STK2130 - Lecture 9

A. B. Huseby

Department of Mathematics
University of Oslo, Norway

Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)
The counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process with rate $\lambda>0$ if the following four axioms hold:
(i) $\quad N(0)=0$
(ii) $\quad\{N(t), t \geq 0\}$ has independent increments.
(iii) $\quad P(N(t+h)-N(t)=1)=\lambda h+o(h)$
(iv) $\quad P(N(t+h)-N(t) \geq 2)=o(h)$

Properties of the Poisson Process

Lemma (5.1)

Assume that $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda>0$. Then let $s>0$, and define:

$$
N_{s}(t)=N(s+t)-N(s), \quad \text { for all } t \geq 0 .
$$

Then $\left\{N_{s}(t), t \geq 0\right\}$ is a Poisson process with rate λ as well.

Lemma (5.2)

If T_{1} is the time of the first event of a Poisson process $\{N(t), t \geq 0\}$ with rate $\lambda>0$, then:

$$
P\left(T_{1}>t\right)=P(N(t)=0)=e^{-\lambda t}, \quad t \geq 0
$$

That is $T_{1} \sim \exp (\lambda)$.

Properties of the Poisson Process (cont.)

Proposition (5.4)

Let T_{1}, T_{2}, \ldots be the sequence of interarrival times of a Poisson process $\{N(t), t \geq 0\}$ with rate $\lambda>0$. That is, T_{1} is the time of the first event, and
$T_{n}=$ The time between the $(n-1)$ st and n nth event, $\quad n=2,3, \ldots$.
Then T_{1}, T_{2}, \ldots are independent and identically distributed exponential random variables with rate λ.

PROOF: We have already shown that $T_{1} \sim \exp (\lambda)$. For T_{2} we get:

$$
\begin{aligned}
P\left(T_{2}>t \mid T_{1}=s\right) & =P\left(N(s+t)-N(s)=0 \mid T_{1}=s\right) \\
& =P(N(s+t)-N(s)=0) \quad \text { by Axiom (ii) } \\
& =P\left(N_{s}(t)=0\right)=e^{-\lambda t} \quad \text { by Lemma } 5.1 \text { and Lemma } 5.2
\end{aligned}
$$

The result follows by repeating this argument for T_{3}, T_{4}, \ldots

Properties of the Poisson Process (cont.)

We now introduce:

$$
S_{n}=\sum_{i=1}^{n} T_{i}, \quad n=1,2, \ldots
$$

By Proposition 5.4 S_{n} is a sum of independent identically distributed exponentially distributed variables. Hence it follows that:

$$
S_{n} \sim \operatorname{gamma}(n, \lambda), \quad n=1,2, \ldots
$$

Properties of the Poisson Process (cont.)

Theorem (5.1)

Assume that $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda>0$. Then $N(t)$ is a Poisson random variable with rate λt. That is:

$$
P(N(t)=n)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}, \quad n=0,1,2, \ldots
$$

PROOF: By Lemma 5.2 we have:

$$
P(N(t)=0)=e^{-\lambda t}=\frac{(\lambda t)^{0}}{0!} e^{-\lambda t}
$$

In order to determine $P(N(t)=n)$ we condition on the event that $S_{n}=s$.
If $s>t$, we obviously have $P\left(N(t)=n \mid S_{n}=s\right)=0$.

Properties of the Poisson Process (cont.)

We then consider the case where $0<s \leq t$, and get:

$$
\begin{aligned}
P\left(N(t)=n \mid S_{n}\right. & =s)=P\left(T_{n+1}>t-s \mid S_{n}=s\right) \\
& =P\left(T_{n+1}>t-s\right) \quad \text { since } T_{n+1} \text { and } S_{n} \text { are independent } \\
& =e^{-\lambda(t-s)} .
\end{aligned}
$$

Hence, it follows that:

$$
\begin{aligned}
P(N(t)=n) & =\int_{0}^{t} P\left(N(t)=n \mid S_{n}=s\right) f_{S_{n}}(s) d s \\
& =\int_{0}^{t} e^{-\lambda(t-s)} \cdot \frac{\lambda^{n}}{\Gamma(n)} s^{n-1} e^{-\lambda s} d s=\lambda^{n} e^{-\lambda t} \int_{0}^{t} \frac{s^{n-1}}{(n-1)!} d s \\
& =\left.\lambda^{n} e^{-\lambda t} \cdot\right|_{0} ^{t} \frac{s^{n}}{n!}=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}, \quad n=1,2, \ldots
\end{aligned}
$$

Example 5.13

Suppose that people immigrate into a territory according to a Poisson process with rate $\lambda=2$ per day.
(a) Find the probability there are 10 arrivals in the following week (of 7 days).
(b) Find the expected number of days until there have been 20 arrivals.

