STK2130 - Lecture 2

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Chapter 4 - Markov Chains

Section 4.1 - Introduction (from Lecture 1)

Markov Chains

A discrete time, discrete space stochastic process $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ is called a time homogenuous Markov chain if the transition probabilities satisfy the following:

$$
P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)=P_{i j}
$$

for all states $i_{0}, i_{1}, \ldots, i_{n-1}, i, j$ and all $n \geq 0$.
NOTE: The Markov assumption implies that given X_{n}, the next state, X_{n+1}, is independent of all previous states $X_{0}, X_{1}, \ldots, X_{n-1}$. The process is time homogenuous since $P_{i j}$ is independent of n.

One-step transition probability matrix:

$$
\boldsymbol{P}=\left[P_{i j}\right]_{i, j \in \mathcal{S}}
$$

where $P_{i j} \geq 0$ for all $i, j \in \mathcal{S}$, and $\sum_{j \in \mathcal{S}} P_{i j}=1$ for all $i \in \mathcal{S}$.

Chapter 4 - Markov Chains

Section 4.2 - Chapman-Kolmogorov Equations (from Lecture 1)

Chapman-Kolmogorov Equations

n-step transition probabilities:

$$
P_{i j}^{n}=P\left\{X_{n+k}=j \mid X_{k}=i\right\}, \quad n \geq 1
$$

n-step transition probability matrix:

$$
\boldsymbol{P}^{(n)}=\left[P_{i j}^{n}\right]_{i, j \in \mathcal{S}}
$$

Chapman-Kolmogorov Equations: By conditioning on X_{n} we get:

$$
P_{i j}^{n+m}=\sum_{k \in \mathcal{S}} P_{i k}^{n} \cdot P_{k j}^{m}
$$

By using the definition of matrix products it follows that:

$$
\begin{aligned}
\boldsymbol{P}^{(n+m)} & =\boldsymbol{P}^{(n)} \cdot \boldsymbol{P}^{(m)} \\
\boldsymbol{P}^{(n)} & =\boldsymbol{P}^{(n-1)} \cdot \boldsymbol{P}^{(1)} \\
\boldsymbol{P}^{(n)} & =\boldsymbol{P}^{n}
\end{aligned}
$$

First-passage probabilities

Consider a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} and transition probability matrix \boldsymbol{P}, and let \mathcal{A} be a non-empty proper subset of \mathcal{S}.

We want to calculate the following probability:

$$
\beta=P\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right)
$$

where we assume that $i \notin \mathcal{A}$.
In order to analyze this we introduce:

$$
N=\min \left\{n>0: X_{n} \in \mathcal{A}\right\},
$$

Thus, N represents the first time the Markov chain enters \mathcal{A}.

First-passage probabilities (cont.)

In order to solve this problem we introduce a new Markov chain $\left\{W_{n}\right\}$ derived from $\left\{X_{n}\right\}$ as follows:

$$
W_{n}= \begin{cases}X_{n} & \text { if } n<N \\ A & \text { if } n \geq N\end{cases}
$$

To avoid confusion, we let the state A be some arbitrary state in \mathcal{A}. Then the state space of $\left\{W_{n}\right\}$ becomes $(\mathcal{S} \backslash \mathcal{A}) \cup\{A\}$.

We observe that when $\left\{X_{n}\right\}$ enters \mathcal{A}, i.e., at time $N,\left\{W_{n}\right\}$ is absorbed in state A.

First-passage probabilities (cont.)

The transition probability matrix of $\left\{W_{n}\right\}$, denoted \boldsymbol{Q}, is given by:

$$
\begin{aligned}
Q_{i, j} & =P_{i, j}, \\
Q_{i, A} & =\sum_{j \in \mathcal{A}} P_{i, j}, \quad i \notin \mathcal{A}, j \notin \mathcal{A}, \\
Q_{A, A} & =1 .
\end{aligned}
$$

We now have:

$$
\begin{aligned}
\beta & =P\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right) \\
& =P\left(W_{m}=A \mid X_{0}=i\right) \\
& =P\left(W_{m}=A \mid W_{0}=i\right)=Q_{i, A}^{m} .
\end{aligned}
$$

Example 4.12

In a sequence of independent flips of a fair coin, we introduce a Markov chain $\left\{X_{n}\right\}$ defined as:
$X_{n}=$ The length of the current sequence of consecutive heads
The state space of this Markov chain is $\mathcal{S}=\{0,1,2, \ldots\}$, and we note that $X_{0}=0$.

