STK2130 - Lecture 9

A. B. Huseby

Department of Mathematics University of Oslo, Norway

Chapter 5.3.2 Definition of the Poisson Process

Definition (5.2)

The counting process $\{N(t), t \ge 0\}$ is said to be a Poisson process with rate $\lambda > 0$ if the following four axioms hold:

- (i) N(0) = 0
- (ii) $\{N(t), t \geq 0\}$ has independent increments.
- (iii) $P(N(t+h) N(t) = 1) = \lambda h + o(h)$
- (iv) $P(N(t+h) N(t) \ge 2) = o(h)$

Properties of the Poisson Process

Lemma (5.1)

Assume that $\{N(t), t \ge 0\}$ is a Poisson process with rate $\lambda > 0$. Then let s > 0, and define:

$$N_s(t) = N(s+t) - N(s)$$
, for all $t \ge 0$.

Then $\{N_s(t), t \geq 0\}$ is a Poisson process with rate λ as well.

Lemma (5.2)

If T_1 is the time of the first event of a Poisson process $\{N(t), t \ge 0\}$ with rate $\lambda > 0$, then:

$$P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t}, \quad t \ge 0.$$

That is $T_1 \sim exp(\lambda)$.

Proposition (5.4)

Let T_1, T_2, \ldots be the sequence of interarrival times of a Poisson process $\{N(t), t \geq 0\}$ with rate $\lambda > 0$. That is, T_1 is the time of the first event, and

 $T_n =$ The time between the (n-1)st and nth event, $n=2,3,\ldots$

Then T_1, T_2, \ldots are independent and identically distributed exponential random variables with rate λ .

PROOF: We have already shown that $T_1 \sim exp(\lambda)$. For T_2 we get:

$$P(T_2 > t | T_1 = s) = P(N(s+t) - N(s) = 0 | T_1 = s)$$

= $P(N(s+t) - N(s) = 0)$ by Axiom (ii)
= $P(N_s(t) = 0) = e^{-\lambda t}$ by Lemma 5.1 and Lemma 5.2.

The result follows by repeating this argument for T_3, T_4, \dots

We now introduce:

$$S_n=\sum_{i=1}^n T_i, \quad n=1,2,\ldots$$

By Proposition 5.4 S_n is a sum of independent identically distributed exponentially distributed variables. Hence it follows that:

$$S_n \sim gamma(n, \lambda), \quad n = 1, 2, \dots$$

Theorem (5.1)

Assume that $\{N(t), t \ge 0\}$ is a Poisson process with rate $\lambda > 0$. Then N(t) is a Poisson random variable with rate λt . That is:

$$P(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \quad n = 0, 1, 2, \dots$$

PROOF: By Lemma 5.2 we have:

$$P(N(t) = 0) = e^{-\lambda t} = \frac{(\lambda t)^0}{0!} e^{-\lambda t}$$

In order to determine P(N(t) = n) we condition on the event that $S_n = s$.

If s > t, we obviously have $P(N(t) = n | S_n = s) = 0$.

We then consider the case where $0 < s \le t$, and get:

$$P(N(t) = n | S_n = s) = P(T_{n+1} > t - s | S_n = s)$$

= $P(T_{n+1} > t - s)$ since T_{n+1} and S_n are independent
= $e^{-\lambda(t-s)}$.

Hence, it follows that:

$$P(N(t) = n) = \int_0^t P(N(t) = n | S_n = s) f_{S_n}(s) ds$$

$$= \int_0^t e^{-\lambda(t-s)} \cdot \frac{\lambda^n}{\Gamma(n)} s^{n-1} e^{-\lambda s} ds = \lambda^n e^{-\lambda t} \int_0^t \frac{s^{n-1}}{(n-1)!} ds$$

$$= \lambda^n e^{-\lambda t} \cdot \Big|_0^t \frac{s^n}{n!} = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \quad n = 1, 2, \dots$$

Example 5.13

Suppose that people immigrate into a territory according to a Poisson process with rate $\lambda=2$ per day.

