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Chapter 4 — Markov Chains

Section 4.4 — Long-Run Proportions and Limiting Probabilities

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 4 2/33



I
Recurrent and transient states

Let {X,} be a Markov chain with state space S and transition probability
matrix P.

In the last lecture we considered the probabilities:
)‘,:P(U{X,:i}|X0:i>, i€S.
r=1

We then introduced the following concepts:

@ State jis recurrent if f; = 1.

@ State jis transient if f; < 1.
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Section 4.4 Long-Run Proportions and Limiting
Probabilities

For pairs of states i # j we let f; denote the probability that the Markov chain,
starting in state /, will ever make a transition into state j:

fj = P(X, = j for some n > 0| Xy = i)

oo

= P((U{Xo = j}1Xo = i)

n=1
We recall that if i — j if and only if f; > 0. We now show that:

Proposition (4.3)
Ifiis recurrentand i < j, then f; = 1. J
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Proof of Proposition 4.3

Proof: Since i «» j there exists an n > 0 such that P > 0. We assume that n
is the minimal integer with this property.

Moreover, since state i is recurrent, with probability one there exists an
infinite sequence 0 = ky < k1 < ko < ---,suchthat X, =i,r=0,1,2,....

We then introduce:
Z=min{r>0: Xgin=j}
Then it is easy to verify that:
P(Z=2z)=P}-(1-P)? z=0,1,2,....

And from this it follows that:

1>2f=P(J{X=}Xo=0)>> P(Z=2z)=1.
n=1 z=0
Hence, we conclude f; = 1 u
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Positive and null recurrency
Assume that j is a recurrent state and introduce:
N; =min{n>0: X, =}

Thus, N; is the number of steps until the Markov chain makes a transition into
state j. We then let:

m; = E[N;|Xo = ]

That is, m; is the expected number of steps until the Markov chain returns to
state j given that it starts out in state j.

NOTE: Since j is recurrent, we know that P(N; < co|Xo = j) = 1.

Still, depending on the distribution of N, it may happen that E[N;| Xy = j] = oc.
Definition

If mj < oo, we say that j is positive recurrent.

If m; = 0o, we say that j is null recurrent.
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Positive and null recurrency (cont.)

Let 7; be the long-run proportion of time the Markov chain is in state j:

1 .
= fim, 5 2 16 =))

Proposition (4.4)

If the Markov chain is irreducible and recurrent, then for any initial state Xy,
we have:

mp=1/m;

NOTE: If m; = oo, then 7; = 0.
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Proof of Proposition 4.4

Proof: Assume that Xy = i, and introduce:
To=min{r >0: X, =/}
Ty =min{r >0: X7,4r =}

Te=min{r>0: Xr,1.o7_,4r=j}, k=2,3,....

We then note:
o P(Ty < o0) = fj =1 by Proposition 4.3.
e Ti,T,,...areindependent and identically distributed.
o E[T]=m, k=12,...

Hence, by the strong law of large numbers:

1 . "
lim - kz_; T« = m; with probability 1.
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Proof of Proposition 4.4 (cont.)

To + Y _r_4 Tk is the time the chain enters state j for the (n+ 1)st time.

The proportion of time the chain has been in state j at this point of time is:

Number of times inj n+1
Total time T+ Tk

Hence, the long-run proportion is given by:

n+1 . 1 1

mi= lim ——————— = lim =
J n Tc n 1 n m;
n—oo TO + Z:k:1 Tk n—oo ﬁ + e i E :k=1 Tk )

NOTE: We have that m; < oo if and only if 1/m; > 0.

Thus, state j is positive recurrent if and only if 7, = 1/m; > 0.
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Positive recurrence is a class property

If state i is positive recurrent and i < j, then state j is positive recurrent as

Proposition (4.5)
well. J

Proof: Since i is positive recurrent, we know that 7; > 0. Moreover, since
i+ J, there exists an n > 0 such that Pj/ > 0.

