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Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)

The counting process {N(t),t > 0} is said to be a Poisson process with rate
A > 0 if the following four axioms hold:

(i)  N@O)=0

(i) {N(t),t > 0} has independent increments.
(i) P(N(t+ h)— N(t)=1) = h+ o(h)
(iv)  P(N(t+ h) — N(t) > 2) = o(h)
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Properties of the Poisson Process

Lemma (5.1)

Assume that {N(t),t > 0} is a Poisson process with rate A\ > 0. Then let
s > 0, and define:

Ns(t) = N(s+1t)— N(s), forallt>0.

Then {Ns(t),t > 0} is a Poisson process with rate \ as well.

Lemma (5.2)

If Ty is the time of the first event of a Poisson process {N(t),t > 0} with rate
A > 0, then:

P(Ti>t)=P(N(t) =0)=e ™, t=>0.

Thatis Ty ~ exp()).
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Properties of the Poisson Process (cont.)

Proposition (5.4)

Let Ty, Ty, ... be the sequence of interarrival times of a Poisson process
{N(t),t > 0} with rate A\ > 0. That is, Ty is the time of the first event, and

T, = The time between the (n — 1)st and nth event, n=23,....

Then Ty, T, ... are independent and identically distributed exponential
random variables with rate \.

PROOF: We have already shown that T; ~ exp()). For T, we get:
P(To > tiTy =8)=P(N(s+t)— N(s)=0|Ty = s)
= P(N(s+1t)— N(s)=0) by Axiom (ii)
= P(Ns(t) =0)=e"* by Lemma5.1 and Lemma 5.2.

The result follows by repeating this argument for T3, Ty, ... |
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Properties of the Poisson Process (cont.)

We now introduce:

n
Sa=> T, n=12..

i=1

By Proposition 5.4 S, is a sum of independent identically distributed
exponentially distributed variables. Hence it follows that:

Snp~gamma(n,\), n=1,2,...
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——
Properties of the Poisson Process (cont.)

Theorem (5.1)
Assume that {N(t),t > 0} is a Poisson process with rate A > 0. Then N(t) is
a Poisson random variable with rate \t. That is:

n
P(N(t) = n) = %e‘“, n=0,1,2, ...

PROOF: By Lemma 5.2 we have:

P(N(t)=0) = e ' = (Ao—tl)oe*”

In order to determine P(N(t) = n) we condition on the event that S, = s.

If s > t, we obviously have P(N(t) = n|S, = s) = 0.
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Properties of the Poisson Process (cont.)
We then consider the case where 0 < s < t, and get:

P(N(t) =n|Sp,=8) = P(The1 > t—5|S, = 9)
=P(Tpp1 >1t—5) since T,.1 and S, are independent

_ e—A(tfs).

Hence, it follows that:

P(N(t) = n) = /Ot P(N(t) = NSy = s)fs, (5)ds

t A" t gh—1
:/ e—/\(t—s) . Sn—1e—>\sds _ )\ne—/\t/ ds
0 r(n) o (n=1)!

B OV LY

0 n! n!

_ )\ne—At .
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I
Example 5.13

Suppose that people immigrate into a territory according to a Poisson
process with rate A = 2 per day.

(a) Find the probability there are 10 arrivals in the following week (of 7 days).

(b) Find the expected number of days until there have been 20 arrivals.

SOLUTION: (a) We recall that:

PN =) = W g oz

Hence, we get that:
2-7)° o7
0 ¢

1410
TR

P(N(7) = 10) =

e '~ 0.06628
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——
Example 5.13 (cont.)

(b) We recall that:

n
S, =Y _ T = The point of time of the nth arrival

i=1
~ gamma(n, \).

Hence, we get:
n n
E[S) =) E[T]=+
i=1

In particular:

20
E[Sx] = 5 = 10.

A. B. Huseby (Univ. of Oslo) STK2130 — Lecture 9 9/46



Chapter 5.3.3 Further properties of Poisson Processes

Consider a Poisson process {N(t) : t > 0} with rate A\. Each event can be
classified as either a Type | event or a Type Il event.

p = P(A given event is of type I),
1 — p = P(A given event is of type Il)
We then introduce:
Ni(t) = The number of type | events in (0, {],
N»(t) = The number of type Il events in (0, t].