Moreover, the transition probability matrix of $\left\{X_{n}\right\}$ is given by:

$$
\boldsymbol{P}=\left[\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & \cdots \\
1 / 2 & 0 & 1 / 2 & 0 & \cdots \\
1 / 2 & 0 & 0 & 1 / 2 & \cdots \\
1 / 2 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Example 4.12 (cont.)

We then let $\mathcal{A}=\{3,4,5, \ldots\}$, and introduce:

$$
N=\min \left\{n: X_{n} \in \mathcal{A}\right\},
$$

Thus, N denotes the number of flips until there is a run of 3 consecutive heads.

We want to calculate $P(N \leq 8)$ and $P(N=8)$.
To solve this problem we introduce a Markov chain $\left\{W_{n}\right\}$ with states $\mathcal{T}=\{0,1,2,3\}$ defined relative to the sequence of coin flips as follows:

$$
W_{n}= \begin{cases}X_{n} & \text { if } n<N \\ 3 & \text { if } n \geq N\end{cases}
$$

Example 4.12 (cont.)

We note that state 3 is an absorbing state for $\left\{W_{n}\right\}$, and that the transition probability matrix of $\left\{W_{n}\right\}$ is given by:

$$
\boldsymbol{Q}=\left[\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 4.12 (cont.)

We then calculate the $2,4,7$ and 8 steps transition probability matrices:

$$
\boldsymbol{Q}^{(2)}=\left[\begin{array}{llll}
0.5000 & 0.2500 & 0.2500 & 0.0000 \\
0.5000 & 0.2500 & 0.0000 & 0.2500 \\
0.2500 & 0.2500 & 0.0000 & 0.5000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

$$
\boldsymbol{Q}^{(4)}=\left[\begin{array}{llll}
0.4375 & 0.2500 & 0.1250 & 0.1875 \\
0.3750 & 0.1875 & 0.1250 & 0.3125 \\
0.2500 & 0.1250 & 0.0625 & 0.5625 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

Example 4.12 (cont.)

$$
\boldsymbol{Q}^{(7)}=\left[\begin{array}{llll}
0.3438 & 0.1875 & 0.1016 & 0.3672 \\
0.2891 & 0.1563 & 0.0859 & 0.4688 \\
0.1875 & 0.1016 & 0.0547 & 0.6563 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

$$
\boldsymbol{Q}^{(8)}=\left[\begin{array}{llll}
0.3164 & 0.1719 & 0.0938 & 0.4180 \\
0.2656 & 0.1445 & 0.0781 & 0.5117 \\
0.1719 & 0.0938 & 0.0508 & 0.6836 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

Example 4.12 (cont.)

Using these matrices we get that:

$$
\begin{aligned}
P(N \leq 8) & =Q_{0,3}^{8}=0.4180 \\
P(N=8) & =P(N \leq 8)-P(N \leq 7) \\
& =Q_{0,3}^{8}-Q_{0,3}^{7} \\
& =0.4180-0.3672=0.0508
\end{aligned}
$$

Alternatively:

$$
P(N=8)=Q_{0,2}^{7} \cdot 0.5=0.1016 \cdot 0.5=0.0508
$$

Example 4.13

Let $\left\{X_{n}\right\}$ be a Markov chain with state set $\mathcal{S}=\{0,1,2,3\}$ and transition probability matrix \boldsymbol{P}.

We then introduce:

$$
N=\min \left\{n \geq 4: X_{n-3}=1, X_{n-2}=2, X_{n-1}=1, X_{n}=2\right\}
$$

Thus, N is the number of steps we need to observe the sequence $(1,2,1,2)$. PROBLEM: For a given value of $k \geq 4$ calculate $P(N \leq k)$ given that $X_{0}=0$.

Example 4.13 (cont.)

