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Chapter 4.4.1. Limiting Probabilities
We consider a Markov chain with the following transition probability matrix:

P =

[
0.7 0.3
0.4 0.6

]

From this it follows that:

P(4) =

[
0.575 0.425
0.567 0.433

]

P(8) =

[
0.571 0.429
0.571 0.429

]

Moreover:

π0 = 4
7 ≈ 0.571, π1 = 3

7 ≈ 0.429
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Chapter 4.4.1. Limiting Probabilities (cont.)

From this example it is tempting to claim that:

lim
n→∞

Pn
ij = πj , for all i , j ∈ S

COUNTER EXAMPLE:

P =

[
0 1
1 0

]

If we solve the equations π = πP and π0 + π1 = 1, we get: π0 = π1 = 1
2 .
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Chapter 4.4.1. Limiting Probabilities (cont.)

In this case we have for n = 1,2, . . .:

P(2n) =

[
1 0
0 1

]

P(2n+1) =

[
0 1
1 0

]

Thus, limn→∞ P(n)
ij does not exist!

Definition
If a Markov chain can only return to a state in a multiple of d > 1 steps, it is
said to be periodic. A Markov chain which is not periodic is said to be
aperiodic. An irreducible, positive recurrent, aperiodic Markov chain is said to
be ergodic.
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Chapter 4.4.1. Limiting Probabilities (cont.)

Theorem
If a Markov chain with state space S is ergodic, then the limiting probabilities
will always exist, and do not depend on the initial state, and we have:

lim
n→∞

Pn
ij = πj , for all i , j ∈ S

Proof: We only prove the last part of the Theorem. That is, we assume that
the limiting probabilities exits and that these probabilities do not depend on
the initial state. We may then define:

αj = lim
n→∞

Pn
ij , j ∈ S

By the Chapman-Kolmogorov equations we have:

Pn+1
ij =

∑
k∈S

Pn
ik Pkj
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Chapter 4.4.1. Limiting Probabilities (cont.)

Moreover, we also have that: ∑
j∈S

Pn
ij = 1

By letting n go to infinity, we then obtain:

αj = lim
n→∞

Pn+1
ij = lim

n→∞

∑
k∈S

Pn
ik Pkj =

∑
k∈S

αk Pkj

lim
n→∞

∑
j∈S

Pn
ij =

∑
j∈S

αj = 1.

By Theorem 4.1 these equations have a unique solution, and thus we
conclude that:

αj = lim
n→∞

Pn
ij = πj , j ∈ S.
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Periodic Markov chains

We recall that a Markov chain {Xn} is said to be periodic if it can only return
to a state in a multiple of d > 1 steps.

EXAMPLE: Assume that {Xn} has state space S = {0,1}, and transition
matrix:

P =

[
0 1
1 0

]
Assuming that X0 = 0, it follows that:

Xn =

{
0, if n is even
1, if n is odd

Thus, this chain can return to a state (0 or 1) in a multiple of 2 steps.

QUESTION: Does periodicity only occur when the chain is deterministic?
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Periodic Markov chains (cont.)

EXAMPLE 1: Assume that {Xn} has state space S = {0,1,2}, and transition
matrix:

P =

 0.0 1.0 0.0
0.5 0.0 0.5
0.0 1.0 0.0


Assuming that X0 = 1, the chain will return to this state for n = 2,4,6, . . ..
Thus, the chain is periodic but not deterministic.
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Figure: A non-deterministic periodic Markov chain
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Periodic Markov chains (cont.)

EXAMPLE 2. One-dimensional random walk. If X0 = 0, then Xn is even if n is
even, and odd if n is odd. The chain can only return to state 0 in an even
number of steps. Thus, this chain is periodic but not deterministic.
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Figure: A one-dimensional random walk
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Periodic Markov chains (cont.)
EXAMPLE 3: Assume that {Xn} has state space S = {0,1,2,3,4}, and
transition matrix:

P =


0.0 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.5 0.0 0.0 0.0 0.5
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0


Assuming that X0 = 2, the chain will return to this state for n = 3,6,9, . . ..
Thus, the chain is periodic but not deterministic.
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Figure: A non-deterministic periodic Markov chain
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Chapter 4.5.1. The Gambler’s Ruin Problem

Potentially infinite sequence of independent identically distributed games.
P(Win one unit) = p, P(Lose one unit) = q = 1− p.

State space: S = {0,1, . . . ,N} representing the player’s fortune.

Xn = The player’s fortune after n games, n = 0,1,2, . . .

Transition probabilities:

P00 = PNN = 1
Pi,i+1 = p, i = 1,2, . . . ,N − 1
Pi,i−1 = q, i = 1,2, . . . ,N − 1

Classes: {0} (recurrent), {1,2, . . . ,N − 1} (transient), {N} (recurrent).
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Chapter 4.5.1. The Gambler’s Ruin Problem (cont.)