NOTE: N(t) = N;(t) + Nx(t), and for s < t we have:
(N1 () = Ni(8)IN(2) — N(s) = n) ~ Bin(n, p),
(Na(t) = Na(8)IN(t) — N(s) = n) ~ Bin(n,1 — p)
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Further properties of Poisson Processes (cont.)

From this we get that:

P(Na(t) — Ni(s ZP Ni(t) — Na(s) = kIN(t) — N(s) = n)

n=k

- P(N(t) = N(s) = n)

nz_;{( ) )k A= 8)" —x-s)

n!

(AP( 3)) o Mp(t=9) M1 =p)(t=9)]"" __\a_pyt-s)
Z (n—k)! ©
_ ()‘p(t — S)) e—Ap(t—s)
k!
That is, Ny(t) — Ni(s) ~ Po(Ap(t — s)).
Similarly, No(t) — Na(s) ~ Po(A(1 — p)(t — s)).
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——
Further properties of Poisson Processes (cont.)

Proposition

{Ny(t) : t > 0} and {Nx(t) : t > 0} are both Poisson processes having rates
Ap and \(1 — p) respectively, and the two processes are independent.

PROOF: Since N(0) = 0, it follows that N;(0) =0, i = 1,2 as well.

Let (s, 1] and (sz, 2] be disjoint. Since {N(t) : t > 0} has independent
increments, we have forj = 1,2:

P(N,’(tg) — N,‘(Sz) = k|N,‘(t1) — N,‘(S1) = é)

P(N,’(fg) — N,‘(Sg) = k|N(t2) — N(SQ) =n, N,‘(t1) — N,‘(S1) = f)

N(t) — N(s2) = n|Ni(t)) — Ni(s1) = £)

(¢ = I1e

P(Ni(tz) — Ni(s2) = kIN(t2) — N(s2) = n) - P(N(&2) — N(s2) = n)

3>
Il
>

= P(N,’(tz) — N,'(Sz) = k)



Further properties of Poisson Processes (cont.)

Hence, {Ni(t) : t > 0} have independent increments, i = 1,2.
Moreover, we have:
P(N;(h) = 1) = P(N;(h) = 1IN(h) = 1)P(N(h) = 1)
+ P(Ny(h) = 1|N(h) > 2)P(N(h) > 2)
= p(Ah+ o(h)) + o(h)
= Aph+ o(h)
and:

P(Ni(h) = 2) < P(N(h) > 2) = o(h).

By similar arguments we get that:
P(Nz(h) =1) = A(1 — p)h + o(h)
P(Na(h) > 2) = o(h).
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Further properties of Poisson Processes (cont.)

To show that {N;(t) : t > 0} and {Nx(t) : t > 0} are independent we let s < t,
and consider:

PI(N:() = Ni(s) = k) N (Na(t) — Na(s) = 0)]

= P[(N;(t) — Ni(s) = k) N (N(t) — N(s) = k + 0)]

_ k+e
= <k:£>pk(1 —p) - [)‘((tk +S£!+ (D!

(Ap(t — s))* o Mlt=s) . (A1 = p)(t—9))" o~ M1-p)(t-5)
k! 4

= P(Ns(t) = Na(s) = k) - P(Na(t) — Na(s) = £)

Hence, we conclude that (N;(t) — Ni(s)) and (Na(t) — N2(s)) are independent
for all s < t, implying that {N;(t) : t > 0} and {Nx(t) : t > 0} are independent.
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I
Example 5.14

If immigrants to area A arrive at a Poisson rate of A = 10 per week, and if
each immigrant is of English descent with probability p = 5. What is the
probability that no people of English descent will emigrate to area A during
the month of February?