To solve this problem, we start out by introducing the following process $\left\{Z_{n}\right\}$:
$Z_{n}=$ The minimal number of steps before observing the first $(1,2,1,2)$ for any given time step n of the original process. The state space of $\left\{Z_{n}\right\}$ is $\mathcal{T}=\{0,1,2,3,4\}$ and we observe that:

$$
\begin{aligned}
& P\left(Z_{n+1}=0 \mid Z_{n}=0\right)=1 \\
& P\left(Z_{n+1}=0 \mid Z_{n}=1\right)=P_{1,2} \\
& P\left(Z_{n+1}=1 \mid Z_{n}=2\right)=P_{2,1} \\
& P\left(Z_{n+1}=2 \mid Z_{n}=3\right)=P_{1,2}
\end{aligned}
$$

Determining $P\left(Z_{n+1}=3 \mid Z_{n}=4\right)$ is more difficult, but we may express this by conditioning on X_{n} as follows:

$$
P\left(Z_{n+1}=3 \mid Z_{n}=4\right)=\sum_{i \in\{0,2,3\}} P\left(Z_{n+1}=3 \mid Z_{n}=4, X_{n}=i\right) \cdot P\left(X_{n}=i\right)
$$

Example 4.13 (cont.)

NOTE: The term $P\left(Z_{n+1}=3 \mid Z_{n}=4, X_{n}=1\right) \cdot P\left(X_{n}=1\right)$ is skipped since $X_{n}=1$ implies that $Z_{n}<4$.

The problem with the transition probability $P\left(Z_{n+1}=3 \mid Z_{n}=4\right)$ is that it depends on n. In order to avoid this problem, we need a process which contains more information about the state of the original process.

Thus, we introduce a new Markov chain $\left\{Y_{n}\right\}$ defined as follows:

$$
Y_{n}=Z_{n}+X_{n} \cdot I\left(Z_{n}=4\right)
$$

The state space of $\left\{Y_{n}\right\}$ is $\mathcal{T}=\{0,1,2,3,4,6,7\}$.
NOTE: \mathcal{T} does not contain the state 5 since the combination where $Z_{n}=4$ and $X_{n}=1$ is not possible.

NOTE: If $Y_{n} \geq 4$, then $X_{n}=Y_{n}-4$. Thus, in this case the state of the original process can be derived from Y_{n}. As a result the transition probabilities of $\left\{Y_{n}\right\}$ does not depend on n.

Example 4.13 (cont.)

The transition probability matrix of $\left\{Y_{n}\right\}$ with state space $\mathcal{T}=\{0,1,2,3,4,6,7\}$ is:
$\boldsymbol{Q}=\left[\begin{array}{cccc:ccc}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ P_{1,2} & 0 & 0 & P_{1,1} & P_{1,0} & 0 & P_{1,3} \\ 0 & P_{2,1} & 0 & 0 & P_{2,0} & P_{2,2} & P_{2,3} \\ 0 & 0 & P_{1,2} & P_{1,1} & P_{1,0} & 0 & P_{1,3} \\ \hdashline 0 & 0 & 0 & P_{0,1} & P_{0,0} & P_{0,2} & P_{0,3} \\ 0 & 0 & 0 & P_{2,1} & P_{2,0} & P_{2,2} & P_{2,3} \\ 0 & 0 & 0 & P_{3,1} & P_{3,0} & P_{3,2} & P_{3,3}\end{array}\right]$

NOTE: The $Y_{n}=0$, the process is absorbed in this state.
If $Y_{n}=1$ or $Y_{n}=3$, then $X_{n}=1$. If $Y_{n}=2$, then $X_{n}=2$.
The entries below the horizontal dashed line corresponds to cases where $Y_{n} \geq 4$, implying that $X_{n}=Y_{n}-4$.

Example 4.13 (cont.)

Since we have assumed that $X_{0}=0$, it follows that $Y_{0}=4$.
Moreover, recalling that:

$$
N=\min \left\{n \geq 4: X_{n-3}=1, X_{n-2}=2, X_{n-1}=1, X_{n}=2\right\}
$$

and using the fact that state 0 is an absorbing state for $\left\{Y_{n}\right\}$, it follows that:

$$
N \leq k \quad \Leftrightarrow \quad Y_{k}=0
$$

Hence, we get that:

$$
P(N \leq k)=P\left(Y_{k}=0 \mid Y_{0}=4\right)=Q_{4,0}^{k}
$$

First-passage probabilities (cont.)

Consider again a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} and transition probability matrix \boldsymbol{P}, and let \mathcal{A} be a non-empty proper subset of \mathcal{S}.

We now consider the following probability:

$$
\alpha=P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-1, X_{m}=j \mid X_{0}=i\right)
$$

As before we let $N=\min \left\{n>0: X_{n} \in \mathcal{A}\right\}$ and:

$$
W_{n}= \begin{cases}X_{n} & \text { if } n<N \\ A & \text { if } n \geq N\end{cases}
$$

As before, we let the state A be some arbitrary state in \mathcal{A}, and hence, the state space of $\left\{W_{n}\right\}$ becomes $(\mathcal{S} \backslash \mathcal{A}) \cup\{A\}$.

