STK2130 — Lecture 7

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

A. B. Huseby (Univ. of Oslo)

STK2130 — Lecture 7



——
Chapter 4.9 Markov Chain Monte Carlo Methods

Let Z be a discrete random variable with a state space S, and assume that:

b;

PZ=i)=m =3,

ies.

We assume that b; is known for all i € S.
Since the probabilities must add up to 1, we obviously have:
b/’ -1
Z 5=B Z b =1,
ieS ieS
Hence, it follows that the normalizing constant B is given by:
B=> b
ies

Thus, in principle B is known as well. However, if |S| is large, calculating B
may be a time-consuming task.
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MCMC Methods (cont.)

EXAMPLE: Let T and Z be two discrete random variables with state spaces
T and S respectively. We assume that the marginal distribution of Z and the
conditional distribution of T given Z are known.

The conditional distribution of Z given T is then:

P(Z=0P(T=tzZ=1i)  bi(t)

A _ = , eS8, teT,
Yies PZ=)DP(T=tzZ=]) B(1)

P(Z=iT=t=

where we have introduced:

bi(t) = P(Z=0)P(T=1Z=1i), ieS teT,

B(t)y=> PZ=)P(T=4Z=j)=P(T=t), teT.

jes

If |S| is large, we may want to avoid calculating B(t).
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MCMC Methods (cont.)

PROBLEM: Construct a Markov chain {X,} with state space S and stationary
distribution equal to the distribution of Z.

SOLUTION (Hastings-Metropolis): Let Q be any given irreducible Markov
chain transition probability matrix on S, and define:

b; Qji -
1 .
Qjj = mm(b,-Q,-,-’ ), i,jes

We then let the transition probability matrix of {X,}, denoted P, be defined as
follows:

Pj = Qjay, i+# ],

Pi=1- Z QUOé,j, ieS
Veall
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MCMC Methods (cont.)

We then claim that {X,,} is time reversible and have a stationary distribution
equal to the distribution of Z. That is, m; = b;/B, for all i € S, and:
7T,‘P,'j = 7Tij,‘, foralli,jeS. (1)

Since (1) is trivially satisfied for i = j, we focus on the case where i # j, where
(1) can be expressed as:

b; b o,
E'ijafj = Eleiaji, i #]. ()
By eliminating B from these equations and inserting the expression for «; we
get:
b;Q; . biQ L,
b;Q; - min <beQ’; ) = b;Q@; - min (b,IQ;l, 1) i (3)
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MCMC Methods (cont.)

CASE 1: b,'Q,'j < ijji
In this case oy = 1 while a;; = (b;Qj;)/(b;Qj), and hence, (3) simplifies to:

biQ; = b;Q;i - (biQy) /(b;Qji), 1 #J. (4)

CASE 2: b;Q; > b;Qji
In this case o = (b;Q;i)/(biQ;) while a; = 1, and hence, (3) simplifies to:
biQj - (5;Q)/(b:Qy) = bQji, 1. (5)

Since obviously both (4) and (5) hold true, we conclude that (1) holds true as
well.
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MCMC Methods (cont.)

We recall that:
Pj = Qjoys, 1 # ],

Pii =1 *ZQijoz,-j, ieS
J#i
Assume that X, = i. Then X1 can be generated using the following
two-step Monte Carlo simulation procedure:
STEP 1. Generate J € S suchthat P(J =j) = Q;,j € S.

STEP 2. Generate K € {0,1} suchthat P(K =1 | J =) = a;, and let:

Xop1 =K j+(1—K)-i

Thus, a transition from state J to state j where i # j happens if and only if
J =jand K = 1. If not, the process stays in state /.
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MCMC Methods (cont.)

The Monte Carlo simulation procedure can be used to estimate some
unknown parameter in the distribution of Z, e.g.:

0 = E[h(2)] = > _ h(i)P(Z = i),

ieS

where h is some function of interest, and the normalizing constant B of the
distribution of Z is too time-consuming to calculate.