SOLUTION: By the previous proposition it follows that the number of
Englishmen emigrating to area A during the month of February is Poisson
distributed with mean:

A - number of weeks in February - p=10-4- = 1.
Hence, we get:
P(no people of English descent in February)

0
= 7(10043) e 9% = 0.0357
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I
Example 5.15

We consider a Poisson process {N(t) : t > 0} with rate A where each event
represents an offer. We introduce:

Xi = The size of the ithoffer, ,i=1,2,...

We assume that Xi, Xo, ... are non-negative, independent and identically
distributed random variables with density f(x). We assume that f(x) > 0 for
all x > 0 and introduce:

F(x)=P(X;>x), x>0.

POLICY: Accept the first offer greater than some chosen number y, and
define:

N, (t) = The number of offers greater than y in (0,¢], t>0.

Then {N,(t) : t > 0} is a Poisson process with rate AF(y).
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Example 5.15 (cont.)
If T, is the time until the first offer which is greater than y, then:
T,V ~ exp()\l_-'(y)),

and we get:

E[Ty] = )\%(}/)

The accepted offer is denoted by X. Thus, we know that X > y. Moreover,
we must pay a waiting cost proportional to the waiting time T, given by cT,,.

R(y) = Net return of the deal = X — cT,.

We then have:

E1AW)] = EXIX > ]~ cElT) = [ xpiSar— s
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——
Example 5.15 (cont.)
Thus, we may write:
J,” xf(x)dx —c/A
F(y)

In order to find the value of y which maximizes E[R(y)] we compute the
derivative, and note that:

E[R(y)] =

d
o ElAmI =0

if and only if:

FO) - (i) - (1)) [ /y

(oo}

c
xf(x)dx — X} =0
or equivalently, since we have assumed that f(y) > 0 for all y > 0:
[/ xf(x)dx — E} =F(y)y = / yf(x)dx
y A y



——
Example 5.15 (cont.)

The equation:

[/yoo xf(x)dx — ﬂ = /yDo yf(x)dx

can alternatively be written as:
| = yireoe=S
y A

We denote the left-hand side of this equation by ¢(y). Since we have
assumed that f(x) > 0 for all x > 0, ¢ is a strictly decreasing function of y,
and we have:

60) = [ (x-0)f(dk = EX, o) =0,

Thus, assuming that E[X] > ¢/, there exists a unique solution.
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——
Example 5.15 (cont.)

Assume more specifically that:

’
f(x) = ;e‘x/“, x>0.

Thus, F(x) = e */#, E[X] = u, and we have:

o(y) = /ym(x — y)f(x)dx = /yoo(x - y)ie—x/udx

We then substitute u = (x — y), and du = dx, and get:

¢(y) — / u- le_(U‘H’)/Hdu
0 12

— e_y/lit/'lOO u- J'e_u/#(ﬂJ::[Le_y/#.
0 H
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——
Example 5.15 (cont.)

Hence, the equation ¢(y) = ¢/ becomes:

—y/n — c
ne \
or equivalently:
c
_ = In(—=
y/u=In(s u)
Thus, the optimal y-value, which we denote by y* is given by:

s _uin(Ey) = N
NOTE: Since we have assumed that E[X] = u > ¢/\ it follows that y* > 0.
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——
Example 5.15 (cont.)

In the general case y* satisfies:
. > . c
o) = [ - yree =S
y*

We then consider:
J7 xf(x)ax —c/x
Fy)
[/yoo(x — ) f(x)dx — ; + /OO y*f(x)dx]

* y*

E[R(y")] =

1
F(y*)
1

= Fy [P0 - S RO =y

Thus, the optimal value y* is also equal to the optimal expected net return.
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I
Order statistics

Assume that Yi, Ys,..., Y, are independent and identically distributed with
density f(y).

We then consider the corresponding order statistics obtained from
Yi, Yo, ..., Y, by ordering these variables:

Yiy <Y <+ < Y

The joint density of the order statistics is given by:
n
Yy Ye) - Yimy) = ”!Hf(}’(i)% Yay < Ye) < < Yn)-
i=1
In particular, if Y; ~ uniform(0,t), i=1,...,n, then:
n!

fYay, Y@y Yiny) = t_’;’ 0< Yy <Yo < <¥Ynm<t
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——
Order statistics (cont.)