SOLUTION: (a) We recall that:

$$
P(N(t)=n)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}, \quad n=1,2, \ldots
$$

Hence, we get that:

$$
\begin{aligned}
P(N(7)=10) & =\frac{(2 \cdot 7)^{10}}{10!} e^{-2.7} \\
& =\frac{14^{10}}{10!} e^{-14} \approx 0.06628
\end{aligned}
$$

Example 5.13 (cont.)

(b) We recall that:

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n} T_{i}=\text { The point of time of the } n \text {th arrival } \\
& \sim \operatorname{gamma}(n, \lambda) .
\end{aligned}
$$

Hence, we get:

$$
E\left[S_{n}\right]=\sum_{i=1}^{n} E\left[T_{i}\right]=\frac{n}{\lambda}
$$

In particular:

$$
E\left[S_{20}\right]=\frac{20}{2}=10 .
$$

Chapter 5.3.3 Further properties of Poisson Processes

Consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ. Each event can be classified as either a Type I event or a Type II event.

$$
\begin{aligned}
p & =P(\mathrm{~A} \text { given event is of type } \mathrm{I}) \\
1-p & =P(\mathrm{~A} \text { given event is of type } \mathrm{II})
\end{aligned}
$$

We then introduce:

$$
\begin{aligned}
& N_{1}(t)=\text { The number of type I events in }(0, t] \\
& N_{2}(t)=\text { The number of type II events in }(0, t] .
\end{aligned}
$$

NOTE: $N(t)=N_{1}(t)+N_{2}(t)$, and for $s<t$ we have:

$$
\begin{aligned}
& \left(N_{1}(t)-N_{1}(s) \mid N(t)-N(s)=n\right) \sim \operatorname{Bin}(n, p), \\
& \left(N_{2}(t)-N_{2}(s) \mid N(t)-N(s)=n\right) \sim \operatorname{Bin}(n, 1-p)
\end{aligned}
$$

Further properties of Poisson Processes (cont.)

From this we get that:

$$
\begin{aligned}
& P\left(N_{1}(t)-N_{1}(s)=k\right)=\sum_{n=k}^{\infty} P\left(N_{1}(t)-N_{1}(s)=k \mid N(t)-N(s)=n\right) \\
& \cdot P(N(t)-N(s)=n) \\
& =\sum_{n=k}^{\infty}\binom{n}{k} p^{k}(1-p)^{n-k} \cdot \frac{[\lambda(t-s)]^{n}}{n!} e^{-\lambda(t-s)} \\
& =\frac{(\lambda p(t-s))^{k}}{k!} e^{-\lambda p(t-s)} \sum_{n=k}^{\infty} \frac{[\lambda(1-p)(t-s)]^{n-k}}{(n-k)!} e^{-\lambda(1-p)(t-s)} \\
& \quad=\frac{(\lambda p(t-s))^{k}}{k!} e^{-\lambda p(t-s)}
\end{aligned}
$$

That is, $N_{1}(t)-N_{1}(s) \sim \operatorname{Po}(\lambda p(t-s))$.
Similarly, $N_{2}(t)-N_{2}(s) \sim \operatorname{Po}(\lambda(1-p)(t-s))$.

Further properties of Poisson Processes (cont.)

Proposition

$\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are both Poisson processes having rates λp and $\lambda(1-p)$ respectively, and the two processes are independent.

PROOF: Since $N(0)=0$, it follows that $N_{i}(0)=0, i=1,2$ as well. Let $\left(s_{1}, t_{1}\right]$ and $\left(s_{2}, t_{2}\right]$ be disjoint. Since $\{N(t): t \geq 0\}$ has independent increments, we have for $i=1,2$:

$$
\begin{aligned}
P(& \left.N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k \mid N_{i}\left(t_{1}\right)-N_{i}\left(s_{1}\right)=\ell\right) \\
= & \sum_{n=k}^{\infty} P\left(N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k \mid N\left(t_{2}\right)-N\left(s_{2}\right)=n, N_{i}\left(t_{1}\right)-N_{i}\left(s_{1}\right)=\ell\right) \\
& \cdot P\left(N\left(t_{2}\right)-N\left(s_{2}\right)=n \mid N_{i}\left(t_{1}\right)-N_{i}\left(s_{1}\right)=\ell\right) \\
= & \sum_{n=k}^{\infty} P\left(N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k \mid N\left(t_{2}\right)-N\left(s_{2}\right)=n\right) \cdot P\left(N\left(t_{2}\right)-N\left(s_{2}\right)=n\right) \\
& =P\left(N_{i}\left(t_{2}\right)-N_{i}\left(s_{2}\right)=k\right)
\end{aligned}
$$

Further properties of Poisson Processes (cont.)

