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Chapter 4.9 Markov Chain Monte Carlo Methods

Let Z be a discrete random variable with a state space S, and assume that:

P(Z = i) = πi =
bi

B
, i ∈ S.

We assume that bi is known for all i ∈ S.

Since the probabilities must add up to 1, we obviously have:∑
i∈S

bi

B
= B−1

∑
i∈S

bi = 1,

Hence, it follows that the normalizing constant B is given by:

B =
∑
i∈S

bi .

Thus, in principle B is known as well. However, if |S| is large, calculating B
may be a time-consuming task.
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MCMC Methods (cont.)

EXAMPLE: Let T and Z be two discrete random variables with state spaces
T and S respectively. We assume that the marginal distribution of Z and the
conditional distribution of T given Z are known.

The conditional distribution of Z given T is then:

P(Z = i |T = t) =
P(Z = i)P(T = t |Z = i)∑

j∈S P(Z = j)P(T = t |Z = j)
=

bi (t)
B(t)

, i ∈ S, t ∈ T ,

where we have introduced:

bi (t) = P(Z = i)P(T = t |Z = i), i ∈ S, t ∈ T ,

B(t) =
∑
j∈S

P(Z = j)P(T = t |Z = j) = P(T = t), t ∈ T .

If |S| is large, we may want to avoid calculating B(t).
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MCMC Methods (cont.)

PROBLEM: Construct a Markov chain {Xn} with state space S and stationary
distribution equal to the distribution of Z .

SOLUTION (Hastings-Metropolis): Let Q be any given irreducible Markov
chain transition probability matrix on S, and define:

αij = min
(

bjQji

biQij
,1
)
, i , j ∈ S.

We then let the transition probability matrix of {Xn}, denoted P, be defined as
follows:

Pij = Qijαij , i 6= j ,

Pii = 1−
∑
j 6=i

Qijαij , i ∈ S
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MCMC Methods (cont.)

We then claim that {Xn} is time reversible and have a stationary distribution
equal to the distribution of Z . That is, πi = bi/B, for all i ∈ S, and:

πiPij = πjPji , for all i , j ∈ S. (1)

Since (1) is trivially satisfied for i = j , we focus on the case where i 6= j , where
(1) can be expressed as:

bi

B
Qijαij =

bj

B
Qjiαji , i 6= j . (2)

By eliminating B from these equations and inserting the expression for αij we
get:

biQij ·min
(

bjQji

biQij
,1
)

= bjQji ·min
(

biQij

bjQji
,1
)
, i 6= j . (3)
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MCMC Methods (cont.)

CASE 1: biQij ≤ bjQji

In this case αij = 1 while αji = (biQij )/(bjQji ), and hence, (3) simplifies to:

biQij = bjQji · (biQij )/(bjQji ), i 6= j . (4)

CASE 2: biQij ≥ bjQji

In this case αij = (bjQji )/(biQij ) while αji = 1, and hence, (3) simplifies to:

biQij · (bjQji )/(biQij ) = bjQji , i 6= j . (5)

Since obviously both (4) and (5) hold true, we conclude that (1) holds true as
well.
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MCMC Methods (cont.)

We recall that:

Pij = Qijαij , i 6= j ,

Pii = 1−
∑
j 6=i

Qijαij , i ∈ S

Assume that Xn = i . Then Xn+1 can be generated using the following
two-step Monte Carlo simulation procedure:

STEP 1. Generate J ∈ S such that P(J = j) = Qij , j ∈ S.

STEP 2. Generate K ∈ {0,1} such that P(K = 1 | J = j) = αij , and let:

Xn+1 = K · j + (1− K ) · i

Thus, a transition from state i to state j where i 6= j happens if and only if
J = j and K = 1. If not, the process stays in state i .
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MCMC Methods (cont.)

The Monte Carlo simulation procedure can be used to estimate some
unknown parameter in the distribution of Z , e.g.:

θ = E [h(Z )] =
∑
i∈S

h(i)P(Z = i),

where h is some function of interest, and the normalizing constant B of the
distribution of Z is too time-consuming to calculate.

By simulating the Markov chain {Xn}, having a stationary distribution which is
equal to the distribution of Z , we may estimate θ by:

θ̂n = 1
n

n∑
m=1

h(Xm).

By the law of large numbers it follows that θ̂n → θ when n→∞.
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MCMC Methods (cont.)

NOTE: X1,X2, . . . are not independent samples.

Moreover, the chain may converge slowly towards its stationary distribution.

Both these issues tend to have a negative effect on the convergence rate of
the estimator θ̂n.

If many of the αij -s are small, the Markov chain tends to get stuck for a long
time before eventually transiting to another state. In such cases the estimator
θ̂n will converge very slowly.
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MCMC Methods (cont.)