- (a) Find the probability there are 10 arrivals in the following week (of 7 days).
- (b) Find the expected number of days until there have been 20 arrivals.

SOLUTION: (a) We recall that:

$$P(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \quad n = 1, 2, \dots$$

Hence, we get that:

$$P(N(7) = 10) = \frac{(2 \cdot 7)^{10}}{10!} e^{-2 \cdot 7}$$
$$= \frac{14^{10}}{10!} e^{-14} \approx 0.06628$$

(b) We recall that:

$$S_n = \sum_{i=1}^n T_i$$
 = The point of time of the *n*th arrival

$$\sim$$
 gamma(n, λ).

Hence, we get:

$$E[S_n] = \sum_{i=1}^n E[T_i] = \frac{n}{\lambda}$$

In particular:

$$E[S_{20}] = \frac{20}{2} = 10.$$

Chapter 5.3.3 Further properties of Poisson Processes

Consider a Poisson process $\{N(t): t \ge 0\}$ with rate λ . Each event can be classified as either a Type I event or a Type II event.

$$p = P(A \text{ given event is of type I}),$$

$$1 - p = P(A \text{ given event is of type II})$$

We then introduce:

$$N_1(t)$$
 = The number of type I events in $(0, t]$,

$$N_2(t)$$
 = The number of type II events in $(0, t]$.

NOTE:
$$N(t) = N_1(t) + N_2(t)$$
, and for $s < t$ we have:

$$(N_1(t) - N_1(s)|N(t) - N(s) = n) \sim Bin(n, p),$$

$$(N_2(t) - N_2(s)|N(t) - N(s) = n) \sim Bin(n, 1 - p)$$

From this we get that:

$$P(N_{1}(t) - N_{1}(s) = k) = \sum_{n=k}^{\infty} P(N_{1}(t) - N_{1}(s) = k | N(t) - N(s) = n)$$

$$\cdot P(N(t) - N(s) = n)$$

$$= \sum_{n=k}^{\infty} {n \choose k} p^{k} (1 - p)^{n-k} \cdot \frac{[\lambda(t-s)]^{n}}{n!} e^{-\lambda(t-s)}$$

$$= \frac{(\lambda p(t-s))^{k}}{k!} e^{-\lambda p(t-s)} \sum_{n=k}^{\infty} \frac{[\lambda(1-p)(t-s)]^{n-k}}{(n-k)!} e^{-\lambda(1-p)(t-s)}$$

$$= \frac{(\lambda p(t-s))^{k}}{k!} e^{-\lambda p(t-s)}$$

That is, $N_1(t) - N_1(s) \sim Po(\lambda p(t-s))$.

Similarly,
$$N_2(t) - N_2(s) \sim Po(\lambda(1-p)(t-s))$$
.

Proposition

 $\{N_1(t): t \ge 0\}$ and $\{N_2(t): t \ge 0\}$ are both Poisson processes having rates λp and $\lambda(1-p)$ respectively, and the two processes are independent.

PROOF: Since N(0) = 0, it follows that $N_i(0) = 0$, i = 1, 2 as well.

Let $(s_1, t_1]$ and $(s_2, t_2]$ be disjoint. Since $\{N(t) : t \ge 0\}$ has independent increments, we have for i = 1, 2:

$$\begin{split} P(N_i(t_2) - N_i(s_2) &= k | N_i(t_1) - N_i(s_1) = \ell) \\ &= \sum_{n=k}^{\infty} P(N_i(t_2) - N_i(s_2) = k | N(t_2) - N(s_2) = n, N_i(t_1) - N_i(s_1) = \ell) \\ &\cdot P(N(t_2) - N(s_2) = n | N_i(t_1) - N_i(s_1) = \ell) \\ &= \sum_{n=k}^{\infty} P(N_i(t_2) - N_i(s_2) = k | N(t_2) - N(s_2) = n) \cdot P(N(t_2) - N(s_2) = n) \end{split}$$

 $= P(N_i(t_2) - N_i(s_2) = k)$

Hence, $\{N_i(t): t \ge 0\}$ have independent increments, i = 1, 2.