NOTE: We observe that in the case where Y; ~ uniform(0,t),i=1,...,n, the
joint density of (Y(4),..., Y(n) is constant over the set:

Y={Way, - Ym) : 0<y1y < < ym < t}
This implies that:
n!
/J)f(}/(1),~--,}/(n))d}/(1) e dy(n) = i m(y) =1,
where m()’) denotes the volume of the set Y.

Hence, the volume of the set ) becomes:

tn
Il

m(Y)
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Order statistics (cont.)

In the special case where n = 2, the set:

Y=A{W):¥2) 0 <ymn <Yyp <t}
is a triangle with area:

Yo

Yy
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The scaled Dirichlet distribution

We recall that if (Y4, ..., Y,) ~ Dirichlet(aq, . . ., an, anst), then the joint

density of (Yi,..., Yy) is given by:

M@+ +ans1) o
Maq) - T(aprt

f(}/1,---,}/n):

for all (y1,...,yn) such that y; > 0, for all /, and >_7_, y; < 1.

We now let t > 0, and define T; = tY;, i=1,...,n. Thus, the inverse

transformation from (t,..., ) to (y1,...,¥n) is given by:

y,'ZW,'(ﬁ,...,tn):t//t, i:1,...,n

From this it follows that the partial derivatives are given by:

ov;
ot;

while all other partial derivatives are zero.
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The scaled Dirichlet distribution (cont.)

Hence, it follows that the Jacobi matrix is diagonal.

Thus, the Jacobi-determinant of the transformation is t~", and by the density
transformation formula, the joint density of Ty, ..., T, is given by:

r(a1 + - +Oén+1) t1 -1 tn 1 n t, _q _n
f(ty,... . ty) = 2y =1 0 yan 1— yanpi=1 ¢
(17 7n) r(a1).'.r(an+1) t) (t) ( ;t)

Mot 4+ nit) pay 1 —1 . —1 -,
tom ST — gyen =1 =20
Mor) Flon) BB

for all (t,...,t,) such that t; > 0, for all i, and Y"1, t; < t.

In particular, if &y = -+ = ap1 = 1, the joint density becomes:
n!
f(t,... . ty) = I
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The scaled Dirichlet distribution (cont.)

NOTE: We observe that in the case where ay = --- = a1 = 1, the joint
density of (T4,..., Ty) is constant over the set:

n
T={(t,....t):t,....t>0, > ti<t}

i=1

This implies that:
n!
[rf(a,...,tn)dﬁ.--dtn:t—n-m(T):1,

where m(7') denotes the volume of the set 7.

Hence, the volume of the set 7 becomes:

tn
o

m(T)
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The scaled Dirichlet distribution (cont.)

In the special case where n = 2, the set:
T = {(t1,t2) >0, b>0,H+b< t}
is a triangle with area:

£t
Mﬂ_EZE
ty
t
t ot
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Chapter 5.3.4 Conditional distributions of the
interarrival times and arrival times

Theorem (5.2 extended)

We consider a Poisson process {N(t) : t > 0} with rate \, and assume that

N(t) = n. Then the interarrival times Ty, ..., T, has the following conditional
joint density:

n! n
f(tto,- o N =n) = 52, b, 1 >0, doti<t
i=1

Furthermore, the arrival times Sy, ..., S, has the following conditional joint
density:
n!
f(s1,32,...,s,,|N(t):n):F, 0<s<SH <~ <85 <L
v
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Conditional distributions (cont.)

PROOF: We start out by deriving the conditional joint distribution for
Ty,..., Tpgiven that N(t) = n.