0 1 2 N

p

q
q N-2 N-1

p
p

q

. . .

We then introduce:

Pi = P(
∞⋃

n=0

Xn = N|X0 = i), i = 0,1,2, . . . ,N.
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Chapter 4.5.1. The Gambler’s Ruin Problem (cont.)

By conditioning on X1, we obtain:

Pi = pPi+1 + qPi−1, i = 1,2, . . . ,N − 1

Since p + q = 1, we may alternatively write:

pPi + qPi = pPi+1 + qPi−1, i = 1,2, . . . ,N − 1

or:

qPi − qPi−1 = pPi+1 − pPi , i = 1,2, . . . ,N − 1

From this we get:

Pi+1 − Pi =
q
p
(Pi − Pi−1), i = 1,2, . . . ,N − 1
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Chapter 4.5.1. The Gambler’s Ruin Problem (cont.)

Since P0 = 0 we get the following:

P2 − P1 =
q
p
(P1 − P0) =

q
p

P1

P3 − P2 =
q
p
(P2 − P1) = (

q
p
)2P1

...

Pi − Pi−1 =
q
p
(Pi−1 − Pi−2) = (

q
p
)i−1P1

...

PN − PN−1 =
q
p
(PN−1 − PN−2) = (

q
p
)N−1P1
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Chapter 4.5.1. The Gambler’s Ruin Problem (cont.)

We then add the first (i − 1) equations:

(P2 − P1) + (P3 − P2) + · · ·+ (Pi − Pi−1)

= Pi − P1 =

[
(
q
p
) + (

q
p
)2 + · · ·+ (

q
p
)i−1

]
· P1

or equivalently:

Pi =

[
1 + (

q
p
) + (

q
p
)2 + · · ·+ (

q
p
)i−1

]
· P1

=


1−(q/p)i

1−(q/p) P1 if q
p 6= 1

iP1 if q
p = 1
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Chapter 4.5.1. The Gambler’s Ruin Problem (cont.)
Now, we use that (q/p) 6= 1 if and only if p 6= 1

2 , and that PN = 1.

CASE p 6= 1
2

PN = 1 =
1− (q/p)N

1− (q/p)
P1

Hence, in this case:

P1 =
1− (q/p)

1− (q/p)N

CASE p = 1
2

PN = 1 = NP1

Hence, in this case:

P1 =
1
N
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Chapter 4.5.1. The Gambler’s Ruin Problem (cont.)

By inserting the expression for P1 into the formula for Pi we get:

Pi =


1−(q/p)i

1−(q/p) P1 if p 6= 1
2

iP1 if p = 1
2

=


1−(q/p)i

1−(q/p)N if p 6= 1
2

i
N if p = 1

2

Note that if p > 1
2 then (q/p) < 1, and hence (q/p)N → 0. Similarly, if p < 1

2
then (q/p) > 1, and hence (q/p)N →∞. Thus:

lim
N→∞

Pi =

 1− ( q
p )

i if p > 1
2

0 if p ≤ 1
2
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Example 4.30 - Penny flipping

We assume that p = P(Patty wins) = 0.6 and that q = P(Max wins) = 0.4.

Hence, (q/p) = 0.4/0.6 = 2
3 .

Moreover, we let Xn be the number of pennies owned by Patty after n plays.

CASE 1. X0 = 5, N = 5 + 10 = 15

P5 =
1− ( 2

3 )
5

1− ( 2
3 )

15
≈ 0.87

CASE 2. X0 = 10, N = 10 + 20 = 30

P10 =
1− ( 2

3 )
10

1− ( 2
3 )

30
≈ 0.98
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Drug testing

We consider two drug types and introduce:

αi = P(A patient receiving drug number i is cured), i = 1,2.

α1, α2 are unknown, so we want to test whether α1 > α2 or vice versa.

EXPERIMENT: Pairs of patients are treated sequentially with one member of
the pair receiving drug 1 and the other drug 2. The results for each pair are
determined.

NB! Only pairs where the result for the patient who receives drug 1 is different
from the result for the patient who receives drug 2 are included in the
analysis.

The testing stops when the cumulative number of cures using one of the
drugs exceeds the cumulative number of cures when using the other by some
fixed predetermined number, M.
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Drug testing (cont.)