Hence, $\left\{N_{i}(t): t \geq 0\right\}$ have independent increments, $i=1,2$. Moreover, we have:

$$
\begin{aligned}
P\left(N_{1}(h)=1\right) & =P\left(N_{1}(h)=1 \mid N(h)=1\right) P(N(h)=1) \\
& +P\left(N_{1}(h)=1 \mid N(h) \geq 2\right) P(N(h) \geq 2) \\
& =p(\lambda h+o(h))+o(h) \\
& =\lambda p h+o(h)
\end{aligned}
$$

and:

$$
P\left(N_{1}(h) \geq 2\right) \leq P(N(h) \geq 2)=o(h) .
$$

By similar arguments we get that:

$$
\begin{aligned}
& P\left(N_{2}(h)=1\right)=\lambda(1-p) h+o(h) \\
& P\left(N_{2}(h) \geq 2\right)=o(h) .
\end{aligned}
$$

Further properties of Poisson Processes (cont.)

To show that $\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are independent we let $s<t$, and consider:

$$
\begin{aligned}
P\left[\left(N_{1}(t)\right.\right. & \left.\left.-N_{1}(s)=k\right) \cap\left(N_{2}(t)-N_{2}(s)=\ell\right)\right] \\
& =P\left[\left(N_{1}(t)-N_{1}(s)=k\right) \cap(N(t)-N(s)=k+\ell)\right] \\
& =\binom{k+\ell}{k} p^{k}(1-p)^{\ell} \cdot \frac{[\lambda(t-s)]^{k+\ell}}{(k+\ell)!} e^{-\lambda(t-s)} \\
& =\frac{(\lambda p(t-s))^{k}}{k!} e^{-\lambda p(t-s)} \cdot \frac{(\lambda(1-p)(t-s))^{\ell}}{\ell!} e^{-\lambda(1-p)(t-s)} \\
& =P\left(N_{1}(t)-N_{1}(s)=k\right) \cdot P\left(N_{2}(t)-N_{2}(s)=\ell\right)
\end{aligned}
$$

Hence, we conclude that $\left(N_{1}(t)-N_{1}(s)\right)$ and $\left(N_{2}(t)-N_{2}(s)\right)$ are independent for all $s<t$, implying that $\left\{N_{1}(t): t \geq 0\right\}$ and $\left\{N_{2}(t): t \geq 0\right\}$ are independent.

Example 5.14

If immigrants to area A arrive at a Poisson rate of $\lambda=10$ per week, and if each immigrant is of English descent with probability $p=\frac{1}{12}$. What is the probability that no people of English descent will emigrate to area A during the month of February?

SOLUTION: By the previous proposition it follows that the number of Englishmen emigrating to area A during the month of February is Poisson distributed with mean:
$\lambda \cdot$ number of weeks in February $\cdot p=10 \cdot 4 \cdot \frac{1}{12}=\frac{10}{3}$.
Hence, we get:
P (no people of English descent in February)

$$
=\frac{(10 / 3)^{0}}{0!} e^{-10 / 3}=0.0357
$$

Example 5.15

We consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ where each event represents an offer. We introduce:

$$
X_{i}=\text { The size of the } i \text { th offer }, \quad, i=1,2, \ldots
$$

We assume that X_{1}, X_{2}, \ldots are non-negative, independent and identically distributed random variables with density $f(x)$. We assume that $f(x)>0$ for all $x \geq 0$ and introduce:

$$
\bar{F}(x)=P\left(X_{i}>x\right), \quad x \geq 0
$$

POLICY: Accept the first offer greater than some chosen number y, and define:
$N_{y}(t)=$ The number of offers greater than y in $(0, t], \quad t \geq 0$.
Then $\left\{N_{y}(t): t \geq 0\right\}$ is a Poisson process with rate $\lambda \bar{F}(y)$.

Example 5.15 (cont.)

If T_{y} is the time until the first offer which is greater than y, then:

$$
T_{y} \sim \exp (\lambda \bar{F}(y))
$$

and we get:

$$
E\left[T_{y}\right]=\frac{1}{\lambda \bar{F}(y)}
$$

The accepted offer is denoted by X. Thus, we know that $X>y$. Moreover, we must pay a waiting cost proportional to the waiting time T_{y} given by $c T_{y}$.

$$
R(y)=\text { Net return of the deal }=X-c T_{y} .
$$

We then have:

$$
E[R(y)]=E[X \mid X>y]-c E\left[T_{y}\right]=\int_{y}^{\infty} x \frac{f(x)}{\bar{F}(y)} d x-\frac{c}{\lambda \bar{F}(y)} .
$$

Example 5.15 (cont.)

Thus, we may write:

$$
E[R(y)]=\frac{\int_{y}^{\infty} x f(x) d x-c / \lambda}{\bar{F}(y)}
$$

In order to find the value of y which maximizes $E[R(y)]$ we compute the derivative, and note that:

$$
\frac{d}{d y} E[R(y)]=0
$$

if and only if:

$$
\bar{F}(y) \cdot(-y f(y))-(-f(y))\left[\int_{y}^{\infty} x f(x) d x-\frac{c}{\lambda}\right]=0
$$

or equivalently, since we have assumed that $f(y)>0$ for all $y \geq 0$:

$$
\left[\int_{y}^{\infty} x f(x) d x-\frac{c}{\lambda}\right]=\bar{F}(y) y=\int_{y}^{\infty} y f(x) d x
$$

Example 5.15 (cont.)