First-passage probabilities (cont.)

CASE 1. $i \notin \mathcal{A}, j \notin \mathcal{A}$
In this case the event $\left\{X_{k} \notin \mathcal{A}\right.$ for all $\left.1 \leq k \leq m-1, X_{m}=j\right\}$ is equivalent to the event $\left\{W_{m}=j\right\}$.

Hence, it follows that:

$$
\alpha=P\left(W_{m}=j \mid W_{0}=i\right)=Q_{i, j}^{m} .
$$

First-passage probabilities (cont.)

CASE 2. $i \notin \mathcal{A}$ and $j \in \mathcal{A}$
In this case we have:

$$
\begin{aligned}
\alpha= & \sum_{r \notin \mathcal{A}} P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r, X_{m}=j \mid X_{0}=i\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r \mid X_{0}=i\right) \\
& \cdot P\left(X_{m}=j \mid X_{0}=i, X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq m-2, X_{m-1}=r \mid X_{0}=i\right) \cdot P\left(X_{m}=j \mid X_{m-1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} Q_{i, r}^{m-1} \cdot P_{r, j}
\end{aligned}
$$

First-passage probabilities (cont.)

CASE 3. $i \in \mathcal{A}$ and $j \notin \mathcal{A}$
In this case we have:

$$
\begin{aligned}
\alpha= & \sum_{r \notin \mathcal{A}} P\left(X_{1}=r, X_{k} \notin \mathcal{A} \text { for all } 2 \leq k \leq m-1, X_{m}=j \mid X_{0}=i\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{1}=r \mid X_{0}=i\right) \\
& \cdot P\left(X_{k} \notin \mathcal{A} \text { for all } 2 \leq k \leq m-1, X_{m}=j \mid X_{0}=i, X_{1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} P\left(X_{1}=r \mid X_{0}=i\right) \\
& \cdot P\left(X_{k} \notin \mathcal{A} \text { for all } 2 \leq k \leq m-1, X_{m}=j \mid X_{1}=r\right) \\
= & \sum_{r \notin \mathcal{A}} P_{i, r} \cdot Q_{r, j}^{m-1}
\end{aligned}
$$

First-passage probabilities (cont.)

CASE 4. $i \in \mathcal{A}$ and $j \in \mathcal{A}$
By combining the previous arguments we get:

$$
\alpha=\sum_{r, s \notin \mathcal{A}} P_{i, r} \cdot Q_{r, s}^{m-2} \cdot P_{s, j}
$$

Example 4.14

Let $\left\{X_{n}\right\}$ be a Markov chain with state space $\mathcal{S}=\{1,2,3,4,5\}$, and let $\mathcal{A}=\{3,4,5\}$.
We now consider the following probability:

$$
\alpha=P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq 3, X_{4}=2 \mid X_{0}=1\right)
$$

We then let $N=\min \left\{n>0: X_{n} \in \mathcal{A}\right\}$ and:

$$
W_{n}= \begin{cases}X_{n} & \text { if } n<N \\ 3 & \text { if } n \geq N\end{cases}
$$

The state space of $\left\{W_{n}\right\}$ becomes $\mathcal{T}=\{1,2,3\}$.

Example 4.14 (cont.)

The transition probability matrix of $\left\{W_{n}\right\}$, denoted \boldsymbol{Q}, is given by:

$$
\begin{aligned}
& Q_{i, j}=P_{i, j}, \quad i, j=1,2, \\
& Q_{i, 3}=1-P_{i, 1}-P_{i, 2}, \quad i=1,2, \\
& Q_{3,3}=1 .
\end{aligned}
$$

We then assume that:

$$
\begin{array}{ll}
P_{1,1}=0.3, & P_{1,2}=0.3 \\
P_{2,1}=0.1, & P_{2,2}=0.2
\end{array}
$$

Example 4.14 (cont.)