Consider the nth pair where the result is different for the two drugs. Then:

p = P{(Drug 1 works) ∩ (Drug 2 fails)|Different result}

=
α1(1− α2)

α1(1− α2) + (1− α1)α2

q = P{(Drug 1 fails) ∩ (Drug 2 works)|Different result}

=
(1− α1)α2

α1(1− α2) + (1− α1)α2

We then introduce:

Xn = The number of cured patients receiving drug 1 among the first n pairs

− The number of cured patients receiving drug 2 among the first n pairs
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Drug testing (cont.)
Then {Xn} is a Markov chain with state space:

S = {−M,−(M − 1), . . . ,−1,0,1, . . . , (M − 1),M}

and transition probabilities:

P−M,−M = PM,M = 1
Pi,i+1 = p, i = −(M − 1), . . . , (M − 1)
Pi,i−1 = q, i = −(M − 1), . . . , (M − 1)

Classes: {−M} (recurrent), {−(M − 1), . . . , (M − 1)} (transient), {M}
(recurrent).

If the chain is absorbed in state M we conclude that α1 > α2, i.e., that drug 1
is the best drug.

If the chain is absorbed in state −M we conclude that α2 > α1, i.e., that drug
2 is the best drug.
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Drug testing (cont.)
Alternatively, let Yn = Xn + M. Then {Yn} is a Markov chain with:

S = {0,1, . . . , (M − 1),M, (M + 1), . . . , (2M − 1),2M}

and transition probabilities:

P0,0 = P2M,2M = 1
Pi,i+1 = p, i = 1, . . . , (2M − 1)
Pi,i−1 = q, i = 1, . . . , (2M − 1)

Classes: {0} (recurrent), {1, . . . , (2M − 1)} (transient), {2M} (recurrent).

If the chain is absorbed in state 2M we conclude that α1 > α2, i.e., that drug 1
is the best drug.

If the chain is absorbed in state 0 we conclude that α2 > α1, i.e., that drug 2
is the best drug.
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Drug testing (cont.)

Assume that X0 = 0 or equivalently that Y0 = X0 + M = M.

We then have:

P(Test asserts that drug 1 is best|X0 = 0)

= P(Test asserts that drug 1 is best|Y0 = M)

=
1− (q/p)M

1− (q/p)2M

=
1− (q/p)M

(1− (q/p)M)(1 + (q/p)M)

=
1

1 + (q/p)M
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Drug testing (cont.)

Similarly, we have:

P(Test asserts that drug 2 is best|X0 = 0)

= P(Test asserts that drug 2 is best|Y0 = M)

= 1− 1− (q/p)M

1− (q/p)2M

= 1− 1
1 + (q/p)M =

1 + (q/p)M − 1
1 + (q/p)M

=
(q/p)M

1 + (q/p)M =
1

1 + (p/q)M
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Drug testing (cont.)

Assume that α1 = 0.6, α2 = 0.4 and M = 5. Thus, drug 1 is the best drug.

Then we have:

α1(1− α2) = 0.62 = 0.36, α2(1− α1) = 0.42 = 0.16.

Hence, we have:

p =
α1(1− α2)

α1(1− α2) + (1− α1)α2
=

0.36
0.36 + 0.16

= 0.6923

q =
α2(1− α1)

α1(1− α2) + (1− α1)α2
=

0.16
0.36 + 0.16

= 0.3077
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Drug testing (cont.)

From this we get that:

P(Test asserts that drug 1 is best|X0 = 0)

= P(Test asserts that drug 1 is best|Y0 = 5)

=
1

1 + (q/p)5 =
1

1 + (0.3077/0.6923)5 = 0.9830

P(Test asserts that drug 2 is best|X0 = 0)

= P(Test asserts that drug 2 is best|Y0 = 5)

=
1

1 + (p/q)5 =
1

1 + (0.6923/0.3077)5 = 0.0170
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Drug testing (cont.)

If we increase M to 10, we get that:

P(Test asserts that drug 1 is best|X0 = 0)

= P(Test asserts that drug 1 is best|Y0 = 10)

=
1

1 + (q/p)10 =
1

1 + (0.3077/0.6923)10 = 0.9997

P(Test asserts that drug 2 is best|X0 = 0)

= P(Test asserts that drug 2 is best|Y0 = 10)

=
1

1 + (p/q)10 =
1

1 + (0.6923/0.3077)10 = 0.0003
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Chapter 4.6. Mean time spent in transient states

Consider a finite state Markov chain {Xn} with state space S, and with
transient states T = {1,2, . . . , t} ⊂ S, and let the transition probabilities
between the transient states be:

PT =

 P11 P12 · · · P1t
...

...
...

...
Pt1 Pt2 · · · Ptt



NOTE: Since PT is only a submatrix of the full matrix of transition
probabilities, the row sums in PT are less than 1.

We then introduce for all i , j ∈ T :

sij = E [Number of periods in state j |X0 = i]

δij = I(i = j)
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Mean time spent in transient states (cont.)