Letty,...,t, > 0besuchthat >7 , t; < t, and let h > 0 be a sufficiently small
number. Then we have:

Pty <Ti<ti+h,....t< Ty <ty+h, N(t)=n)

n

APt <Ti<ti+h.. th<Th<th+h Toq>t=> )
i=1
n
_ H[e—kt,» — e AN g A= 1)
i=1

n
— H e—>\t,'[1 _ e—>\h] . e—)\(t—zl.":1 ) — e—/\t[-l _ e—)\h]n
i=1
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Conditional distributions (cont.)

Since P(N(t) = n) = e~ *(At)"/n!, this implies that:

P(th < Ty <ti+h- ta< To <ty + hIN(t) = n)

e M1 —e M nl (1 - e—’\”>n
(=

T e MAHynl T

From this it follows that:

APt <Ti<ti+h- tn< Ty <th+hN(t) = n)

n o /1—e\"
_F.(T>
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Conditional distributions (cont.)

By using I'Hépital’s rule we get that:

1— e—)\h )\e—)\h
im ——— = lim

h—0 A\h h—0 =1

Hence, it follows that:

n! n
f(t1,t2,...,t,,|N(t):n):t—n, bty >0, ) i<t
i=1

Thus, we see that the conditional distribution of Ty, ..., T, given that N(t) = n
is a scaled Dirichlet distribution with parameters oy = - - a1 = 1, and scale
factor t.
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Conditional distributions (cont.)

In order to find the conditional distribution of Sy, ..., S, given that N(f) = n

we use that:

i
S=>_T, i=1....n
j=1

Thus, the inverse transformation from (sy,...,s,) to (4,. .., t,) is given by:

i=Vi(s,...,8n) =8 —Si—1, i=1,...,n,

where we define sy = 0. From this it follows that the partial derivatives are
given by:

oV, .
o1, i=1,....n
85, ) I ) ) )
oV, .
I~ q, i=2,....n
asl_1 b I b b b

while all other partial derivatives are zero.
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Conditional distributions (cont.)

In particular since 0V, /ds; = 0 for all j > i, we conclude that the Jacobi matrix
is triangular.

Thus, the Jacobi-determinant of the transformation is 17 = 1, and by the
density transformation formula, the the conditional joint density of Sy,..., S,
given that N(t) = nis given by:

n!
f(s1,52,...,s,,\N(t):n):F, 0<s1 <8< <5 <L
Thus, we see that the conditional joint distribution of Sy, ..., S, given that

N(t) = nis the same distribution as the joint distribution of the order statstics
corresponding to n random variables uniformly distributed on the interval
0,6) =
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Chapter 5.4 Generalizations of the Poisson Process

Definition
A counting process {N(t) : t > 0} is said to be a non-homogeneous Poisson
process with intensity function \(t), t > 0, if:
(i)  N@O)=0
(i) {N(t),t > 0} has independent increments.
(i) P(N(t+ h) — N(t) = 1) = A(t)h + o(h)
(iv)  P(N(t+h)— N(t) > 2) = o(h)

We also introduce the mean value function m(t) defined by:

m(t) = /Ot)\(u)du
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The non-homogeneous Poisson Process (cont.)

Lemma (5.3)

If{N(t),t > 0} is a non-homogeneous Poisson process with intensity function
A(t), then:

P(N(t)=0) =™ t>0.

PROOF: Let Py(t) = P(N(t) = 0). Then:
Po(t + h) = P(N(t + h) = 0)
= P(N(t) = 0N N(t + h) — N(t) = 0)
— P(N(t) = 0) - P(N(t + h) — N(t) =0) by Axiom (ii)
= Po(t)(1 — A(t)h+ o(h)) by Axiom (iii) and (iv)
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The non-homogeneous Poisson Process (cont.)
Hence, we get:

Po(t + h) — Po(t) = —A(t)hPo(t) + o(h)Po(t)
Dividing by h and letting h — 0 gives that:

g(0) = tim PP PO i r )yt +

W] = —\(t)Po(t).

Alternatively, this can be expressed as:

Po(t)
Po(t) (1

We then integrate both sides of this equation:

“ Py(s)
o Po(s)
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The non-homogeneous Poisson Process (cont.)