The equation:

$$
\left[\int_{y}^{\infty} x f(x) d x-\frac{c}{\lambda}\right]=\int_{y}^{\infty} y f(x) d x
$$

can alternatively be written as:

$$
\int_{y}^{\infty}(x-y) f(x) d x=\frac{c}{\lambda}
$$

We denote the left-hand side of this equation by $\phi(y)$. Since we have assumed that $f(x)>0$ for all $x \geq 0, \phi$ is a strictly decreasing function of y, and we have:

$$
\phi(0)=\int_{0}^{\infty}(x-0) f(x) d x=E[X], \quad \phi(\infty)=0
$$

Thus, assuming that $E[X]>c / \lambda$, there exists a unique solution.

Example 5.15 (cont.)

Assume more specifically that:

$$
f(x)=\frac{1}{\mu} e^{-x / \mu}, \quad x \geq 0
$$

Thus, $\bar{F}(x)=e^{-x / \mu}, E[X]=\mu$, and we have:

$$
\phi(y)=\int_{y}^{\infty}(x-y) f(x) d x=\int_{y}^{\infty}(x-y) \frac{1}{\mu} e^{-x / \mu} d x
$$

We then substitute $u=(x-y)$, and $d u=d x$, and get:

$$
\begin{aligned}
\phi(y) & =\int_{0}^{\infty} u \cdot \frac{1}{\mu} e^{-(u+y) / \mu} d u \\
& =e^{-y / \mu} \int_{0}^{\infty} u \cdot \frac{1}{\mu} e^{-u / \mu} d u=\mu e^{-y / \mu} .
\end{aligned}
$$

Example 5.15 (cont.)

Hence, the equation $\phi(y)=c / \lambda$ becomes:

$$
\mu e^{-y / \mu}=\frac{c}{\lambda}
$$

or equivalently:

$$
-y / \mu=\ln \left(\frac{c}{\lambda \mu}\right)
$$

Thus, the optimal y-value, which we denote by y^{*} is given by:

$$
y^{*}=-\mu \ln \left(\frac{c}{\lambda \mu}\right)=\mu \ln \left(\frac{\mu}{c / \lambda}\right)
$$

NOTE: Since we have assumed that $E[X]=\mu>c / \lambda$ it follows that $y^{*}>0$.

Example 5.15 (cont.)

In the general case y^{*} satisfies:

$$
\phi\left(y^{*}\right)=\int_{y^{*}}^{\infty}\left(x-y^{*}\right) f(x) d x=\frac{c}{\lambda}
$$

We then consider:

$$
\begin{aligned}
E\left[R\left(y^{*}\right)\right] & =\frac{\int_{y^{*}}^{\infty} x f(x) d x-c / \lambda}{\bar{F}\left(y^{*}\right)} \\
& =\frac{1}{\bar{F}\left(y^{*}\right)}\left[\int_{y^{*}}^{\infty}\left(x-y^{*}\right) f(x) d x-\frac{c}{\lambda}+\int_{y^{*}}^{\infty} y^{*} f(x) d x\right] \\
& =\frac{1}{\bar{F}\left(y^{*}\right)}\left[\phi\left(y^{*}\right)-\frac{c}{\lambda}+y^{*} \bar{F}\left(y^{*}\right)\right]=y^{*}
\end{aligned}
$$

Thus, the optimal value y^{*} is also equal to the optimal expected net return.

Order statistics

Assume that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent and identically distributed with density $f(y)$.

We then consider the corresponding order statistics obtained from $Y_{1}, Y_{2}, \ldots, Y_{n}$ by ordering these variables:

$$
Y_{(1)}<Y_{(2)}<\cdots<Y_{(n)}
$$

The joint density of the order statistics is given by:

$$
f\left(y_{(1)}, y_{(2)}, \ldots, y_{(n)}\right)=n!\prod_{i=1}^{n} f\left(y_{(i)}\right), \quad y_{(1)}<y_{(2)}<\cdots<y_{(n)} .
$$

In particular, if $Y_{i} \sim \operatorname{uniform}(0, t), i=1, \ldots, n$, then:

$$
f\left(y_{(1)}, y_{(2)}, \ldots, y_{(n)}\right)=\frac{n!}{t^{n}}, \quad 0<y_{(1)}<y_{(2)}<\cdots<y_{(n)}<t .
$$

Order statistics (cont.)

