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Chapter 4 – Markov Chains

Section 4.4 – Long-Run Proportions and Limiting Probabilities

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 4 2 / 33



Recurrent and transient states

Let {Xn} be a Markov chain with state space S and transition probability
matrix P.

In the last lecture we considered the probabilities:

fi = P

( ∞⋃
r=1

{Xr = i}|X0 = i

)
, i ∈ S.

We then introduced the following concepts:

State i is recurrent if fi = 1.

State i is transient if fi < 1.
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Section 4.4 Long-Run Proportions and Limiting
Probabilities

For pairs of states i 6= j we let fij denote the probability that the Markov chain,
starting in state i , will ever make a transition into state j :

fij = P(Xn = j for some n > 0|X0 = i)

= P(
∞⋃

n=1

{Xn = j}|X0 = i)

We recall that if i → j if and only if fij > 0. We now show that:

Proposition (4.3)

If i is recurrent and i ↔ j , then fij = 1.
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Proof of Proposition 4.3
Proof: Since i ↔ j there exists an n > 0 such that Pn

ij > 0. We assume that n
is the minimal integer with this property.

Moreover, since state i is recurrent, with probability one there exists an
infinite sequence 0 = k0 < k1 < k2 < · · · , such that Xkr = i , r = 0,1,2, . . ..

We then introduce:

Z = min{r ≥ 0 : Xkr+n = j}

Then it is easy to verify that:

P(Z = z) = Pn
ij · (1− Pn

ij )
z , z = 0,1,2, . . . .

And from this it follows that:

1 ≥ fij = P(
∞⋃

n=1

{Xn = j}|X0 = i) ≥
∞∑

z=0

P(Z = z) = 1.

Hence, we conclude fij = 1 �
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Positive and null recurrency
Assume that j is a recurrent state and introduce:

Nj = min{n > 0 : Xn = j}

Thus, Nj is the number of steps until the Markov chain makes a transition into
state j . We then let:

mj = E [Nj |X0 = j]

That is, mj is the expected number of steps until the Markov chain returns to
state j given that it starts out in state j .

NOTE: Since j is recurrent, we know that P(Nj <∞|X0 = j) = 1.

Still, depending on the distribution of Nj , it may happen that E [Nj |X0 = j] =∞.

Definition
If mj <∞, we say that j is positive recurrent.
If mj =∞, we say that j is null recurrent.
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Positive and null recurrency (cont.)

Let πj be the long-run proportion of time the Markov chain is in state j :

πj = lim
n→∞

1
n

n∑
r=1

I(Xr = j)

Proposition (4.4)

If the Markov chain is irreducible and recurrent, then for any initial state X0,
we have:

πj = 1/mj

NOTE: If mj =∞, then πj = 0.
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Proof of Proposition 4.4
Proof: Assume that X0 = i , and introduce:

T0 = min{r > 0 : Xr = j}

T1 = min{r > 0 : XT0+r = j}

Tk = min{r > 0 : XT0+···+Tk−1+r = j}, k = 2,3, . . . .

We then note:
• P(T0 <∞) = fij = 1 by Proposition 4.3.
• T1,T2, . . . are independent and identically distributed.
• E [Tk ] = mj , k = 1,2, . . ..

Hence, by the strong law of large numbers:

lim
n→∞

1
n

n∑
k=1

Tk = mj with probability 1.
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Proof of Proposition 4.4 (cont.)

T0 +
∑n

k=1 Tk is the time the chain enters state j for the (n + 1)st time.

The proportion of time the chain has been in state j at this point of time is:

Number of times in j
Total time

=
n + 1

T0 +
∑n

k=1 Tk

Hence, the long-run proportion is given by:

πj = lim
n→∞

n + 1
T0 +

∑n
k=1 Tk

= lim
n→∞

1
T0

n+1 + n
n+1 ·

1
n

∑n
k=1 Tk

=
1
mj

NOTE: We have that mj <∞ if and only if 1/mj > 0.

Thus, state j is positive recurrent if and only if πj = 1/mj > 0.
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Positive recurrence is a class property

Proposition (4.5)

If state i is positive recurrent and i ↔ j , then state j is positive recurrent as
well.

Proof: Since i is positive recurrent, we know that πi > 0. Moreover, since
i ↔ j , there exists an n > 0 such that Pn

ij > 0.