By simulating the Markov chain {X,}, having a stationary distribution which is
equal to the distribution of Z, we may estimate 6 by:

n
On=1>" h(Xm).
m=1
By the law of large numbers it follows that 8, — 6 when n — cc.
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MCMC Methods (cont.)

NOTE: Xj, Xz, . .. are not independent samples.
Moreover, the chain may converge slowly towards its stationary distribution.
Both these issues tend to have a negative effect on the convergence rate of

the estimator 4.

If many of the «j;-s are small, the Markov chain tends to get stuck for a long
time before eventually transiting to another state. In such cases the estimator
6, will converge very slowly.
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MCMC Methods (cont.)

For optimal performance, i.e., fast convergence, the matrix Q should ideally
be chosen so that:

b,Q,/ = ijjia for all i,j €S.

Then it follows that:

e .
i = min ,1)1 =1, foralli,jes.
w=m <b,-Q,-,- ) "

Hence, Q = P, i.e., Qs itself the transition probability matrix of {X,}.

Finding the optimal matrix Q implies finding a transition probability matrix with
a stationary distribution which is equal to the distribution of Z. In real-life
applications, this can be difficult.

Instead we may think of Q as our best guess, while the «j;-s are correction
factors which are used to generate a Markov chain with the correct stationary
distribution.
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Gibbs sampling

Assume that Z = (£, ..., Z;) is a discrete random vector with values in S
where:

P(Z=2z)=p(z)=9g(z)/B, forallzesS,

where the g(z) is known for all z € S and B is an unknown normalizing
constant.

We then consider the first step of the Hastings-Metropolis algorithm, and
assume that X, = z = (21, ..., z;). The candidate for the next state, X1, is
generated as follows:

1. Generate K = k uniformly from the set {1,...,r}.

2. Generate Zx = z conditionalon Z; = z;,i=1,...,(k—1),(k+1)...,r.
The resulting candidate for the next state, denoted y, is then:
Y=(Z1,. ., Zk-1,2,Zks1, ..., Zr)
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Gibbs sampling (cont.)

This implies that we have the following transition probabilities:
Qzy =1P(Zk=2|Z = z,i # k)

__9w)/B _ 9(y)
r->,9y)/B r->,9y)

By the same type of argument, we also have:

_9(2)
S S 2}

However, since 3, g(y) = >_, 9(2), this implies that:

9(2)Qzy =9(y)Qy z, forallz,yeS.

Hence, azy = 1forall z,y € S, and thus, Q is an optimal transition
probability matrix.
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Chapter 5

The Exponential Distribution and the Poisson Process
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Chapter 5.2 The Exponential Distribution

A continuous random variable X is said to have an exponential distribution
with parameter A > 0, denoted as X ~ exp()), if its probability density
function is given by:

e ™ x>0
f(x) =
0 x <0
If X ~ exp()), then the cumulative distribution function of X is given by:

1—e ™ x>0

F(x):P(ng):/o f(t)dt:{o o

Moreover, the survival function of X is given by:

- {e—” x>0
FxX)=P(X>x)=1-F(x)=

1 x<0
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The Exponential Distribution (cont.)

The exponential distribution is a special case of the gamma distribution with

parameters o > 0 and A\ > 0, denoted as X ~ gamma(«, \) with probability
density function:

%Xa—1e—)\x x>0
f(x) = “
0 x<0

where I'(«), defined for all « > 0, is the gamma function given by:

Me) = /Oooxa“e‘*dxv r(m=(n-1), n=1.2

PN~

By substituting u = Ax and du = Adx, we find that:

o0 1 o0
fxdx:—/ u* e Ydu=1.
|, res=5 |

Thus, f(x) is indeed a proper probability density.
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The Exponential Distribution (cont.)

Assume that X ~ exp()\), and let p > —1. We then have:

E[XP] = / xPf(x)dx = / AxPe~ dx
0 0

I'(p + 1) / AP (P11 g=Ax gy
Fp+1)

_Tp+1)
AP
In particular:
re 2-1) 1 re 3—-1) 2
Var[X]:E[XZ]—(E[X])Zz%—%:%.
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The Exponential Distribution (cont.)