NOTE: We observe that in the case where $Y_{i} \sim \operatorname{uniform}(0, t), i=1, \ldots, n$, the joint density of $\left(Y_{(1)}, \ldots, Y_{(n)}\right)$ is constant over the set:

$$
\mathcal{Y}=\left\{\left(y_{(1)}, \ldots, y_{(n)}\right): 0<y_{(1)}<\cdots<y_{(n)}<t\right\}
$$

This implies that:

$$
\int_{\mathcal{Y}} f\left(y_{(1)}, \ldots, y_{(n)}\right) d y_{(1)} \cdots d y_{(n)}=\frac{n!}{t^{n}} \cdot m(\mathcal{Y})=1
$$

where $m(\mathcal{Y})$ denotes the volume of the set \mathcal{Y}.
Hence, the volume of the set \mathcal{Y} becomes:

$$
m(\mathcal{Y})=\frac{t^{n}}{n!}
$$

Order statistics (cont.)

In the special case where $n=2$, the set:

$$
\mathcal{Y}=\left\{\left(y_{(1)}, y_{(2)}\right): 0<y_{(1)}<y_{(2)}<t\right\}
$$

is a triangle with area:

$$
m(\mathcal{Y})=\frac{t^{2}}{2!}=\frac{t^{2}}{2}
$$

The scaled Dirichlet distribution

We recall that if $\left(Y_{1}, \ldots, Y_{n}\right) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right)$, then the joint density of $\left(Y_{1}, \ldots, Y_{n}\right)$ is given by:

$$
f\left(y_{1}, \ldots, y_{n}\right)=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n+1}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n+1}\right)} y_{1}^{\alpha_{1}-1} \cdots y_{n}^{\alpha_{n}-1}\left(1-\sum_{i=1}^{n} y_{i}\right)^{\alpha_{n+1}-1}
$$

for all $\left(y_{1}, \ldots, y_{n}\right)$ such that $y_{i}>0$, for all i, and $\sum_{i=1}^{n} y_{i}<1$.
We now let $t>0$, and define $T_{i}=t Y_{i}, \quad i=1, \ldots, n$. Thus, the inverse transformation from $\left(t_{1}, \ldots, t_{n}\right)$ to $\left(y_{1}, \ldots, y_{n}\right)$ is given by:

$$
y_{i}=\psi_{i}\left(t_{1}, \ldots, t_{n}\right)=t_{i} / t, \quad i=1, \ldots, n
$$

From this it follows that the partial derivatives are given by:

$$
\frac{\partial \Psi_{i}}{\partial t_{i}}=t^{-1}, \quad i=1, \ldots, n
$$

while all other partial derivatives are zero.

The scaled Dirichlet distribution (cont.)

Hence, it follows that the Jacobi matrix is diagonal.
Thus, the Jacobi-determinant of the transformation is t^{-n}, and by the density transformation formula, the joint density of T_{1}, \ldots, T_{n} is given by:

$$
\begin{aligned}
f\left(t_{1}, \ldots, t_{n}\right) & =\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n+1}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n+1}\right)}\left(\frac{t_{1}}{t}\right)^{\alpha_{1}-1} \cdots\left(\frac{t_{n}}{t}\right)^{\alpha_{n}-1}\left(1-\sum_{i=1}^{n} \frac{t_{i}}{t}\right)^{\alpha_{n+1}-1} \cdot t^{-n} \\
& =\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n+1}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{n+1}\right)} t_{1}^{\alpha_{1}-1} \cdots t_{n}^{\alpha_{n}-1}\left(t-\sum_{i=1}^{n} t_{i}\right)^{\alpha_{n+1}-1} \cdot t^{1-\sum_{i=1}^{n+1} \alpha_{i}}
\end{aligned}
$$

for all $\left(t_{1}, \ldots, t_{n}\right)$ such that $t_{i}>0$, for all i, and $\sum_{i=1}^{n} t_{i}<t$.
In particular, if $\alpha_{1}=\cdots=\alpha_{n+1}=1$, the joint density becomes:

$$
f\left(t_{1}, \ldots, t_{n}\right)=\frac{n!}{t^{n}}
$$

The scaled Dirichlet distribution (cont.)

NOTE: We observe that in the case where $\alpha_{1}=\cdots=\alpha_{n+1}=1$, the joint density of $\left(T_{1}, \ldots, T_{n}\right)$ is constant over the set:

$$
\mathcal{T}=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{1}, \ldots, t_{n}>0, \sum_{i=1}^{n} t_{i}<t\right\}
$$

This implies that:

$$
\int_{\mathcal{T}} f\left(t_{1}, \ldots, t_{n}\right) d t_{1} \cdots d t_{n}=\frac{n!}{t^{n}} \cdot m(\mathcal{T})=1
$$

where $m(\mathcal{T})$ denotes the volume of the set \mathcal{T}.
Hence, the volume of the set \mathcal{T} becomes:

$$
m(\mathcal{T})=\frac{t^{n}}{n!}
$$

The scaled Dirichlet distribution (cont.)