Hence, we get that:

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
0.3 & 0.3 & 0.4 \\
0.1 & 0.2 & 0.7 \\
0.0 & 0.0 & 1.0
\end{array}\right]
$$

From this we calculate that:

$$
\boldsymbol{Q}^{(4)}=\left[\begin{array}{lll}
0.0219 & 0.0285 & 0.9496 \\
0.0095 & 0.0124 & 0.9781 \\
0.0000 & 0.0000 & 1.0000
\end{array}\right]
$$

Hence, we get that:

$$
\begin{aligned}
\alpha & =P\left(X_{k} \notin \mathcal{A} \text { for all } 1 \leq k \leq 3, X_{4}=2 \mid X_{0}=1\right) \\
& =P\left(W_{4}=2 \mid W_{0}=1\right)=Q_{1,2}^{4}=0.0285
\end{aligned}
$$

Unconditional probabilities

We introduce the probabilities:

$$
\pi_{i}^{(n)}=P\left\{X_{n}=i\right\}, \quad i \in \mathcal{S}, \quad n=0,1,2, \ldots
$$

We then have:

$$
\begin{aligned}
\pi_{j}^{(n+m)} & =\sum_{i \in \mathcal{S}} P\left\{X_{n+m}=j \cap X_{n}=i\right\} \\
& =\sum_{i \in \mathcal{S}} P\left\{X_{n}=i\right\} \cdot P\left\{X_{n+m}=j \mid X_{n}=i\right\} \\
& =\sum_{i \in \mathcal{S}} \pi_{i}^{(n)} \cdot P_{i j}^{m} .
\end{aligned}
$$

In particular:

$$
\pi_{j}^{(1)}=\sum_{i \in \mathcal{S}} \pi_{i}^{(0)} \cdot P_{i j}, \quad \pi_{j}^{(n+1)}=\sum_{i \in \mathcal{S}} \pi_{i}^{(n)} \cdot P_{i j}
$$

Unconditional probabilities (cont.)

Assume that:

$$
\lim _{n \rightarrow \infty} \pi_{i}^{(n)}=\pi_{i}, \quad i \in \mathcal{S} .
$$

Then we obviously also have:

$$
\lim _{n \rightarrow \infty} \pi_{j}^{(n+1)}=\pi_{j}, \quad j \in \mathcal{S} .
$$

In particular, if $\mathcal{S}=\{1, \ldots, k\}$ and $\pi=\left(\pi_{1}, \ldots, \pi_{k}\right)$, then:

$$
\pi_{j}=\lim _{n \rightarrow \infty} \pi_{j}^{(n+1)}=\lim _{n \rightarrow \infty} \sum_{i=1}^{k} \pi_{i}^{(n)} \cdot P_{i j}=\sum_{i=1}^{k} \lim _{n \rightarrow \infty} \pi_{i}^{(n)} \cdot P_{i j}=\sum_{i=1}^{k} \pi_{i} \cdot P_{i j}
$$

Thus, π must satisfy:

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \cdot \boldsymbol{P}
$$

Example 4.8 revisited

$P\{$ Rain tomorrow \mid Rain today $\}=0.75$
$P\{$ Rain tomorrow \mid No rain today $\}=0.35$

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{ll}
0.75 & 0.25 \\
0.35 & 0.65
\end{array}\right] \\
\boldsymbol{P}^{(2)} & =\left[\begin{array}{ll}
0.65 & 0.35 \\
0.49 & 0.51
\end{array}\right] \\
\boldsymbol{P}^{(4)} & =\left[\begin{array}{ll}
0.5940 & 0.4060 \\
0.5684 & 0.4316
\end{array}\right] \\
\boldsymbol{P}^{(12)} & =\left[\begin{array}{ll}
0.5833 & 0.4167 \\
0.5833 & 0.4167
\end{array}\right]
\end{aligned}
$$

Example 4.8 revisited (cont.)

We now let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}\right)$, and consider the equation:

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \cdot \boldsymbol{P}
$$

which in this case becomes:

$$
\begin{aligned}
& \pi_{1}=0.75 \pi_{1}+0.35 \pi_{2} \\
& \pi_{2}=0.25 \pi_{1}+0.65 \pi_{2}
\end{aligned}
$$

By inserting $\pi_{2}=1-\pi_{1}$ into the first equation, we get:

$$
\pi_{1}=0.75 \pi_{1}+0.35\left(1-\pi_{1}\right)=0.40 \pi_{1}+0.35
$$

From this it follows that:

$$
\begin{aligned}
& \pi_{1}=0.35 /(1-0.40)=0.5833 \\
& \pi_{2}=1-\pi_{1}=0.4167
\end{aligned}
$$

