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Section 4.3. Classification of States

Let {X,} be a Markov chain with state space S and transition probability
matrix P.

State j is said to be accessible from state /, denoted as i — j, if P} > 0 for
some n > 0.

Note that we have:

Py <P(JXn =X =1). n=01.2_..

n=0

Hence, we also have:

sup P < P({_J{Xn = j}1Xo = i)
n=

n>0 0

<Y P X=X =i} => P
n=0 n=0
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Chapter 4 — Markov Chains

If i — j, then by definition P > 0 for some n > 0, and hence we obviously
also have that sup, P > 0. This implies that:

P(U{Xn =X =1) > sup P} > 0.
n>

n=0

Conversely, if P({Up-o{Xn = j}|Xo = i) > 0, then also:

ZP/? 2 P(U{Xn:j}|X0 =i) >0
n=0 n=0

which implies that P} > 0 for some n >0, i.e., that i — j.
Hence, we conclude that i — j if and only if:

P X = 11X = ) > 0.

n=0
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Section 4.3. Classification of States (cont.)
A state diagram for a Markov chain is a directed graph where the nodes
represent the states and the edges represent possible one-step transitions.

More precisely, the state diagram contains an edge from node i to node j if
and only if P; > 0.

Ifi,j € S, then i — jif and only if the state diagram contains at least one
directed path from j to j.

O~O0~0-—  —O

i k1 k2 j

If such a path exists, we have:

n
Pi > Pik - Piso Py ok 1" Piy_yj > 0.
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Communicating states

States i and j communicate, denoted as i < j, if i — jand j — i.

The relation «+ is an equivalence relation. That is «+ satisfies the following
properties:

@ Reflexivity: i < i.
@ Symmetry: i < jif and only if j <> /.

@ Transitivity: i <» jand j <+ k implies i < k.

Reflexivity follows since we always have P = 1 > 0. Symmetry follows
directly from the definition.
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Communicating states (cont.)

To prove transitivity we assume that i <» j and j < k.

Hence, in particular i — j and j — k, implying that there exists m, n > 0 such
that P > 0 and Pj > 0.

By the Chapman-Kolmogorov equations, we have:

m+n __ m pn m n
P —ZPirPrkZPq"/k>0-
res

Hence, by definition i — k.
By a similar argument we can show that kK — i as well.

Hence, we conclude that i <+ k.
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Communicating states (cont.)

Two states that communicate are said to be in the same (equivalence) class.
Two classes of states are either identical or disjoint.

PROOF: Assume that A, B C S represent two equivalence classes, and
assume that AN B # 0. That is, there exists a state i such that i € AN B.
Then choose j € A and k € B arbitrarily.

Now, i,j € Aimplies that i <» j and i, k € B implies that j «» k.

Hence, by transitivity we also have j «+» k. That is, j and k belong to the same
equivalence class.

Since this holds for any j € A and k € 1, this implies that A = B |
The equivalence classes partition the state space S into a number of disjoint

sets. A Markov chain is called irreducible if the number of equivalence
classes is one.
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Example 4.15

Consider a Markov chain with state space S = {0, 1,2} and transition
probability matrix:

1 1
2 2 0
1 1t 1 1
P=13 2 2
1 2
0 3 3

We then observe:

Since Py = 3 > 0, it follows that 0 — 1
Since Pjo = § > 0, it follows that 1 — 0
Since Pp = § > 0, it follows that 1 — 2
Since P = § > 0, it follows that 2 — 1

Hence, 0 ++ 1 and 1 «<» 2, and by transitivity 0 <+ 2 as well. Thus, the Markov
chain is irreducible.
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Example 4.15 (cont.)

J

Figure: State diagram of an irreducible Markov chain with one class {0, 1,2}
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Example 4.16

A Markov chain with state space S = {0, 1,2, 3} and matrix:

2 2 00

p_ 3 200

[ R R R |

4 4 1 1

0 0 0 1

Po1 = P10 =35, = 01

1
2
Poj:PU:O, = 0717L>j', _/':273
Pg,':‘l‘, = 2—)i, i:O,1,2,3
P3,':0, = 37L>I', i=0,1,2
The Markov chain has classes {0, 1}, {2} and {3}, and is not irreducible.
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Example 4.16 (cont.)