In the special case where $n=2$, the set:

$$
\mathcal{T}=\left\{\left(t_{1}, t_{2}\right): t_{1}>0, t_{2}>0, t_{1}+t_{2}<t\right\}
$$

is a triangle with area:

$$
m(\mathcal{T})=\frac{t^{2}}{2!}=\frac{t^{2}}{2}
$$

Chapter 5.3.4 Conditional distributions of the interarrival times and arrival times

Theorem (5.2 extended)
We consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ, and assume that $N(t)=n$. Then the interarrival times T_{1}, \ldots, T_{n} has the following conditional joint density:

$$
f\left(t_{1}, t_{2}, \ldots, t_{n} \mid N(t)=n\right)=\frac{n!}{t^{n}}, \quad t_{1}, \ldots, t_{n}>0, \sum_{i=1}^{n} t_{i}<t
$$

Furthermore, the arrival times S_{1}, \ldots, S_{n} has the following conditional joint density:

$$
f\left(s_{1}, s_{2}, \ldots, s_{n} \mid N(t)=n\right)=\frac{n!}{t^{n}}, \quad 0<s_{1}<s_{2}<\cdots<s_{n}<t
$$

Conditional distributions (cont.)

PROOF: We start out by deriving the conditional joint distribution for T_{1}, \ldots, T_{n} given that $N(t)=n$.
Let $t_{1}, \ldots, t_{n}>0$ be such that $\sum_{i=1}^{n} t_{i}<t$, and let $h>0$ be a sufficiently small number. Then we have:

$$
\begin{aligned}
P\left(t_{1}\right. & \left.<T_{1}<t_{1}+h, \ldots, t_{n}<T_{n}<t_{n}+h, N(t)=n\right) \\
& \approx P\left(t_{1}<T_{1}<t_{1}+h, \ldots, t_{n}<T_{n}<t_{n}+h, T_{n+1}>t-\sum_{i=1}^{n} t_{i}\right) \\
& =\prod_{i=1}^{n}\left[e^{-\lambda t_{i}}-e^{-\lambda\left(t_{i}+h\right)}\right] \cdot e^{-\lambda\left(t-\sum_{i=1}^{n} t_{i}\right)} \\
& =\prod_{i=1}^{n} e^{-\lambda t_{i}}\left[1-e^{-\lambda h}\right] \cdot e^{-\lambda\left(t-\sum_{i=1}^{n} t_{i}\right)}=e^{-\lambda t}\left[1-e^{-\lambda h}\right]^{n}
\end{aligned}
$$

Conditional distributions (cont.)

Since $P(N(t)=n)=e^{-\lambda t}(\lambda t)^{n} / n!$, this implies that:

$$
\begin{aligned}
& P\left(t_{1}<T_{1} \leq t_{1}+h, \cdots, t_{n}<T_{n} \leq t_{n}+h \mid N(t)=n\right) \\
& \quad=\frac{e^{-\lambda t}\left[1-e^{-\lambda h}\right]^{n}}{e^{-\lambda t}(\lambda t)^{n} / n!}=\frac{n!}{t^{n}} \cdot\left(\frac{1-e^{-\lambda h}}{\lambda}\right)^{n}
\end{aligned}
$$

From this it follows that:

$$
\begin{aligned}
& \frac{1}{h^{n}} P\left(t_{1}<T_{1} \leq t_{1}+h, \cdots, t_{n}<T_{n} \leq t_{n}+h \mid N(t)=n\right) \\
& \quad=\frac{n!}{t^{n}} \cdot\left(\frac{1-e^{-\lambda h}}{\lambda h}\right)^{n}
\end{aligned}
$$

Conditional distributions (cont.)

By using l'Hôpital's rule we get that:

$$
\lim _{h \rightarrow 0} \frac{1-e^{-\lambda h}}{\lambda h}=\lim _{h \rightarrow 0} \frac{\lambda e^{-\lambda h}}{\lambda}=1
$$

Hence, it follows that:

$$
f\left(t_{1}, t_{2}, \ldots, t_{n} \mid N(t)=n\right)=\frac{n!}{t^{n}}, \quad t_{1}, \ldots, t_{n}>0, \sum_{i=1}^{n} t_{i}<t
$$

Thus, we see that the conditional distribution of T_{1}, \ldots, T_{n} given that $N(t)=n$ is a scaled Dirichlet distribution with parameters $\alpha_{1}=\cdots \alpha_{n+1}=1$, and scale factor t.

Conditional distributions (cont.)