Moreover, we have:

$$P(N_1(h) = 1) = P(N_1(h) = 1|N(h) = 1)P(N(h) = 1)$$

$$+ P(N_1(h) = 1|N(h) \ge 2)P(N(h) \ge 2)$$

$$= p(\lambda h + o(h)) + o(h)$$

$$= \lambda ph + o(h)$$

and:

$$P(N_1(h) \ge 2) \le P(N(h) \ge 2) = o(h).$$

By similar arguments we get that:

$$P(N_2(h) = 1) = \lambda(1 - p)h + o(h)$$

 $P(N_2(h) \ge 2) = o(h).$

To show that $\{N_1(t) : t \ge 0\}$ and $\{N_2(t) : t \ge 0\}$ are independent we let s < t, and consider:

$$\begin{split} P[(N_1(t) - N_1(s) = k) & \cap (N_2(t) - N_2(s) = \ell)] \\ &= P[(N_1(t) - N_1(s) = k) \cap (N(t) - N(s) = k + \ell)] \\ &= \binom{k + \ell}{k} p^k (1 - p)^{\ell} \cdot \frac{[\lambda(t - s)]^{k + \ell}}{(k + \ell)!} e^{-\lambda(t - s)} \\ &= \frac{(\lambda p(t - s))^k}{k!} e^{-\lambda p(t - s)} \cdot \frac{(\lambda(1 - p)(t - s))^{\ell}}{\ell!} e^{-\lambda(1 - p)(t - s)} \\ &= P(N_1(t) - N_1(s) = k) \cdot P(N_2(t) - N_2(s) = \ell) \end{split}$$

Hence, we conclude that $(N_1(t) - N_1(s))$ and $(N_2(t) - N_2(s))$ are independent for all s < t, implying that $\{N_1(t) : t \ge 0\}$ and $\{N_2(t) : t \ge 0\}$ are independent.

Example 5.14

If immigrants to area A arrive at a Poisson rate of $\lambda=10$ per week, and if each immigrant is of English descent with probability $p=\frac{1}{12}$. What is the probability that no people of English descent will emigrate to area A during the month of February?

SOLUTION: By the previous proposition it follows that the number of Englishmen emigrating to area *A* during the month of February is Poisson distributed with mean:

$$\lambda \cdot \text{number of weeks in February} \cdot p = 10 \cdot 4 \cdot \frac{1}{12} = \frac{10}{3}$$
.

Hence, we get:

P(no people of English descent in February)

$$=\frac{(10/3)^0}{0!}e^{-10/3}=0.0357$$

Example 5.15

We consider a Poisson process $\{N(t): t \ge 0\}$ with rate λ where each event represents an offer. We introduce:

$$X_i$$
 = The size of the *i*th offer, $i = 1, 2, ...$

We assume that X_1, X_2, \ldots are non-negative, independent and identically distributed random variables with density f(x). We assume that f(x) > 0 for all x > 0 and introduce:

$$\bar{F}(x) = P(X_i > x), \quad x \geq 0.$$

POLICY: Accept the first offer greater than some chosen number y, and define:

 $N_y(t)$ = The number of offers greater than y in (0, t], $t \ge 0$.

Then $\{N_y(t): t \geq 0\}$ is a Poisson process with rate $\lambda \bar{F}(y)$.