By conditioning on the initial transition we get for all i , j ∈ T :

sij = δij +
∑
k∈S

Pik skj = δij +
∑
k∈T

Pik skj (1)

where we have used that skj = 0 if k ∈ S \ T .

We then let I be the identity matrix of size t , and let:

S =

 s11 s12 · · · s1t
...

...
...

...
st1 st2 · · · stt


Then (1) can be written in matrix notation as:

S = I + PT S.
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Mean time spent in transient states (cont.)

This last equation can be rewritten as:

S − PT S = (I − PT )S = I .

We then multiply both sides of the last equation by (I − PT )
−1 and get:

S = (I − PT )
−1

That is, we can find sij for all i , j ∈ T by inverting the matrix (I − PT ).
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Example 4.32

We consider the gambler’s ruin problem with p = 0.4, q = 0.6 and N = 7, and
we want to determine:

s3,5 = The expected number of times the player has 5 units
s3,2 = The expected number of times the player has 2 units

In this case we have T = {1,2, . . . ,6}.

The transition probabilities for this Markov chain is:

Pi,i = 1.0, i ∈ S \ T
Pi,i = 0.0, i ∈ T

Pi,i+1 = 0.4, i ∈ T
Pi,i−1 = 0.6, i ∈ T
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Example 4.32 (cont.)

PT =


0 0.4 0 0 0 0

0.6 0 0.4 0 0 0
0 0.6 0 0.4 0 0
0 0 0.6 0 0.4 0
0 0 0 0.6 0 0.4
0 0 0 0 0.6 0


By inverting (I − PT ), we get:

S = (I − PT )
−1 =


1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149


Hence: s3,5 = 0.9228 and s3,2 = 2.3677.
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Probability of transitions into transient states
For all i , j ∈ T we introduce:

fij = P(At least one transition into state j |X0 = i)

Then we have:

sij = E [Periods in j |X0 = i ,At least one trans. into j]fij

+ E [Periods in j |X0 = i ,No trans. into j](1− fij)

= (δij + sjj)fij + δij(1− fij)

= δij + fijsjj .

Hence, we find that:

fij =
sij − δij

sjj
, i , j ∈ T .
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Example 4.33
What is the probability that the gambler ever has a fortune of 1 given that the
gambler’s initial fortune is 3?

SOLUTION: We recall that:

S = (I − PT )
−1 =


1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149



and observe that s3,1 = 1.4206 and s1,1 = 1.6149.
Hence, we get that:

f3,1 =
s3,1

s1,1
=

1.4206
1.6149

= 0.8797.
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Example 4.33 (cont.)

Alternatively, we consider the Markov chain {Yn} where Yn = Xn − 1, and
where we define 0 and 6 as absorbing states for {Yn}.

Moreover, we let:

Pi = P(
∞⋃

n=0

Yn = 6|Yn = i), i = 1,2, . . . ,6.

We recall that:

Pi =
1− (q/p)i

1− (q/p)N =
1− (0.6/0.4)i

1− (0.6/0.4)6 , i = 1,2, . . . ,6.

Then it follows that:

f3,1 = 1− P3−1 = 1− 1− (0.6/0.4)2

1− (0.6/0.4)6 = 0.8797.
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Stationary probabilities (cont.)

We recall that the stationary probabilities π of a Markov chain with transition
probability matrix P and state space S are found as the unique solution of the
equations:

πP = π∑
i∈S

πi = 1

The first set of equations may alternatively be written as:

(πP)T = PTπT = πT

From this it follows that πT is an eigenvector of PT with eigenvalue λ = 1.

NOTE: There may sometimes be multiple (non-parallel) eigenvectors
associated to the eigenvalue 1. However, this can only occur when the
Markov chain has more than one recurrent class.
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Stationary probabilities (cont.)

EXAMPLE 1: Assume that {Xn} has state space S = {0,1,2}, and transition
matrix:

P =

 0.50 0.50 0.00
0.25 0.50 0.25
0.00 0.50 0.50


The transpose of P has eigenvalues satisfying the equation:

det

 0.50− λ 0.25 0.00
0.50 0.50− λ 0.50
0.00 0.25 0.50− λ

 = 0

From this it is easy to show that the eigenvalues must satisfy:

λ(λ− 0.5)(λ− 1) = 0

yielding the eigenvalues: λ = 0, λ = 0.5 and λ = 1.
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Stationary probabilities (cont.)

In order to find an eigenvector x associated to the eigenvalue λ, we must
solve the linear equations:

PT x = λx

By letting λ = 1, we get that:

xT = c(1,2,1)

where c is any non-zero constant. Since we want the resulting vector to have
components with sum equal to 1, we let c = (1 + 2 + 1)−1 = 1

4 .

Hence, we get the following stationary distribution:

π0 =
1
4
, π1 =

1
2
, π2 =

1
4
.
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