For optimal performance, i.e., fast convergence, the matrix Q should ideally
be chosen so that:

biQij = bjQji , for all i , j ∈ S.

Then it follows that:

αij = min
(

bjQji

biQij
,1
)

= 1, for all i , j ∈ S.

Hence, Q = P, i.e., Q is itself the transition probability matrix of {Xn}.

Finding the optimal matrix Q implies finding a transition probability matrix with
a stationary distribution which is equal to the distribution of Z . In real-life
applications, this can be difficult.

Instead we may think of Q as our best guess, while the αij -s are correction
factors which are used to generate a Markov chain with the correct stationary
distribution.
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Gibbs sampling
Assume that Z = (Z1, . . . ,Zr ) is a discrete random vector with values in S
where:

P(Z = z) = p(z) = g(z)/B, for all z ∈ S,

where the g(z) is known for all z ∈ S and B is an unknown normalizing
constant.

We then consider the first step of the Hastings-Metropolis algorithm, and
assume that Xn = z = (z1, . . . , zr ). The candidate for the next state, Xn+1, is
generated as follows:

1. Generate K = k uniformly from the set {1, . . . , r}.

2. Generate Zk = z conditional on Zi = zi , i = 1, . . . , (k − 1), (k + 1) . . . , r .

The resulting candidate for the next state, denoted y , is then:

y = (z1, . . . , zk−1, z, zk+1, . . . , zr )
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Gibbs sampling (cont.)

This implies that we have the following transition probabilities:

Qz ,y = 1
r P(Zk = z | Zi = zi , i 6= k)

=
g(y)/B

r ·
∑

zk
g(y)/B

=
g(y)

r ·
∑

zk
g(y)

By the same type of argument, we also have:

Qy ,z =
g(z)

r ·
∑

zk
g(z)

.

However, since
∑

zk
g(y) =

∑
zk

g(z), this implies that:

g(z)Qz ,y = g(y)Qy ,z , for all z ,y ∈ S.

Hence, αz ,y = 1 for all z ,y ∈ S, and thus, Q is an optimal transition
probability matrix.
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Chapter 5

The Exponential Distribution and the Poisson Process
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Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution
with parameter λ > 0, denoted as X ∼ exp(λ), if its probability density
function is given by:

f (x) =

{
λe−λx x ≥ 0

0 x < 0

If X ∼ exp(λ), then the cumulative distribution function of X is given by:

F (x) = P(X ≤ x) =

∫ x

0
f (t)dt =

{
1− e−λx x ≥ 0

0 x < 0

Moreover, the survival function of X is given by:

F̄ (x) = P(X > x) = 1− F (x) =

{
e−λx x ≥ 0

1 x < 0
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The Exponential Distribution (cont.)
The exponential distribution is a special case of the gamma distribution with
parameters α > 0 and λ > 0, denoted as X ∼ gamma(α, λ) with probability
density function:

f (x) =

{
λα

Γ(α) xα−1e−λx x ≥ 0

0 x < 0

where Γ(α), defined for all α > 0, is the gamma function given by:

Γ(α) =

∫ ∞
0

xα−1e−xdx , Γ(n) = (n − 1)!, n = 1,2, . . .

By substituting u = λx and du = λdx , we find that:∫ ∞
0

f (x)dx =
1

Γ(α)

∫ ∞
0

uα−1e−udu = 1.

Thus, f (x) is indeed a proper probability density.
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The Exponential Distribution (cont.)

Assume that X ∼ exp(λ), and let p > −1. We then have:

E [X p] =

∫ ∞
0

xpf (x)dx =

∫ ∞
0

λxpe−λxdx

=
Γ(p + 1)

λp

∫ ∞
0

λp+1

Γ(p + 1)
x (p+1)−1e−λxdx

=
Γ(p + 1)

λp .

In particular:

E [X ] =
Γ(2)

λ1 =
(2− 1)!

λ
=

1
λ
, E [X 2] =

Γ(3)

λ2 =
(3− 1)!

λ2 =
2
λ2 ,

Var[X ] = E [X 2]− (E [X ])2 =
2
λ2 −

1
λ2 =

1
λ2 .
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The Exponential Distribution (cont.)
Assume that X ∼ gamma(α, λ). Then the moment generating function of X is
given by:

MX (t) = E [etX ] =

∫ ∞
0

etx λα

Γ(α)
xα−1e−λxdx

=

∫ ∞
0

λα

Γ(α)
xα−1e−(λ−t)xdx

=
λα

(λ− t)α

∫ ∞
0

(λ− t)α

Γ(α)
xα−1e−(λ−t)xdx

=
λα

(λ− t)α
, for all t < λ.