If T_y is the time until the first offer which is greater than y, then:

$$T_y \sim exp(\lambda \bar{F}(y)),$$

and we get:

$$E[T_y] = \frac{1}{\lambda \bar{F}(y)}$$

The accepted offer is denoted by X. Thus, we know that X > y. Moreover, we must pay a waiting cost proportional to the waiting time T_y given by cT_y .

$$R(y) = \text{Net return of the deal } = X - cT_y.$$

We then have:

$$E[R(y)] = E[X|X>y] - cE[T_y] = \int_y^\infty x \frac{f(x)}{\bar{F}(y)} dx - \frac{c}{\lambda \bar{F}(y)}.$$

Thus, we may write:

$$E[R(y)] = \frac{\int_y^\infty x f(x) dx - c/\lambda}{\bar{F}(y)}$$

In order to find the value of y which maximizes E[R(y)] we compute the derivative, and note that:

$$\frac{d}{dy}E[R(y)]=0$$

if and only if:

$$\bar{F}(y)\cdot(-yf(y))-(-f(y))\left[\int_{y}^{\infty}xf(x)dx-\frac{c}{\lambda}\right]=0$$

or equivalently, since we have assumed that f(y) > 0 for all $y \ge 0$:

$$\left[\int_{y}^{\infty} x f(x) dx - \frac{c}{\lambda}\right] = \bar{F}(y) y = \int_{y}^{\infty} y f(x) dx$$

The equation:

$$\left[\int_{y}^{\infty} x f(x) dx - \frac{c}{\lambda}\right] = \int_{y}^{\infty} y f(x) dx$$

can alternatively be written as:

$$\int_{y}^{\infty} (x - y) f(x) dx = \frac{c}{\lambda}$$

We denote the left-hand side of this equation by $\phi(y)$. Since we have assumed that f(x) > 0 for all $x \ge 0$, ϕ is a strictly decreasing function of y, and we have:

$$\phi(0) = \int_0^\infty (x-0)f(x)dx = E[X], \qquad \phi(\infty) = 0.$$

Thus, assuming that $E[X] > c/\lambda$, there exists a unique solution.

Assume more specifically that:

$$f(x)=\frac{1}{\mu}e^{-x/\mu}, \quad x\geq 0.$$

Thus, $\bar{F}(x) = e^{-x/\mu}$, $E[X] = \mu$, and we have:

$$\phi(y) = \int_{y}^{\infty} (x - y)f(x)dx = \int_{y}^{\infty} (x - y)\frac{1}{\mu}e^{-x/\mu}dx$$

We then substitute u = (x - y), and du = dx, and get:

$$\phi(y) = \int_0^\infty u \cdot \frac{1}{\mu} e^{-(u+y)/\mu} du$$
$$= e^{-y/\mu} \int_0^\infty u \cdot \frac{1}{\mu} e^{-u/\mu} du = \mu e^{-y/\mu}.$$

Hence, the equation $\phi(y) = c/\lambda$ becomes:

$$\mu e^{-y/\mu} = \frac{c}{\lambda}$$

or equivalently:

$$-y/\mu = \ln(\frac{c}{\lambda\mu})$$

Thus, the optimal y-value, which we denote by y^* is given by:

$$y^* = -\mu \ln(\frac{c}{\lambda \mu}) = \mu \ln(\frac{\mu}{c/\lambda})$$

NOTE: Since we have assumed that $E[X] = \mu > c/\lambda$ it follows that $y^* > 0$.

In the general case y^* satisfies:

$$\phi(y^*) = \int_{y^*}^{\infty} (x - y^*) f(x) dx = \frac{c}{\lambda}$$

We then consider:

$$E[R(y^*)] = \frac{\int_{y^*}^{\infty} x f(x) dx - c/\lambda}{\bar{F}(y^*)}$$

$$= \frac{1}{\bar{F}(y^*)} \left[\int_{y^*}^{\infty} (x - y^*) f(x) dx - \frac{c}{\lambda} + \int_{y^*}^{\infty} y^* f(x) dx \right]$$

$$= \frac{1}{\bar{F}(y^*)} \left[\phi(y^*) - \frac{c}{\lambda} + y^* \bar{F}(y^*) \right] = y^*$$

Thus, the optimal value y^* is also equal to the optimal expected net return.