Assume that X ~ gamma(«, \). Then the moment generating function of X is
given by:

_ X1 _ > tx A a—1—Ax
Mi(t) = Ele ]_/0 LA

A —1 4—(A=t)x
= x*"'e ax
/o M(a)

A% /Oo (A =D st —(—tx
= x“"'e ax
A=0>Jo (o)
)\Oé

= for all A
O orall t <

In particular, if X ~ exp(\), we have:

Mx(t) = )\L—t’ forall t < A.
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The Exponential Distribution (cont.)

Proposition (5.1)

Assume that Xi, ..., X, are independent and X; ~ exp(\), i =1,...,n, and
let:

Y=Xi+ -+ X,

Then Y ~ gamma(n, \).

PROOF: Using moment generating functions we get:
My (1) = E[e"] = E[e% 4] = My, (1) - My, (1)

A AT
A=t A=t (A=t

Hence, Y ~ gamma(n, \).
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The Exponential Distribution (cont.)

Proposition 5.1 is a special case of the following more general result:

Proposition (5.1b)

Assume that X, ..., X, are independent and X; ~ gamma(«aj, \), i=1,...,n,
and let:

Y =X+ + X,

Then Y ~ gamma(a, \), where a = >_1, a;.

PROOF: Using moment generating functions we get:
My (1) = E[e"] = E[e%* ) = My, (1) - My, (1

A P
A=t (A=t (A—t)

Hence, Y ~ gamma(a, \).
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Memoryless stochastic variables

A random variable X is said to be memoryless if:
PX>s+tX>t)=PX—-t>s|X>t)=P(X >s), foralls,t>D0.
Thus, X is memoryless if (X — t)|(X > t) has the same distribution as X.

Note that if X is the lifetime of some unit, (X — t) is the remaining lifetime
given that the unit has survived up to the time ¢.

If X ~ exp()), we have:

P(X>s+t\X>t):P(X>S+mx>t):P(X>s+t)

P(X>1) P(X>1)
e—A(ert) s
= 50 =e = P(X > s)

Hence, we conclude that X is memoryless.
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Memoryless stochastic variables (cont.)

The memoryless property:
PX>s+tHX>t=P(X>s), forallst>0.
is equivalent to the following:
P(X>s+t)=P(X>s)P(X>1t), forallst>0.
Since F(x) = P(X > x), this property can also be written as:
F(s+t) = F(s)F(t), foralls,t>0.

We now show that the exponential distribution is essentially the only
distribution with this property.
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Memoryless stochastic variables (cont.)

Proposition
Let X be a random variable and let F(x) = P(X > x) be such that:

F(x+y)=F(x)-F(y), forallx,y>0.
A= —log(F(1)) > 0.

Then X ~ exp()).

PROOF: We first note that by (7), it follows that:
O<F(1)=e?<1.

Secondly we note that since cumulative distribution functions always are
right-continuous, it follows that F = 1 — F is righ-continuous as well.
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Memoryless stochastic variables (cont.)

By repeated use of (6) it follows that for n,m € N*, we have:

F(m)=F( 4+ 1) = Fm(Ly,

where the sum contains m terms. In particular, by letting m = n, we get:

F(1)=F(3) =F"(3).
Alternatively, (10) can be written as:
F(H) =[F)Vm.
By (8) and that F is right-continuous, (11) implies that:
F(0) = lim F(})= lim [F(1)]"/" =1
Hence, since F must be non-increasing, F(x) = 1 for all x < 0.
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Memoryless stochastic variables (cont.)
We now combine (9) and (11), and get:
F(Z)=Fm(1)y= F(1)™" forallm ne N,
Thus, since F(1) = e~*, we have proved that:
F(gy=F(1)?=¢e?9, forallge Q™.