From this it follows that:

> 7T,‘P,-7 > 0.

Hence, state j is positive recurrent as well |
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Positive recurrence is a class property (cont.)

Corollary (4.5.1)
If state i is null recurrent and i < j, then state j is null recurrent as well. J

Proof: Assume that i is null recurrent and i «» j. If j is positive recurrent,
Proposition 4.5 implies that i is positive recurrent as well. However, this
contradicts the assumption [ |

Corollary (4.5.2)
An irreducible finite state Markov chain must be positive recurrent. J

Proof: By Proposition 4.5 all states in an irreducible are either positive
recurrent or null recurrent. If all states are null recurrent, then x; = 0 for all
i € §. However, this is impossible if |S| is finite [ ]
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Long-run proportion of states

We have that:

m;Pj = Long-run proportion of transitions that go from i/ to j

Hence, by summing over all possible preceding states of j, we get:

Tj = ZF,’P,’j

ieS
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——
Long-run proportion of states (cont.)

Theorem (4.1)

Consider an irreducible Markov chain. If the chain is positive recurrent, then
the long-run proportions are the unique solution of the equations:

mj = ZT(,’P;/, forallje S
ies

Zﬁ/:1

jes

Moreover, if there is no solution of these linear equations, then the Markov
chain is either transient or null recurrent, and 7; = 0 for all j € S.
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Symmetric random walk

Consider a Markov chain with state space S={...,-2,-1,0,1,2,...} and
where:

P,‘yi+1 = P,‘y,‘_1 = 1/2, iesS.
By Example 4.19 we know that this chain is recurrent.
Moreover, by Theorem 4.1 we have that:
R 1 . 1
= Tj—A " §+7T/+1 ]
We now assume that Xy = i, where i € S is arbitrarily chosen. Then it follows
by symmetry that 7;_1 = 7,1, and hence:

T = Tj = i1
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Symmetric random walk (cont.)

Similarly it follows by Theorem 4.1 that:

]
Tipl =T 5 + Tiy2 -

Nj—= NI—=

M =T+ % +mi2-

Since mj_1 = m; = 71, this implies that:
Ti—2 = M| = Tj}2.

Continuing in the same way, we get that:
Tk =m =Tk, K=1,2,...

Since the initial state i was arbitrarily chosen, we conclude that the long-run
proportions are the same for all states regardless of the initial state, and
denote this common proportion by .
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Symmetric random walk (cont.)

If the chain is positive recurrent, it follows by Theorem 4.1 that:
Z T =T - Z 1=1
jeS jeS

However, > . o 1 = oo, so this implies that 7 = 0.

jeS

Thus, we conclude that the chain is null recurrent.
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Long-Run Proportions and Limiting Probabilities

Previously we introduced the probabilities:

7= P{X, =i}, i€S, n=01.2...

Moreover, we defined:

lim 7" =, ies.

n—oo

and showed that:

m=Y_ mPy, foraljes, > m=1
ieS jes

Assuming that there exists a unique solution to these equations, it follows by
Theorem 4.1 that these limiting probabilities are the same as the long-run
proportions.
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Long-Run Proportions and Limiting Probabilities

NOTE: The set of equations
m= Zﬂ',‘Pij, for a”j eS
ics

may be written in matrix form as:

w=m-P,
where:
7 = The row vector of long-run proportions

= The row vector of limiting probabilities
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Example 4.22

P{Rain tomorrow|Rain today} = a = 0.7
P{Rain tomorrow|No rain today} = g = 0.4

P=[5 65

In order to find the long-run proportion of rain (wg) and not-rain (1), we solve
the equations:

mo = amg + By
m = (1 —a)m+ (1 — B)m
m +m = 1.
The last equation implies that 7y = 1 — mg. By inserting this into the first
equation we get:
mo = am + B(1 —m) = (e — B)mp + B
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Example 4.22 (cont.)