Order statistics

Assume that $Y_1, Y_2, ..., Y_n$ are independent and identically distributed with density f(y).

We then consider the corresponding order statistics obtained from $Y_1, Y_2, ..., Y_n$ by ordering these variables:

$$Y_{(1)} < Y_{(2)} < \cdots < Y_{(n)}$$

The joint density of the order statistics is given by:

$$f(y_{(1)}, y_{(2)}, \dots, y_{(n)}) = n! \prod_{i=1}^{n} f(y_{(i)}), \qquad y_{(1)} < y_{(2)} < \dots < y_{(n)}.$$

In particular, if $Y_i \sim uniform(0, t)$, i = 1, ..., n, then:

$$f(y_{(1)}, y_{(2)}, \dots, y_{(n)}) = \frac{n!}{t^n}, \qquad 0 < y_{(1)} < y_{(2)} < \dots < y_{(n)} < t.$$

Order statistics (cont.)

NOTE: We observe that in the case where $Y_i \sim uniform(0, t)$, i = 1, ..., n, the joint density of $(Y_{(1)}, ..., Y_{(n)})$ is *constant* over the set:

$$\mathcal{Y} = \{ (y_{(1)}, \dots, y_{(n)}) : 0 < y_{(1)} < \dots < y_{(n)} < t \}$$

This implies that:

$$\int_{\mathcal{Y}} f(y_{(1)},\ldots,y_{(n)}) dy_{(1)} \cdots dy_{(n)} = \frac{n!}{t^n} \cdot m(\mathcal{Y}) = 1,$$

where m(y) denotes the volume of the set y.

Hence, the volume of the set \mathcal{Y} becomes:

$$m(\mathcal{Y}) = \frac{t^n}{n!}$$

Order statistics (cont.)

In the special case where n = 2, the set:

$$\mathcal{Y} = \{ (y_{(1)}, y_{(2)}) : 0 < y_{(1)} < y_{(2)} < t \}$$

is a triangle with area:

$$m(\mathcal{Y}) = \frac{t^2}{2!} = \frac{t^2}{2}$$

The scaled Dirichlet distribution

We recall that if $(Y_1, \ldots, Y_n) \sim \textit{Dirichlet}(\alpha_1, \ldots, \alpha_n, \alpha_{n+1})$, then the joint density of (Y_1, \ldots, Y_n) is given by:

$$f(y_1,\ldots,y_n)=\frac{\Gamma(\alpha_1+\cdots+\alpha_{n+1})}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_{n+1})}y_1^{\alpha_1-1}\cdots y_n^{\alpha_n-1}(1-\sum_{i=1}^n y_i)^{\alpha_{n+1}-1}$$

for all (y_1, \ldots, y_n) such that $y_i > 0$, for all i, and $\sum_{i=1}^n y_i < 1$.

We now let t > 0, and define $T_i = tY_i$, i = 1, ..., n. Thus, the inverse transformation from $(t_1, ..., t_n)$ to $(y_1, ..., y_n)$ is given by:

$$y_i = \Psi_i(t_1,\ldots,t_n) = t_i/t, \quad i = 1,\ldots,n$$

From this it follows that the partial derivatives are given by:

$$\frac{\partial \Psi_i}{\partial t_i} = t^{-1}, \quad i = 1, \dots, n.$$

while all other partial derivatives are zero.

The scaled Dirichlet distribution (cont.)

Hence, it follows that the Jacobi matrix is diagonal.