From this it follows that:

πj ≥ πiPn
ij > 0.

Hence, state j is positive recurrent as well �
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Positive recurrence is a class property (cont.)

Corollary (4.5.1)

If state i is null recurrent and i ↔ j , then state j is null recurrent as well.

Proof: Assume that i is null recurrent and i ↔ j . If j is positive recurrent,
Proposition 4.5 implies that i is positive recurrent as well. However, this
contradicts the assumption �

Corollary (4.5.2)

An irreducible finite state Markov chain must be positive recurrent.

Proof: By Proposition 4.5 all states in an irreducible are either positive
recurrent or null recurrent. If all states are null recurrent, then πi = 0 for all
i ∈ S. However, this is impossible if |S| is finite �
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Long-run proportion of states

We have that:

πiPij = Long-run proportion of transitions that go from i to j

Hence, by summing over all possible preceding states of j , we get:

πj =
∑
i∈S

πiPij
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Long-run proportion of states (cont.)

Theorem (4.1)

Consider an irreducible Markov chain. If the chain is positive recurrent, then
the long-run proportions are the unique solution of the equations:

πj =
∑
i∈S

πiPij , for all j ∈ S

∑
j∈S

πj = 1

Moreover, if there is no solution of these linear equations, then the Markov
chain is either transient or null recurrent, and πj = 0 for all j ∈ S.
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Symmetric random walk

Consider a Markov chain with state space S = {. . . ,−2,−1,0,1,2, . . .} and
where:

Pi,i+1 = Pi,i−1 = 1/2, i ∈ S.

By Example 4.19 we know that this chain is recurrent.

Moreover, by Theorem 4.1 we have that:

πi = πi−1 · 1
2 + πi+1 · 1

2

We now assume that X0 = i , where i ∈ S is arbitrarily chosen. Then it follows
by symmetry that πi−1 = πi+1, and hence:

πi−1 = πi = πi+1.
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Symmetric random walk (cont.)

Similarly it follows by Theorem 4.1 that:

πi+1 = πi · 1
2 + πi+2 · 1

2

πi−1 = πi · 1
2 + πi−2 · 1

2

Since πi−1 = πi = πi+1, this implies that:

πi−2 = πi = πi+2.

Continuing in the same way, we get that:

πi−k = πi = πi+k , k = 1,2, . . .

Since the initial state i was arbitrarily chosen, we conclude that the long-run
proportions are the same for all states regardless of the initial state, and
denote this common proportion by π.
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Symmetric random walk (cont.)

If the chain is positive recurrent, it follows by Theorem 4.1 that:∑
j∈S

πj = π ·
∑
j∈S

1 = 1

However,
∑

j∈S 1 =∞, so this implies that π = 0.

Thus, we conclude that the chain is null recurrent.
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Long-Run Proportions and Limiting Probabilities

Previously we introduced the probabilities:

π
(n)
i = P{Xn = i}, i ∈ S, n = 0,1,2, . . .

Moreover, we defined:

lim
n→∞

π
(n)
i = πi , i ∈ S.

and showed that:

πj =
∑
i∈S

πiPij , for all j ∈ S,
∑
j∈S

πj = 1

Assuming that there exists a unique solution to these equations, it follows by
Theorem 4.1 that these limiting probabilities are the same as the long-run
proportions.
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Long-Run Proportions and Limiting Probabilities

NOTE: The set of equations

πj =
∑
i∈S

πiPij , for all j ∈ S

may be written in matrix form as:

π = π · P,

where:

π = The row vector of long-run proportions

= The row vector of limiting probabilities
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Example 4.22

P{Rain tomorrow|Rain today} = α = 0.7
P{Rain tomorrow|No rain today} = β = 0.4

P =

[
α (1− α)
β (1− β)

]
In order to find the long-run proportion of rain (π0) and not-rain (π1), we solve
the equations:

π0 = απ0 + βπ1

π1 = (1− α)π0 + (1− β)π1

π0 + π1 = 1.

The last equation implies that π1 = 1− π0. By inserting this into the first
equation we get:

π0 = απ0 + β(1− π0) = (α− β)π0 + β
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Example 4.22 (cont.)