In particular, if X ∼ exp(λ), we have:

MX (t) =
λ

λ− t
, for all t < λ.
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The Exponential Distribution (cont.)

Proposition (5.1)

Assume that X1, . . . ,Xn are independent and Xi ∼ exp(λ), i = 1, . . . ,n, and
let:

Y = X1 + · · ·+ Xn

Then Y ∼ gamma(n, λ).

PROOF: Using moment generating functions we get:

MY (t) = E [etY ] = E [etX1+···+tXn ] = MX1 (t) · · ·MXn (t)

=
λ

λ− t
· · · λ

λ− t
=

λn

(λ− t)n

Hence, Y ∼ gamma(n, λ).
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The Exponential Distribution (cont.)

Proposition 5.1 is a special case of the following more general result:

Proposition (5.1b)

Assume that X1, . . . ,Xn are independent and Xi ∼ gamma(αi , λ), i = 1, . . . ,n,
and let:

Y = X1 + · · ·+ Xn

Then Y ∼ gamma(α, λ), where α =
∑n

i=1 αi .

PROOF: Using moment generating functions we get:

MY (t) = E [etY ] = E [etX1+···+tXn ] = MX1 (t) · · ·MXn (t)

=
λα1

(λ− t)α1
· · · λαn

(λ− t)αn
=

λα

(λ− t)α

Hence, Y ∼ gamma(α, λ).
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Memoryless stochastic variables

A random variable X is said to be memoryless if:

P(X > s + t |X > t) = P(X − t > s|X > t) = P(X > s), for all s, t ≥ 0.

Thus, X is memoryless if (X − t)|(X > t) has the same distribution as X .

Note that if X is the lifetime of some unit, (X − t) is the remaining lifetime
given that the unit has survived up to the time t .

If X ∼ exp(λ), we have:

P(X > s + t |X > t) =
P(X > s + t ∩ X > t)

P(X > t)
=

P(X > s + t)
P(X > t)

=
e−λ(s+t)

e−λ(t) = e−λs = P(X > s)

Hence, we conclude that X is memoryless.
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Memoryless stochastic variables (cont.)

The memoryless property:

P(X > s + t |X > t) = P(X > s), for all s, t ≥ 0.

is equivalent to the following:

P(X > s + t) = P(X > s)P(X > t), for all s, t ≥ 0.

Since F̄ (x) = P(X > x), this property can also be written as:

F̄ (s + t) = F̄ (s)F̄ (t), for all s, t ≥ 0.

We now show that the exponential distribution is essentially the only
distribution with this property.
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Memoryless stochastic variables (cont.)

Proposition

Let X be a random variable and let F̄ (x) = P(X > x) be such that:

F̄ (x + y) = F̄ (x) · F̄ (y), for all x , y ≥ 0. (6)

λ = − log(F̄ (1)) > 0. (7)

Then X ∼ exp(λ).

PROOF: We first note that by (7), it follows that:

0 < F̄ (1) = e−λ < 1. (8)

Secondly we note that since cumulative distribution functions always are
right-continuous, it follows that F̄ = 1− F is righ-continuous as well.

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 7 22 / 31



Memoryless stochastic variables (cont.)

By repeated use of (6) it follows that for n,m ∈ N+, we have:

F̄ ( m
n ) = F̄ ( 1

n + · · ·+ 1
n ) = F̄ m( 1

n ), (9)

where the sum contains m terms. In particular, by letting m = n, we get:

F̄ (1) = F̄ ( n
n ) = F̄ n( 1

n ). (10)

Alternatively, (10) can be written as:

F̄ ( 1
n ) = [F̄ (1)]1/n. (11)

By (8) and that F̄ is right-continuous, (11) implies that:

F̄ (0) = lim
n→∞

F̄ ( 1
n ) = lim

n→∞
[F̄ (1)]1/n = 1.

Hence, since F̄ must be non-increasing, F̄ (x) = 1 for all x ≤ 0.
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Memoryless stochastic variables (cont.)

We now combine (9) and (11), and get:

F̄ ( m
n ) = F̄ m( 1

n ) = F̄ (1)m/n, for all m,n ∈ N+.

Thus, since F̄ (1) = e−λ, we have proved that:

F̄ (q) = F̄ (1)q = e−λq , for all q ∈ Q+.

Now, let x ∈ R+. Since the set Q+ is dense in R+, there exists a decreasing
sequence {qr} ⊂ Q+ such that:

lim
r→∞

qr = x

Since F̄ is right-continuous, this implies that:

F̄ (x) = lim
r→∞

F̄ (qr ) = lim
r→∞

e−λqr = e−λx .