Thus, the Jacobi-determinant of the transformation is t^{-n} , and by the density transformation formula, the joint density of T_1, \ldots, T_n is given by:

$$f(t_{1},...,t_{n}) = \frac{\Gamma(\alpha_{1}+\cdots+\alpha_{n+1})}{\Gamma(\alpha_{1})\cdots\Gamma(\alpha_{n+1})} (\frac{t_{1}}{t})^{\alpha_{1}-1}\cdots(\frac{t_{n}}{t})^{\alpha_{n}-1} (1-\sum_{i=1}^{n}\frac{t_{i}}{t})^{\alpha_{n+1}-1}\cdot t^{-n}$$

$$= \frac{\Gamma(\alpha_{1}+\cdots+\alpha_{n+1})}{\Gamma(\alpha_{1})\cdots\Gamma(\alpha_{n+1})} t_{1}^{\alpha_{1}-1}\cdots t_{n}^{\alpha_{n}-1} (t-\sum_{i=1}^{n}t_{i})^{\alpha_{n+1}-1}\cdot t^{1-\sum_{i=1}^{n+1}\alpha_{i}}$$

for all (t_1, \ldots, t_n) such that $t_i > 0$, for all i, and $\sum_{i=1}^n t_i < t$.

In particular, if $\alpha_1 = \cdots = \alpha_{n+1} = 1$, the joint density becomes:

$$f(t_1,\ldots,t_n)=\frac{n!}{t^n}$$

The scaled Dirichlet distribution (cont.)

NOTE: We observe that in the case where $\alpha_1 = \cdots = \alpha_{n+1} = 1$, the joint density of (T_1, \ldots, T_n) is *constant* over the set:

$$\mathcal{T} = \{(t_1, \ldots, t_n) : t_1, \ldots, t_n > 0, \sum_{i=1}^n t_i < t\}$$

This implies that:

$$\int_{\mathcal{T}} f(t_1,\ldots,t_n) dt_1 \cdots dt_n = \frac{n!}{t^n} \cdot m(\mathcal{T}) = 1,$$

where m(T) denotes the volume of the set T.

Hence, the volume of the set \mathcal{T} becomes:

$$m(\mathcal{T}) = \frac{t^n}{n!}$$

The scaled Dirichlet distribution (cont.)

In the special case where n = 2, the set:

$$\mathcal{T} = \{(t_1, t_2) : t_1 > 0, t_2 > 0, t_1 + t_2 < t\}$$

is a triangle with area:

$$m(\mathcal{T})=\frac{t^2}{2!}=\frac{t^2}{2}$$

Chapter 5.3.4 Conditional distributions of the interarrival times and arrival times

Theorem (5.2 extended)

We consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ , and assume that N(t) = n. Then the interarrival times T_1, \ldots, T_n has the following conditional joint density:

$$f(t_1, t_2, \ldots, t_n | N(t) = n) = \frac{n!}{t^n}, \qquad t_1, \ldots, t_n > 0, \sum_{i=1}^n t_i < t.$$

Furthermore, the arrival times S_1, \ldots, S_n has the following conditional joint density:

$$f(s_1, s_2, \dots, s_n | N(t) = n) = \frac{n!}{t^n}, \qquad 0 < s_1 < s_2 < \dots < s_n < t.$$

PROOF: We start out by deriving the conditional joint distribution for T_1, \ldots, T_n given that N(t) = n.

Let $t_1, \ldots, t_n > 0$ be such that $\sum_{i=1}^n t_i < t$, and let h > 0 be a sufficiently small number. Then we have:

$$\begin{split} P(t_1 < T_1 < t_1 + h, \dots, t_n < T_n < t_n + h, \ N(t) = n) \\ &\approx P(t_1 < T_1 < t_1 + h, \dots, t_n < T_n < t_n + h, \ T_{n+1} > t - \sum_{i=1}^n t_i) \\ &= \prod_{i=1}^n [e^{-\lambda t_i} - e^{-\lambda (t_i + h)}] \cdot e^{-\lambda (t - \sum_{i=1}^n t_i)} \\ &= \prod_{i=1}^n e^{-\lambda t_i} [1 - e^{-\lambda h}] \cdot e^{-\lambda (t - \sum_{i=1}^n t_i)} = e^{-\lambda t} [1 - e^{-\lambda h}]^n \end{split}$$

