V < W) = / P(V < W|V = v)Ane > dv
0

oo
= / e Ve M dv
0

a )\n"‘,un
B An+ in

/ (o + )&= Ot gy
0

Hence, we also get that:

)\n Mn
Pinoi=P(V>W)=1-P(V<W)=1- =
mn—1 ( ) ( ) An+ pn An+ pn
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Example 6.2 — A Pure Birth Process

Assume that {X(t) : t > 0} is a birth and death process with:

un=0, foralln>0
Ap=2A, foralln>0

Since the death rate is zero, this is a pure birth process with constant birth
rate \.

This implies that the time between transitions is exponentially distributed with
rate \.

Hence, {X(t) : t > 0} is a Poisson process with rate \.
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Example 6.3 — The Yule Process

Assume that {X(t) : t > 0} is a birth and death process with:

un=0, foraln>0
Ap=2An, foraln>0

Since the death rate is zero, this is a pure birth process. The birth rate An is
proportional to the state, i.e., number of individuals in the population.

This implies that the time the process stays in state n is exponentially

distributed with rate An. Thus, the expected time between transitions
becomes smaller and smaller as n grows.
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Example 6.5 — An M/M/1-queue

An M/M/1-queue is a queue where:

@ Markov arrival process: The times between arrivals are independent and
exponentially distributed with rate .

@ Markov service process: The service times are independent and
exponentially distributed with rate p.

@ 1 server: The maximal number of customers that can be served at a
time is 1

@ X(t) be the number of customers in the queue at time ¢.

Then {X(t) : t > 0} is a birth and death process with:

tn=p-min(n,1), foralln>0
An=2A, foralln>0
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Example 6.6 — An M/M/s-queue

An M/M/s-queue is a queue where:

@ Markov arrival process: The times between arrivals are independent and
exponentially distributed with rate .

@ Markov service process: The service times are independent and
exponentially distributed with rate p.

@ s server: The maximal number of customers that can be served at a
timeis s

@ X(t) be the number of customers in the queue at time ¢.

Then {X(t) : t > 0} is a birth and death process with:

pn = p-min(n,s), foralln>0
A=A, foralln>0
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Example 6.4 — Linear Growth with Immigration

Assume that {X(t) : t > 0} is a birth and death process with:

wn=pn, foralln>1
Ap=An+6, foralln>0

Each member of the population gives birth with a rate A.

In addition the population also increases due to immigration (independent of
the births in the population) at a rate of 6.

Deaths occur at a rate of i for each member of the population.
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Example 6.4 — Linear Growth with Immigration (cont.)

We assume that X(0) = i and introduce:
M(t) = E[X(1)]

We will determine M(t) by solving a differential equation, and start by
establishing the following:

M(t+ h) = E[X(t+ h)] = E[E[X(t+ h)|X(1)]]

Since the time between transitions is exponentially distributed, the probability
of more than one transition in an interval of length his o(h). Hence, we have:

P(X(t + h) = X(t) + 1|X(£)) = [X(t)A + 6]h + o(h)
P(X(t + h) = X(t) — 1|X(1)) = X()uh + o(h)
P(X(t + h) = X(1)X(1)) = 1 — [X()A + 0+ X()u]h + o(h)
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Example 6.4 — Linear Growth with Immigration (cont.)

From this it follows that:
E[X(t+ h)X(1)] = X(t) + [X(t)A + 0]1h — X(t)uh + o(h)
= X(t) + (A — w)X(t)h + 0h + o(h)
Hence, by taking expectations on both sides, we get:
M(t+ h) = M(t) + (X — p)M(t)h + 6h + o(h)
and thus:

M(t + h) — M(1)
h

:(A—ﬂ)M(l‘)—i—H-i-@

By taking the limit as h — 0, we obtain the following differential equation:

M(t) = (\ — W)M(t) + 6
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Example 6.4 — Linear Growth with Immigration (cont.)

We rewrite the equation as:
M () — (A = p)M(t) = 6

Assuming that A # u, we can solve this by multiplying both sides by the
integrating factor e~(A—#t:

M'(t)e= A=t _ (X — ;)e A=mIM(t) = e~ A -1
This equation can be expressed as:
[M(t) - e—(A—u)f]' — e~ (r—mt
Integrating both sides yields:

0

P O )] S
M(t)-e -

e~ Mty c
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Example 6.4 — Linear Growth with Immigration (cont.)

Hence, by multiplying both sides by e(*~#)! we get:

M(t) = _%M + Cer-mt

In order to determine the constant C, we use the boundary condition that
X(0) = i, which also implies that M(0) = E[X(0)] = i. By inserting this we
get:

. 0
I——)\—_M—FC,

which implies that:
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Example 6.4 — Linear Growth with Immigration (cont.)