Figure: State diagram of a Markov chain with three classes {0, 1}, {2} and

{3}
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Recurrent and transient states

We consider the probabilities:
f,-zP(U{X,:iHoni), icS.
r=1

@ State i is recurrentif fi = 1.

@ State jis transient if f; < 1.

Assume that Xy = i, and let N; denote the number of times X, = i.

@ If i is recurrent, then P(N; = co|Xo = i) = 1.
@ If jis transient, then P(N; = n|Xo = i) = " '(1 = f),n=1,2,....

If i is transient and Xy = i/, then N;| Xy = i has a geometric distribution with
E[NiIXo =i =1/(1-1) < oc.
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Proposition 4.1

Let ) = (X, = i), n=0,1,.... We can then write:

N; = i /"

n=0

Hence, we have:

EIN|Xo=11=>_ E[" (X0 = 1]
n=0

=Y PXa=ilXo=1=)Y_ P}
n=0 n=0

@ State / is recurrent, if Y, Pfl = oo.

@ State i is transient, if >, P < cc.
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Corollary 4.2

If state i is recurrent, and i < j, then state j is recurrent as well. Thus,
recurrence is a class property.

PROOF: Since i ++ j, there exists k and m such that P,j? > 0and P > 0.

Hence, forany n=1,2,... we have:
pmtntk > pm _pn . pk
Jii = i i i+

Summing over all n, and using that i is recurrent, P}j‘ > 0and P > 0 we get:

oo o0
m-+n+k m Kk n __
Y PP PPLPfY Pl =oo
n=1 n=1
Hence, we conclude that j is recurrent as well [ |
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Corollary 4.2 (cont.)

@ If state i is transient and i/ « j, then state j must also be transient. For if j
were recurrent then, by Corollary 4.2, i would also be recurrent
contradicting that i is transient. Thus, transience is a class property as
well.

@ If {X,} is a Markov chain with a finite state space, then at least one of
the states must be recurrent. If {X,} is irreducible as well, then all states
are recurrent.
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Example 4.17

Consider a Markov chain with state space S = {0, 1,2, 3} and transition
probability matrix:

o

o
- a4 O O

2
0
0
0

o
o O O mn=

It is easy to verify that j +» j for all i, j € S. Hence, the Markov chain is
irreducible and thus all states must be recurrent |
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Example 4.17 (cont.)

Figure: State diagram of an irreducible Markov chain with one class
{0,1,2,3}
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Example 4.18

Consider a Markov chain with state space S = {0,1,2,3,4} and transition
probability matrix:

1 2000
1 000
P=j0 o0 3 O
00 % o0
4 2 00 3]
This chain has classes {0,1}, {2,3} and {4}.
The first two classes are recurrent and the third transient [ |
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Example 4.18 (cont.)

Figure: State diagram of a Markov chain with classes {0, 1}, {2,3} and {4}
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Example 4.19 - Random walk

Consider a Markov chain with state space S ={...,-2,-1,0,1,2,...} and
where 0 < p < 1 and:

Piiy1=p, Piic1=(1-p), ieS.

It is obvious that i <» j for all /,j € S. Hence, according to Corollary 4.2 all
states are either recurrent or transient.

In order to check for recurrence, it is sufficient to check if Y2, P§, = oc.

Thus, we assume that X; = 0, and observe that in this case X, is odd if nis
odd, and X, is even if nis even. Hence, since 0 is even, we have:

P '=0, n=1,2,...

(2n)!

2n
ng: (n)Pn(1 —p)”=m[p(1 -p)]", n=1.2,...
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Example 4.19 - Random walk (cont.)

We then use Stirling’s formula for n!:

n! ~ n"t1/2e=1\/21

From this we get:

(2[’7)! ~ (2n)2n+1/26—2n /27.r _ (2n)2n+1/2€—2n /271. _ 22n _ 4n
nint = (pnii/2e-n\/27)2  nPle2(2r) \/nr  /nr

Hence:
P = B0y —(4p(\1/;_ﬂp))"

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 3 22/23



|
Example 4.19 - Random walk (cont.)

This implies that:

oo

> pgg=y ORI

n=1

This series is divergent if and only if p = 3

Hence, the states are recurrent if and only if p = %
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