Since $P(N(t) = n) = e^{-\lambda t} (\lambda t)^n / n!$, this implies that:

$$P(t_1 < T_1 \le t_1 + h, \dots, t_n < T_n \le t_n + h | N(t) = n)$$

$$= \frac{e^{-\lambda t} [1 - e^{-\lambda h}]^n}{e^{-\lambda t} (\lambda t)^n / n!} = \frac{n!}{t^n} \cdot \left(\frac{1 - e^{-\lambda h}}{\lambda}\right)^n$$

From this it follows that:

$$\frac{1}{h^n}P(t_1 < T_1 \le t_1 + h, \cdots, t_n < T_n \le t_n + h|N(t) = n)$$

$$= \frac{n!}{t^n} \cdot \left(\frac{1 - e^{-\lambda h}}{\lambda h}\right)^n$$

By using l'Hôpital's rule we get that:

$$\lim_{h\to 0}\frac{1-e^{-\lambda h}}{\lambda h}=\lim_{h\to 0}\frac{\lambda e^{-\lambda h}}{\lambda}=1$$

Hence, it follows that:

$$f(t_1, t_2, \ldots, t_n | N(t) = n) = \frac{n!}{t^n}, \qquad t_1, \ldots, t_n > 0, \sum_{i=1}^n t_i < t$$

Thus, we see that the conditional distribution of T_1, \ldots, T_n given that N(t) = n is a *scaled Dirichlet distribution* with parameters $\alpha_1 = \cdots + \alpha_{n+1} = 1$, and scale factor t.

In order to find the conditional distribution of S_1, \ldots, S_n given that N(t) = n, we use that:

$$S_i = \sum_{j=1}^i T_j, \quad i = 1, \ldots, n.$$

Thus, the inverse transformation from (s_1, \ldots, s_n) to (t_1, \ldots, t_n) is given by:

$$t_i = \Psi_i(s_1,\ldots,s_n) = s_i - s_{i-1}, \quad i = 1,\ldots,n,$$

where we define $s_0 = 0$. From this it follows that the partial derivatives are given by:

$$\frac{\partial \Psi_i}{\partial s_i} = 1, \quad i = 1, \ldots, n,$$

$$\frac{\partial \Psi_i}{\partial s_{i-1}} = -1, \quad i = 2, \dots, n,$$

while all other partial derivatives are zero.

In particular since $\partial \Psi_i/\partial s_j=0$ for all j>i, we conclude that the Jacobi matrix is *triangular*.

Thus, the Jacobi-determinant of the transformation is $1^n = 1$, and by the density transformation formula, the the conditional joint density of S_1, \ldots, S_n given that N(t) = n is given by:

$$f(s_1, s_2, ..., s_n | N(t) = n) = \frac{n!}{t^n}, \qquad 0 < s_1 < s_2 < \cdots < s_n < t.$$

Thus, we see that the conditional joint distribution of S_1, \ldots, S_n given that N(t) = n is the same distribution as the joint distribution of the order statistics corresponding to n random variables uniformly distributed on the interval (0,t)

Chapter 5.4 Generalizations of the Poisson Process

Definition

A counting process $\{N(t): t \geq 0\}$ is said to be a non-homogeneous Poisson process with intensity function $\lambda(t)$, $t \geq 0$, if:

- (i) N(0) = 0
- (ii) $\{N(t), t \geq 0\}$ has independent increments.