We solve the equation:
mo = (a — B)mo + B
with respect to 7y, and get that:

B 0.4 _ 4
" 1-—a+B 1-07+04 7

o

By using the last equation again we find that:

_1-a _ 1-07 3
" 1-—a+8 1-07+04 7

m=1—mg
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——
Example 4.23 - Mood of an individual

0 = cheerful, 1 = so-so, 2 = glum.

05 04 0.1
P=| 03 04 03
02 03 05
In order to find the long-run proportions m, 71 and w2, we solve the equations:
w9 = 0.5m9 + 0.371 + 0.2m>
w1 = 0.4m9 + 0.471 + 0.3m>
w0 = 0.1m9 + 0.371 + 0.5m5
m +m +me=1.
SOLUTION:

21 2 1
™ =65 = 0.3387, w1 = 6_2 =0.3710, m = 6_2 = 0.2903
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Example 4.23 (cont.)

The solution 7o = 0.3387, 71 = 0.3710, 7> = 0.2903 also corresponds to
taking the limit of the n-step transition probability matrix:

[ 0.3446 0.3734 0.2820 ]
P® — | 0.3378 0.3706 0.2916
| 0.3330 0.3686 0.2984 |

[ 0.3388 0.3710 0.2902 ]
P® — | 0.3387 0.3710 0.2903
| 0.3386 0.3709 0.2904 |

0.3387 0.3710 0.2903
pP(® — | 0.3387 0.3710 0.2903
0.3387 0.3710 0.2903
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Example 4.24 - Class mobility

0 = Upper class, 1 = Middle class, 2 = Lower class.

0.45 0.48 0.07
P=| 0.05 0.70 0.25
0.01 0.50 0.49
In order to find the long-run proportions m, 71 and 2, we solve the equations:
mo = 0.4579 + 0.0571 + 0.017>

71 = 0.48my + 0.707¢ + 0.5075

mp = 0.0779 + 0.257¢ + 0.497,
o+ m + M = 1.

SOLUTION:

mo = 0.0624, 71 =0.6234, m =0.3142
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Example 4.24 (cont.)

The solution 7o = 0.0624, 71 = 0.6234, 7> = 0.3142 also corresponds to
taking the limit of the n-step transition probability matrix:

[ 0.0932
P® — | 0.0623
| 0.0564

[ 0.0635
P® — | 0.0624
| 0.0622

0.0624
P(®) — | 0.0624
0.0624

0.6199
0.6241
0.6229

0.6233
0.6234
0.6235

0.6234
0.6234
0.6234

0.2869 |
0.3136
0.3207 |

0.3132 ]
0.3142
0.3144 |

0.3142
0.3142
0.3142
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Example 4.25 - The Hardy-Weinberg Law

Two gene types: Aand a
Three possible gene pairs: AA, aa, Aa.

In generation 0 we assume that the proportions of these gene pairs are
respectively:

p = Proportion of AA, g = Proportion of aa, r = Proportion of Aa

By conditioning on the gene pairs of a parent we get the following
probabilities for one of the genes for a given child:

P(A) = P(AJAA)p + P(Alaa)q + P(A|Aa)r
P(a) = P(alAA)p + P(alaa)q + P(alAa)r
=0-p+1-q+3-r=q+3-r
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——
Example 4.25 - The Hardy-Weinberg Law (cont.)

Hence, the proportions of the gene pairs in generation 1 is:
pr = P(AA) = P(A)- P(A) = (p+ 5 - 1)
¢ = P(aa)=P(a)- P(a)=(q+ % - r)
r = P(Aa) =2P(A)P(a)=2-(p+3-r)(q+3%-r)
Hence, in generation 1 the probabilities for the two gene types are:
P(A)=pi + % -
=Ptz N+ (+z-N@+z:7)
=(p+z-Nlp+z r+q+3-1]
=p+ % .r

P(a):q1+%-r1
=@+ P+ (p+zN@a+z:7)
=@+znla+tz-rtp+z-l
=q+3-r
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Example 4.25 - The Hardy-Weinberg Law (cont.)