Now, let x € RT. Since the set Q* is dense in R™, there exists a decreasing
sequence {qg;} C QT such that:

lim gr = x

r—oo
Since F is right-continuous, this implies that:
C N C i —AQr _ a4 AX
P = fim Fla) = Jim o7 = o7,
Hence, we conclude that X ~ exp(\) [ |
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Example 5.2

The amount of time one spends in a bank, denoted X, is exponentially
distributed with mean ten minutes. That is, X ~ exp(\) = exp(f—o).

PROBLEM 1: What is the probability that a customer will spend more than
fifteen minutes in the bank?

SOLUTION:

P(X > 15) = e 15" = ¢715/10 ~ 0.223

PROBLEM 2: What is the probability that a customer will spend more than
fifteen minutes in the bank given that she is still in the bank after ten minutes?

SOLUTION:

P(X > 15| X > 10) = e (157102 — ¢=5/10 0 607
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The Exponential Distribution (cont.)

Assume that Xi, X> are independent and that X; ~ exp();), i = 1,2. We want
to calculate the probability of the event that X; < Xz.

P(X1 < Xg) :/ P(X1 < Xg‘X1 = X))\1 eiMXdX
0
:/ P(X> > x)\je~M*dx
0

- /Oo e 2 \je ¥ ax
0
RYEDY

N A+

/ (/\1 + /\2)6_()\1+>\2)de
0

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 7 26/ 31



The Exponential Distribution (cont.)

Assume that Xi, ..., X, are independent and that X; ~ exp(\;),i=1,...,n.

P(min X; > x) = ﬂX>x

1<i<n

n
= H P(X; > x)  (by independence)

=1

— e—(ZL Ai)x

Thus, we have shown that miny<j<, X; ~ exp(>"7_; A).
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The Exponential Distribution (cont.)

The following result combines the two previous results:

Assume that Xj, ..., X, are independent and that X; ~ exp(\;),i=1,...,n.

We want to calculate the probability that X; is the smallest of all the variables,
i.e., that X; < X; for all j # /.

P(()Xi < X)) = P(X; < min X;)

J#i
_ Ai . X A\
m, since minj; X; ~ exp(Z#,. j)
DYDY
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The Exponential Distribution (cont.)

Proposition (5.2)

Assume that Xi, ..., X, are independent and that X; ~ exp(\;), i=1,...,n.
Then min; X; ~ exp(zf’=1 Ai). Moreover, min; X; and the rank order of
Xi,..., Xy are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

P(Xi, < - <X, | 1r<niian,- > 1)

n
= P(X, << X, | )X >1)
i=1

n
=P(X, —t<--<X,—t|[Xi>1)

i=1

=P <---<X;)
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Example 5.8

A post office with two busy clerks. No one is waiting in line except you.
R; = Time until for clerk i becomes available, i=1,2
S = Your service time
T = The total time spent in the post office
We assume that Ry, R; are independent and R; ~ exp()\;), i =1,2.
E[T] = E[T|R: < Ro]P(R1 < R2) + E[T|R. < Ry]P(R2 < Ry)

)\1 )\2
=E[Ry + S|R1 < R E[R, + S|R. < R
[R1 + S|R: < 2])\1+)\2+ [R2 + SIR: < 1]>\1+)\2
We get:
1 .
E[R,|FI’, < R3,,‘] = E[min(R1, Rg)] = I = 1,2

B A+ )\27
Moreover, we assume that S|R; < Rs_; ~ exp()\;), i = 1,2, and get:

)
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E[S|R/<R3,,‘]=y, i=1,2
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Example 5.8 (cont.)

Combining these results we get:

E[T] E[H1 +S|R1 <FI’2] +E[R2+S|FI’2<R1]>\ o

) +( )
S\ M A M M MAA A2 A+ A
A 1 Ao 1

- 1 1
<>\1+)\2+ >A1+)\2+<>\1+>\2+ >/\1+>\2

A+ Ao 1
_ 141
(A1+)\2+ + >>\1+>\2

B 3
PV
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