In order to find the conditional distribution of S_{1}, \ldots, S_{n} given that $N(t)=n$, we use that:

$$
S_{i}=\sum_{j=1}^{i} T_{j}, \quad i=1, \ldots, n
$$

Thus, the inverse transformation from $\left(s_{1}, \ldots, s_{n}\right)$ to $\left(t_{1}, \ldots, t_{n}\right)$ is given by:

$$
t_{i}=\psi_{i}\left(s_{1}, \ldots, s_{n}\right)=s_{i}-s_{i-1}, \quad i=1, \ldots, n,
$$

where we define $s_{0}=0$. From this it follows that the partial derivatives are given by:

$$
\begin{aligned}
\frac{\partial \Psi_{i}}{\partial s_{i}} & =1, \quad i=1, \ldots, n \\
\frac{\partial \Psi_{i}}{\partial s_{i-1}} & =-1, \quad i=2, \ldots, n
\end{aligned}
$$

while all other partial derivatives are zero.

Conditional distributions (cont.)

In particular since $\partial \Psi_{i} / \partial s_{j}=0$ for all $j>i$, we conclude that the Jacobi matrix is triangular.

Thus, the Jacobi-determinant of the transformation is $1^{n}=1$, and by the density transformation formula, the the conditional joint density of S_{1}, \ldots, S_{n} given that $N(t)=n$ is given by:

$$
f\left(s_{1}, s_{2}, \ldots, s_{n} \mid N(t)=n\right)=\frac{n!}{t^{n}}, \quad 0<s_{1}<s_{2}<\cdots<s_{n}<t
$$

Thus, we see that the conditional joint distribution of S_{1}, \ldots, S_{n} given that $N(t)=n$ is the same distribution as the joint distribution of the order statstics corresponding to n random variables uniformly distributed on the interval (0,t)

Chapter 5.4 Generalizations of the Poisson Process

Definition

A counting process $\{N(t): t \geq 0\}$ is said to be a non-homogeneous Poisson process with intensity function $\lambda(t), t \geq 0$, if:
(i) $\quad N(0)=0$
(ii) $\{N(t), t \geq 0\}$ has independent increments.
(iii) $\quad P(N(t+h)-N(t)=1)=\lambda(t) h+o(h)$
(iv) $\quad P(N(t+h)-N(t) \geq 2)=o(h)$

We also introduce the mean value function $m(t)$ defined by:

$$
m(t)=\int_{0}^{t} \lambda(u) d u
$$

The non-homogeneous Poisson Process (cont.)

Lemma (5.3)

If $\{N(t), t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then:

$$
P(N(t)=0)=e^{-m(t)}, \quad t \geq 0 .
$$

PROOF: Let $P_{0}(t)=P(N(t)=0)$. Then:

$$
\begin{aligned}
P_{0}(t+h) & =P(N(t+h)=0) \\
& =P(N(t)=0 \cap N(t+h)-N(t)=0) \\
& =P(N(t)=0) \cdot P(N(t+h)-N(t)=0) \quad \text { by Axiom (ii) } \\
& =P_{0}(t)(1-\lambda(t) h+o(h)) \quad \text { by Axiom (iii) and (iv) }
\end{aligned}
$$

The non-homogeneous Poisson Process (cont.)

Hence, we get:

$$
P_{0}(t+h)-P_{0}(t)=-\lambda(t) h P_{0}(t)+o(h) P_{0}(t)
$$

Dividing by h and letting $h \rightarrow 0$ gives that:

$$
P_{0}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{P_{0}(t+h)-P_{0}(t)}{h}=\lim _{h \rightarrow 0}\left[-\lambda(t) P_{0}(t)+\frac{o(h) P_{0}(t)}{h}\right]=-\lambda(t) P_{0}(t) .
$$

Alternatively, this can be expressed as:

$$
\frac{P_{0}^{\prime}(t)}{P_{0}(t)}=-\lambda(t)
$$

We then integrate both sides of this equation:

$$
\int_{0}^{t} \frac{P_{0}^{\prime}(s)}{P_{0}(s)} d s=-\int_{0}^{t} \lambda(s) d s
$$

The non-homogeneous Poisson Process (cont.)

On the left-hand side we substitute $u=P_{0}(s)$ and $d u=P_{0}^{\prime}(s) d s$, and get:

$$
\int_{P_{0}(0)}^{P_{0}(t)} \frac{d u}{u}=-\int_{0}^{t} \lambda(s) d s
$$

The integration yields that:

$$
\log \left(P_{0}(t)\right)-\log \left(P_{0}(0)\right)=-\int_{0}^{t} \lambda(s) d s
$$

Since $P_{0}(0)=P(N(0)=0)=1$ it follows that:

$$
P_{0}(t)=e^{-\int_{0}^{t} \lambda(s) d s}=e^{-m(t)}
$$

The non-homogeneous Poisson Process (cont.)

Corollary

If $\{N(t), t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, and let T_{1} be the time of the first event. Then we have:

$$
P\left(T_{1}>t\right)=P(N(t)=0)=e^{-m(t)}, \quad t \geq 0 .
$$

Moreover, the density of T_{1} is given by:

$$
f_{T_{1}}(t)=\lambda(t) e^{-m(t)}, \quad t \geq 0 .
$$

PROOF: The first part follows immediate from Lemma 5.3, while the second part follows by differentiation

The non-homogeneous Poisson Process (cont.)