We solve the equation:

π0 = (α− β)π0 + β

with respect to π0, and get that:

π0 =
β

1− α+ β
=

0.4
1− 0.7 + 0.4

=
4
7

By using the last equation again we find that:

π1 = 1− π0 =
1− α

1− α+ β
=

1− 0.7
1− 0.7 + 0.4

=
3
7
.
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Example 4.23 - Mood of an individual

0 = cheerful, 1 = so-so, 2 = glum.

P =

 0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5


In order to find the long-run proportions π0, π1 and π2, we solve the equations:

π0 = 0.5π0 + 0.3π1 + 0.2π2

π1 = 0.4π0 + 0.4π1 + 0.3π2

π2 = 0.1π0 + 0.3π1 + 0.5π2

π0 + π1 + π2 = 1.

SOLUTION:

π0 =
21
62

= 0.3387, π1 =
23
62

= 0.3710, π2 =
18
62

= 0.2903
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Example 4.23 (cont.)

The solution π0 = 0.3387, π1 = 0.3710, π2 = 0.2903 also corresponds to
taking the limit of the n-step transition probability matrix:

P(4) =

 0.3446 0.3734 0.2820
0.3378 0.3706 0.2916
0.3330 0.3686 0.2984



P(8) =

 0.3388 0.3710 0.2902
0.3387 0.3710 0.2903
0.3386 0.3709 0.2904



P(16) =

 0.3387 0.3710 0.2903
0.3387 0.3710 0.2903
0.3387 0.3710 0.2903
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Example 4.24 - Class mobility

0 = Upper class, 1 = Middle class, 2 = Lower class.

P =

 0.45 0.48 0.07
0.05 0.70 0.25
0.01 0.50 0.49


In order to find the long-run proportions π0, π1 and π2, we solve the equations:

π0 = 0.45π0 + 0.05π1 + 0.01π2

π1 = 0.48π0 + 0.70π1 + 0.50π2

π2 = 0.07π0 + 0.25π1 + 0.49π2

π0 + π1 + π2 = 1.

SOLUTION:

π0 = 0.0624, π1 = 0.6234, π2 = 0.3142
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Example 4.24 (cont.)

The solution π0 = 0.0624, π1 = 0.6234, π2 = 0.3142 also corresponds to
taking the limit of the n-step transition probability matrix:

P(4) =

 0.0932 0.6199 0.2869
0.0623 0.6241 0.3136
0.0564 0.6229 0.3207



P(8) =

 0.0635 0.6233 0.3132
0.0624 0.6234 0.3142
0.0622 0.6235 0.3144



P(16) =

 0.0624 0.6234 0.3142
0.0624 0.6234 0.3142
0.0624 0.6234 0.3142
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Example 4.25 - The Hardy-Weinberg Law

Two gene types: A and a

Three possible gene pairs: AA, aa, Aa.

In generation 0 we assume that the proportions of these gene pairs are
respectively:

p = Proportion of AA, q = Proportion of aa, r = Proportion of Aa

By conditioning on the gene pairs of a parent we get the following
probabilities for one of the genes for a given child:

P(A) = P(A|AA)p + P(A|aa)q + P(A|Aa)r

= 1 · p + 0 · q + 1
2 · r = p + 1

2 · r

P(a) = P(a|AA)p + P(a|aa)q + P(a|Aa)r

= 0 · p + 1 · q + 1
2 · r = q + 1

2 · r
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Example 4.25 - The Hardy-Weinberg Law (cont.)
Hence, the proportions of the gene pairs in generation 1 is:

p1 = P(AA) = P(A) · P(A) = (p + 1
2 · r)

2

q1 = P(aa) = P(a) · P(a) = (q + 1
2 · r)

2

r1 = P(Aa) = 2P(A)P(a) = 2 · (p + 1
2 · r)(q + 1

2 · r)
Hence, in generation 1 the probabilities for the two gene types are:

P(A) = p1 +
1
2 · r1

= (p + 1
2 · r)

2 + (p + 1
2 · r)(q + 1

2 · r)
= (p + 1

2 · r)[p + 1
2 · r + q + 1

2 · r ]
= p + 1

2 · r

P(a) = q1 +
1
2 · r1

= (q + 1
2 · r)

2 + (p + 1
2 · r)(q + 1

2 · r)
= (q + 1

2 · r)[q + 1
2 · r + p + 1

2 · r ]
= q + 1

2 · r
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Example 4.25 - The Hardy-Weinberg Law (cont.)