By inserting this into the expression for M(t), we get:

0 0
M) = ———— + [—— + i]le—mt
(0= =5+l +1

= L[ A=t _ 4] 4 jeA-mt
,u

A —

For the case where A = p the differential equation:
M(t) = (X = p)M(t) = 6
simplifies to M’(t) = 4, which have the solution:

M(t) =0t +i
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6.3 Birth and Death Processes (cont.)

We consider a general birth and death process, {X(f) : t > 0}, with birth
rates Ao, A1, ... and death rates uqg, pt1, . .., where ug = 0.

Assume that X(0) = i, where i > 0, and define T; to be the time until the
process enters state i + 1 for the first time.

GOAL: Calculate E[T;].

Since Ty ~ exp(Xg), we know that:

1
ElTol = -
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6.3 Birth and Death Processes (cont.)

We then introduce:

1 if the first transition from jis to j + 1
’ 0 if the first transition from jisto /i — 1

By conditioning on /; being either 1 or 0, and using that the expected time
until the first transition is (\; + u;) ", we get:

1
Emh ==

1
E[Tilh =0 = -~ + ElTir] + EIT3L

The unconditional expectation then becomes:

1
Ai + i

E[Ti] =

PU=1)+ (5 + ETAd+ E1T1) - PU=0)

Ai + i
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6.3 Birth and Death Processes (cont.)

Furthermore, we have that:

P(h=0) /\ilj-iu/
Hence, we get that:
T = o PU=1) + (5 + BT+ ET1) PO =0)
- AilmlPuf: 1)+ P =) + P(; = O)[ELT; 1] + ETi]
e ET + ETT
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6.3 Birth and Death Processes (cont.)
This equation:

BT = o + (BT + T

can alternatively be written as:

Ai )= 1 Lt
Ai it N+ N pi

EITI0 - 5 = EITil E[Ti-1]

We then multiply both sides of the equation by (\; + ), and get:
E[TiN =1+ wE[Ti_4]
Finally, we divide both sides by \; and get:
1

1= 1yl
E[T) =y + S ELTi]
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6.3 Birth and Death Processes (cont.)

By using this recursive relation, and that E[Ty] = )\g‘, we get:

]
E[To] = o

1 w1 pp
E[T,] = — + 22— 4 A1
[Tl SIS WS VRIS VW
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6.3 Birth and Death Processes (cont.)

Assume more specifically that \; = A\, i =0,1,2,..., and u; = pn,
i=1,2,3,.... Then we have:

ElTol =

1t 1
BTl =5+ 55—+ %

L S P | 14 Y2
BTl =y + 55+ 53l =30+ 5+ (5) ]

BT =11+ 2 () 1 (9]
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6.3 Birth and Death Processes (cont.)

In the case where X\ # u, we can use the formula for the sum of a geometric
series and obtain:

e =0 (5 o (5]

i+1 _ i+1
BRI C72 e N R V2 G B

A () -T A—p

NOTE: If i = 0, we get £[T}] = 42 = 3t = 1 = E[To] as before.

In the case where \ = 1, the formula can be simplified as follows:

e -1 (5) s (- 51

NOTE: If i = 0, we get E[Tj] = 1 = E[To] as before.



6.3 Birth and Death Processes (cont.)

More generally, assuming that X(0) = /i, we let Tj be the time until the
process enters state j for the first time, where j > i. Then we have:

E[Ty] = E[Tiixa] + E[Tiy1,ive] + -+ E[Tj—1]
j—1
=> E[T4]
k=i

If X # p it can be shown that:

j=i (/N = (/N
BTl =3—, ~ X—p -/

If A\ = u it can be shown that:

ey = 10+ 1)2_/\i(i+ 1)
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6.3 Birth and Death Processes (cont.)

We close this by verifying that these last expressions simplifies to the
previous expressions when j =i+ 1:

In the case where X\ # 1, we insert j =i+ 1 and get:

_J—i (/N 1= (/A
ElTiin]=y— - SR Ry

R R R V17) Gt Rt (0 i

A—pu A—p 1—pu/A
1 (/N 1 — /X
A= A—p 1T —p/A

R (70N
= I gy
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6.3 Birth and Death Processes (cont.)

In the case where A\ = i we again insert j = i + 1 and get:
)—i(i+1)
2)\
G+ +2)—i(i+1)
2\
_(+Ni+2-1)
2\

ji(j+1
ET ] = U

= = E[Ti]

f+1
A
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