On the left-hand side we substitute u = Py(s) and du = Py(s)ds, and get:

/PO(O u_ /t)\(s)ds
Py(0) U 0

The integration yields that:

t
10g(Po(t)) — log(Po(0)) = /O A(s)ds
Since Po(0) = P(N(0) = 0) = 1 it follows that:

Po(t) = e~ JiA(s)ds _ e—m(t)’ m
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——
The non-homogeneous Poisson Process (cont.)

Corollary

If{N(t),t > 0} is a non-homogeneous Poisson process with intensity function
A(t), and let Ty be the time of the first event. Then we have:

P(Ty >t)=P(N(t)=0) =™ t>0.

Moreover, the density of Ty is given by:

fr,(t) = A(t)e™™D t>o0.

PROOF: The first part follows immediate from Lemma 5.3, while the second
part follows by differentiation |
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The non-homogeneous Poisson Process (cont.)

If {N(t) : t > 0} is a non-homogeneous Poisson process, and s > 0, we
define:

Ns(t) = N(s + t) — N(s).

Lemma (5.4)

If{N(t) : t > 0} is a non-homogeneous Poisson process with intensity
function \(t), then {Ns(t) : t > 0} is a non-homogeneous Poisson process
with intensity function Xs(t) = AM(s + 1), t > 0.

PROOF: Similar to the proof of the corresponding result for homogeneous
Poisson processes, i.e., Lemma 5.1. Simply replace X by A(t) [ |
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The non-homogeneous Poisson Process (cont.)
The mean value function of {Ns(t) : t > 0} is given by:
t
me(t) = / As(U)du
0
t
= / A(s+ u)du Subst.: v =s+u, dv =du.
0

= /:H)\(v)dv

=m(s+1t) —m(s)
Hence, we also have:

ms(t — 8) = m(t — s+ s) — m(s) = m(t) — m(s).
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The non-homogeneous Poisson Process (cont.)

Theorem

If{N(t),t > 0} is a non-homogeneous Poisson process with intensity function
A(t), then:

P(N(t) = n) = Me-f"<f>, t>0

>0, n=0,1,2,...
n!

PROOF: Induction with respect to n. By Lemma 5.3 the theorem holds for
n=0.

We then assume that we have shown that:
m(t))" _
PN = n) = T gm0

and consider the probability P(N(t) = n+1).
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The non-homogeneous Poisson Process (cont.)

In order to calculate this probability we condition on T;, noting that if s > f,
then obviously P(N(t) =n+1|Ty =s) =0.

P(N(t) = n+1) = /OIP(N(t) — N4 1|Ty = 8) fr. (5)ds
- /t P(N(1) = n+1|T; = s) A(s)e~ ™ ds
/ P(N(1) — N(s) = n| T; = s) \(s)e~™)ds
/ P(N(t) — N(s) = n) \(s)e~™9ds  (Indep. incr.)
- /0 P(Ns(t — s) = n) A(s)e~™) dis
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The non-homogeneous Poisson Process (cont.)

By Lemma 5.4 and the induction hypothesis it follows that:

P(Ns(t—s)=n) = (ms(tn—l_s))ne—ms(t—s)

(m(t) — m(s))" o (m(t)=m(s))
n!

By inserting this into the integral we get:
t
P(N(t)=n+1) = / P(Ns(t — s) = n) A(s)e"™)ds
0

t
_ / (m(t) _nlm(S))n e~ (MD-m(s)) \(5)e~m) gis
0 .
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The non-homogeneous Poisson Process (cont.)

Simplifying the integrand yields:

P(N(t) = n+ 1 / (m(t) = M(S))" o (mty-m(s)) )(s)e~m(5) gis

"A(s)ds

We then substitute: u = m(t) — m(s) and du = —\(s)ds, and get:

et e-m(t pmi)
P(N(t)y=n+1) = / (—uMadu = / u"du
m(t) 0

n! n!
_ e—m(t) . m(t) |+ _ (m(t))n+1 J—
n! o Nn+1 (n+ 1!
which completes the induction proof [ |
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