If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process, and $s>0$, we define:

$$
N_{s}(t)=N(s+t)-N(s)
$$

Lemma (5.4)

If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then $\left\{N_{s}(t): t \geq 0\right\}$ is a non-homogeneous Poisson process with intensity function $\lambda_{s}(t)=\lambda(s+t), t \geq 0$.

PROOF: Similar to the proof of the corresponding result for homogeneous Poisson processes, i.e., Lemma 5.1. Simply replace λ by $\lambda(t)$

The non-homogeneous Poisson Process (cont.)

The mean value function of $\left\{N_{s}(t): t \geq 0\right\}$ is given by:

$$
\begin{aligned}
m_{s}(t) & =\int_{0}^{t} \lambda_{s}(u) d u \\
& =\int_{0}^{t} \lambda(s+u) d u \quad \text { Subst.: } v=s+u, d v=d u \\
& =\int_{s}^{s+t} \lambda(v) d v \\
& =m(s+t)-m(s)
\end{aligned}
$$

Hence, we also have:

$$
m_{s}(t-s)=m(t-s+s)-m(s)=m(t)-m(s)
$$

The non-homogeneous Poisson Process (cont.)

Theorem
If $\{N(t), t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then:

$$
P(N(t)=n)=\frac{(m(t))^{n}}{n!} e^{-m(t)}, \quad t \geq 0, \quad n=0,1,2, \ldots
$$

PROOF: Induction with respect to n. By Lemma 5.3 the theorem holds for $n=0$.

We then assume that we have shown that:

$$
P(N(t)=n)=\frac{(m(t))^{n}}{n!} e^{-m(t)}, \quad t \geq 0
$$

and consider the probability $P(N(t)=n+1)$.

The non-homogeneous Poisson Process (cont.)

 In order to calculate this probability we condition on T_{1}, noting that if $s>t$, then obviously $P\left(N(t)=n+1 \mid T_{1}=s\right)=0$.$$
\begin{aligned}
P(N(t)=n+1) & =\int_{0}^{t} P\left(N(t)=n+1 \mid T_{1}=s\right) f_{T_{1}}(s) d s \\
& =\int_{0}^{t} P\left(N(t)=n+1 \mid T_{1}=s\right) \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} P\left(N(t)-N(s)=n \mid T_{1}=s\right) \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} P(N(t)-N(s)=n) \lambda(s) e^{-m(s)} d s \quad \text { (Indep. incr.) } \\
& =\int_{0}^{t} P\left(N_{s}(t-s)=n\right) \lambda(s) e^{-m(s)} d s
\end{aligned}
$$

The non-homogeneous Poisson Process (cont.)

By Lemma 5.4 and the induction hypothesis it follows that:

$$
\begin{aligned}
P\left(N_{s}(t-s)=n\right) & =\frac{\left(m_{s}(t-s)\right)^{n}}{n!} e^{-m_{s}(t-s)} \\
& =\frac{(m(t)-m(s))^{n}}{n!} e^{-(m(t)-m(s))}
\end{aligned}
$$

By inserting this into the integral we get:

$$
\begin{aligned}
P(N(t)=n+1) & =\int_{0}^{t} P\left(N_{s}(t-s)=n\right) \lambda(s) e^{-m(s)} d s \\
& =\int_{0}^{t} \frac{(m(t)-m(s))^{n}}{n!} e^{-(m(t)-m(s))} \lambda(s) e^{-m(s)} d s
\end{aligned}
$$

The non-homogeneous Poisson Process (cont.)

Simplifying the integrand yields:

$$
\begin{aligned}
P(N(t)=n+1) & =\int_{0}^{t} \frac{(m(t)-m(s))^{n}}{n!} e^{-(m(t)-m(s))} \lambda(s) e^{-m(s)} d s \\
& =\frac{e^{-m(t)}}{n!} \int_{0}^{t}(m(t)-m(s))^{n} \lambda(s) d s
\end{aligned}
$$

We then substitute: $u=m(t)-m(s)$ and $d u=-\lambda(s) d s$, and get:

$$
\begin{aligned}
P(N(t)=n+1) & =\frac{e^{-m(t)}}{n!} \int_{m(t)}^{0}\left(-u^{n}\right) d u=\frac{e^{-m(t)}}{n!} \int_{0}^{m(t)} u^{n} d u \\
& =\left.\frac{e^{-m(t)}}{n!} \cdot\right|_{0} ^{m(t)} \frac{u^{n+1}}{n+1}=\frac{(m(t))^{n+1}}{(n+1)!} e^{-m(t)}
\end{aligned}
$$

which completes the induction proof