By repeating the same argument we get that the proportions of the gene
pairs in generation n is:

pn = P(AA) = P(A) · P(A) = (p + 1
2 · r)

2

qn = P(aa) = P(a) · P(a) = (q + 1
2 · r)

2

rn = P(Aa) = 2P(A)P(a) = 2 · (p + 1
2 · r)(q + 1

2 · r)

Hence, in generation n the probabilities for the two gene types are:

P(A) = p + 1
2 · r

P(a) = q + 1
2 · r

NOTE: This holds for n = 0,1,2, . . .
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Example 4.25 - The Hardy-Weinberg Law (cont.)

We now define:

Xn = The gene pair of an nth generation child, n = 1,2, . . .

where the state space is S = {AA,aa,Aa}.

Since we have shown that in every generation we have P(A) = p + r/2 and
P(a) = q + r/2, the transition matrix for this chain is:

P =

 p + r/2 0 q + r/2
0 q + r/2 p + r/2

p/2 + r/4 q/2 + r/4 p/2 + q/2 + r/2
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Example 4.25 - The Hardy-Weinberg Law (cont.)

NOTE: We have shown that the distribution p,q, r is stable from generation to
generation. This means that:

p = P(A) · P(A) = (p +
r
2
)2

q = P(a) · P(a) = (q +
r
2
)2

r = 2P(A)P(a) = 2 · (p +
r
2
)(q +

r
2
)

We now claim that p,q, r also is the long-time distribution of the Markov chain
with transition matrix P.

Since obviously p + q + r = 1, it is sufficient to verify that:

(p,q, r) = (p,q, r)P
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Example 4.25 - The Hardy-Weinberg Law (cont.)

This follows since we have:

p(p +
r
2
) + r(

p
2
+

r
4
) = (p +

r
2
)2 = p

q(q +
r
2
) + r(

q
2
+

r
4
) = (q +

r
2
)2 = q

p(q +
r
2
) + q(p +

r
2
) + r(

p
2
+

q
2
+

r
2
)

= p(q +
r
2
) + q(p +

r
2
) +

r
2
(p +

r
2
+ q +

r
2
)

= (p +
r
2
)(q +

r
2
) + (q +

r
2
)(p +

r
2
)

= 2(p +
r
2
)(q +

r
2
) = r

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 4 30 / 33



Stationary probabilities

The long-run proportions πj , j ∈ S are called the stationary probabilities of the
Markov chain.

In fact if P(X0 = j) = πj , j ∈ S, then P(Xn = j) = πj , j ∈ S, n = 1,2, . . . as well.

To see this, we let π(n)
j = P(Xn = j), j ∈ S, n = 0,1,2, . . .. Moreover, let π(n)

denote the vector of π(n)
j , j ∈ S, and let π denote the vector of πj , j ∈ S.

Thus, π = π(0), and π = πP

By conditioning on Xn−1 it follows that π(n) = π(n−1)P, n = 1,2, . . ..

Hence, π(1) = π(0)P = πP = π.

By induction this implies that π(n) = πP = π.
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Bounded functions on the state space

Proposition (4.6)

Let {Xn} be an irreducible Markov chain with stationary probabilities πj , j ∈ S,
and let f be a bounded function on the state space. Then with probability 1:

lim
N→∞

1
N

N∑
n=1

f (Xn) =
∑
j∈S

πj f (j)

Proof: Let aj(N) be the amount of time the Markov chain spends in state j
during the periods 1, . . . ,N. Then we have:

N∑
n=1

f (Xn) =
∑
j∈S

aj(N)f (j)

Hence,

lim
N→∞

1
N

N∑
n=1

f (Xn) = lim
N→∞

∑
j∈S

aj(N)

N
f (j) =

∑
j∈S

πj f (j)
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Example 4.29 - Car insurance
State space S = {1,2,3,4} bonus classes. We let f (j) denote the premium
as a function of state, and assume that:

f (1) = 200, f (2) = 250, f (3) = 400, f (4) = 600.

Transition matrix:

P =


0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935


The stationary distribution is found by solving π = πP combined with the
restriction that π1 + · · ·+ π4 = 1, and we get:

π1 = 0.3692, π2 = 0.2395, π3 = 0.2103, π4 = 0.1809

Average annual premium is then:

f (1) · π1 + f (2) · π2 + f (3) · π3 + f (4) · π4 = 326.375
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