By repeating the same argument we get that the proportions of the gene
pairs in generation nis:

pn = P(AA) = P(A)- P(A) = (p+ 3 - r)?
9o = P(aa) = P(a) - P(a) = (qu% r)?
rh = P(Aa) = 2P(A)P(a) =2 (p+ 5 r)(q+ 3 T)

Hence, in generation n the probabilities for the two gene types are:
PAY=p+1-r

P(ay=q+%-r

NOTE: This holds for n =0,1,2, ...
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Example 4.25 - The Hardy-Weinberg Law (cont.)

We now define:

Xn» = The gene pair of an nth generation child, n=1,2

gy e

where the state space is S = {AA, aa, Aa}.

Since we have shown that in every generation we have P(A) = p+ r/2 and
P(a) = g + r/2, the transition matrix for this chain is:

p+r/2 0 g+r/2
P= 0 q+r/2 p+r/2
p/2+r/4 q/2+r/4 p/2+q/2+r/2
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Example 4.25 - The Hardy-Weinberg Law (cont.)

NOTE: We have shown that the distribution p, g, r is stable from generation to
generation. This means that:

p=P(A)- P(A) = (p+ 5)°
q="P(a)- P(a) = (q+ 5)°
r=2P(A)P(@) =2 (p+ 5)(q+ 3)

We now claim that p, g, r also is the long-time distribution of the Markov chain
with transition matrix P.

Since obviously p+ g + r = 1, it is sufficient to verify that:

(p,q,l’)Z(p,q,f)P
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Example 4.25 - The Hardy-Weinberg Law (cont.)

This follows since we have:

\Sle]

p(p+é)+r( +£)=(p+é)2:p

Iy = Ty _

2) q

nNiQ

a(a+5) + 1l

p(q + )+Q(P+ )+r( +5 +2)
=p(q+—)+q(p+—)+—(p+5+q+£)
= (p+ )(q+ )+(C7+ )(p+ )

=2(p+ §)(Q+ §)=f
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Stationary probabilities

The long-run proportions 7, j € S are called the stationary probabilities of the
Markov chain.

In fact it P(Xo = j) = mj, j € S, then P(X, = j) = m, j€ S, n=1,2, ... as well.

To see this, we let w}”) =P(X,=J),j€S,n=0,1,2,.... Moreover, let 7("
denote the vector of w}”’, j € S, and let 7 denote the vector of 7, j € S.

Thus, # = 7@, and # = =P
By conditioning on X,_ it follows that (" = (" P, n=12, ...
Hence, 7)) = #OP = P = 7.

By induction this implies that 7(" = 7P = 7.
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Bounded functions on the state space

Proposition (4.6)

Let {X,} be an irreducible Markov chain with stationary probabilities rj, j € S,
and let f be a bounded function on the state space. Then with probability 1:

N
Jm L > 106) = X ()

JES

Proof: Let g;(N) be the amount of time the Markov chain spends in state j
during the periods 1,..., N. Then we have:

N
D (X)) =D a(N)f())

n=1 jES
Hence,

N
.1 . ai(N) . .
I|m—§:fX :IlmE:’—f :E:-f
i N 2 TXe) = Jim Q=) = 2 mifl)
n=1 jES jeS




Example 4.29 - Car insurance

State space S = {1,2, 3,4} bonus classes. We let f(j) denote the premium
as a function of state, and assume that:

f(1) =200, f(2) =250, f(3) =400, f(4)=600.

Transition matrix:

0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935

P:

The stationary distribution is found by solving = = 7P combined with the
restriction that w1 + - - - + m4 = 1, and we get:

m = 0.3692, mp =0.2395, m3=0.2103, w4y =0.1809
Average annual premium is then:

f(1) -1 + £(2) - 72 + £(3) - 73 + F(4) - w4 = 326.375