Hence, we conclude that X ∼ exp(λ) �
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Example 5.2

The amount of time one spends in a bank, denoted X , is exponentially
distributed with mean ten minutes. That is, X ∼ exp(λ) = exp( 1

10 ).

PROBLEM 1: What is the probability that a customer will spend more than
fifteen minutes in the bank?

SOLUTION:

P(X > 15) = e−15λ = e−15/10 ≈ 0.223

PROBLEM 2: What is the probability that a customer will spend more than
fifteen minutes in the bank given that she is still in the bank after ten minutes?

SOLUTION:

P(X > 15 | X > 10) = e−(15−10)λ = e−5/10 ≈ 0.607
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The Exponential Distribution (cont.)

Assume that X1,X2 are independent and that Xi ∼ exp(λi ), i = 1,2. We want
to calculate the probability of the event that X1 < X2.

P(X1 < X2) =

∫ ∞
0

P(X1 < X2|X1 = x)λ1e−λ1xdx

=

∫ ∞
0

P(X2 > x)λ1e−λ1xdx

=

∫ ∞
0

e−λ2xλ1e−λ1xdx

=
λ1

λ1 + λ2

∫ ∞
0

(λ1 + λ2)e−(λ1+λ2)xdx

=
λ1

λ1 + λ2
.
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The Exponential Distribution (cont.)

Assume that X1, . . . ,Xn are independent and that Xi ∼ exp(λi ), i = 1, . . . ,n.

P( min
1≤i≤n

Xi > x) = P(
n⋂

i=1

Xi > x)

=
n∏

i=1

P(Xi > x) (by independence)

=
n∏

i=1

e−λi x

= e−(
∑n

i=1 λi )x

Thus, we have shown that min1≤i≤n Xi ∼ exp(
∑n

i=1 λi ).
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The Exponential Distribution (cont.)

The following result combines the two previous results:

Assume that X1, . . . ,Xn are independent and that Xi ∼ exp(λi ), i = 1, . . . ,n.
We want to calculate the probability that Xi is the smallest of all the variables,
i.e., that Xi < Xj for all j 6= i .

P(
⋂
j 6=i

[Xi < Xj ]) = P(Xi < min
j 6=i

Xj )

=
λi

λi +
∑

j 6=i λj
, since minj 6=i Xj ∼ exp(

∑
j 6=i λj )

=
λi∑n
j=1 λj
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The Exponential Distribution (cont.)

Proposition (5.2)

Assume that X1, . . . ,Xn are independent and that Xi ∼ exp(λi ), i = 1, . . . ,n.
Then mini Xi ∼ exp(

∑n
i=1 λi ). Moreover, mini Xi and the rank order of

X1, . . . ,Xn are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

P(Xi1 < · · · < Xin | min
1≤i≤n

Xi > t)

= P(Xi1 < · · · < Xin |
n⋂

i=1

Xi > t)

= P(Xi1 − t < · · · < Xin − t |
n⋂

i=1

Xi > t)

= P(Xi1 < · · · < Xin )
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Example 5.8
A post office with two busy clerks. No one is waiting in line except you.

Ri = Time until for clerk i becomes available, i = 1,2

S = Your service time

T = The total time spent in the post office

We assume that R1,R2 are independent and Ri ∼ exp(λi ), i = 1,2.

E [T ] = E [T |R1 < R2]P(R1 < R2) + E [T |R2 ≤ R1]P(R2 < R1)

= E [R1 + S|R1 < R2]
λ1

λ1 + λ2
+ E [R2 + S|R2 < R1]

λ2

λ1 + λ2

We get:

E [Ri |Ri < R3−i ] = E [min(R1,R2)] =
1

λ1 + λ2
, i = 1,2

Moreover, we assume that S|Ri < R3−i ∼ exp(λi ), i = 1,2, and get:

E [S|Ri < R3−i ] =
1
λi
, i = 1,2

A. B. Huseby (Univ. of Oslo) STK2130 – Lecture 7 30 / 31



Example 5.8 (cont.)

Combining these results we get:

E [T ] = E [R1 + S|R1 < R2]
λ1

λ1 + λ2
+ E [R2 + S|R2 < R1]

λ2

λ1 + λ2

=

(
1

λ1 + λ2
+

1
λ1

)
λ1

λ1 + λ2
+

(
1

λ1 + λ2
+

1
λ2

)
λ2

λ1 + λ2

=

(
λ1

λ1 + λ2
+ 1
)

1
λ1 + λ2

+

(
λ2

λ1 + λ2
+ 1
)

1
λ1 + λ2

=

(
λ1 + λ2

λ1 + λ2
+ 1 + 1

)
1

λ1 + λ2

=
3

λ1 + λ2
.
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