(iii)
$$P(N(t+h) - N(t) = 1) = \lambda(t)h + o(h)$$

(iv)
$$P(N(t+h) - N(t) \ge 2) = o(h)$$

We also introduce the mean value function m(t) defined by:

$$m(t) = \int_0^t \lambda(u) du$$

Lemma (5.3)

If $\{N(t), t \ge 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then:

$$P(N(t) = 0) = e^{-m(t)}, t \ge 0.$$

PROOF: Let $P_0(t) = P(N(t) = 0)$. Then:

$$P_0(t+h) = P(N(t+h) = 0)$$

= $P(N(t) = 0 \cap N(t+h) - N(t) = 0)$
= $P(N(t) = 0) \cdot P(N(t+h) - N(t) = 0)$ by Axiom (ii)
= $P_0(t)(1 - \lambda(t)h + o(h))$ by Axiom (iii) and (iv)

Hence, we get:

$$P_0(t+h) - P_0(t) = -\lambda(t)hP_0(t) + o(h)P_0(t)$$

Dividing by *h* and letting $h \rightarrow 0$ gives that:

$$P_0'(t) = \lim_{h \to 0} \frac{P_0(t+h) - P_0(t)}{h} = \lim_{h \to 0} [-\lambda(t)P_0(t) + \frac{o(h)P_0(t)}{h}] = -\lambda(t)P_0(t).$$

Alternatively, this can be expressed as:

$$\frac{P_0'(t)}{P_0(t)} = -\lambda(t)$$

We then integrate both sides of this equation:

$$\int_0^t \frac{P_0'(s)}{P_0(s)} ds = -\int_0^t \lambda(s) ds$$

On the left-hand side we substitute $u = P_0(s)$ and $du = P'_0(s)ds$, and get:

$$\int_{P_0(0)}^{P_0(t)} \frac{du}{u} = -\int_0^t \lambda(s) ds$$

The integration yields that:

$$\log(P_0(t)) - \log(P_0(0)) = -\int_0^t \lambda(s)ds$$

Since $P_0(0) = P(N(0) = 0) = 1$ it follows that:

$$P_0(t) = e^{-\int_0^t \lambda(s)ds} = e^{-m(t)},$$

Corollary

If $\{N(t), t \ge 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, and let T_1 be the time of the first event. Then we have:

$$P(T_1 > t) = P(N(t) = 0) = e^{-m(t)}, \quad t \ge 0.$$

Moreover, the density of T_1 is given by:

$$f_{\mathcal{T}_1}(t) = \lambda(t)e^{-m(t)}, \quad t \geq 0.$$

PROOF: The first part follows immediate from Lemma 5.3, while the second part follows by differentiation

If $\{N(t): t \ge 0\}$ is a non-homogeneous Poisson process, and s > 0, we define:

$$N_s(t) = N(s+t) - N(s).$$

Lemma (5.4)

If $\{N(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then $\{N_s(t): t \geq 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda_s(t) = \lambda(s+t)$, $t \geq 0$.

PROOF: Similar to the proof of the corresponding result for homogeneous Poisson processes, i.e., Lemma 5.1. Simply replace λ by $\lambda(t)$

The mean value function of $\{N_s(t): t \ge 0\}$ is given by:

$$m_s(t) = \int_0^t \lambda_s(u) du$$

$$= \int_0^t \lambda(s+u) du \qquad \text{Subst.: } v = s+u, \, dv = du.$$

$$= \int_s^{s+t} \lambda(v) dv$$

$$= m(s+t) - m(s)$$

Hence, we also have:

$$m_s(t-s) = m(t-s+s) - m(s) = m(t) - m(s).$$

Theorem

If $\{N(t), t \ge 0\}$ is a non-homogeneous Poisson process with intensity function $\lambda(t)$, then:

$$P(N(t) = n) = \frac{(m(t))^n}{n!} e^{-m(t)}, \quad t \ge 0, \quad n = 0, 1, 2, ...$$

PROOF: Induction with respect to n. By Lemma 5.3 the theorem holds for n = 0.

We then assume that we have shown that:

$$P(N(t) = n) = \frac{(m(t))^n}{n!} e^{-m(t)}, \quad t \ge 0,$$

and consider the probability P(N(t) = n + 1).

In order to calculate this probability we condition on T_1 , noting that if s > t, then obviously $P(N(t) = n + 1 | T_1 = s) = 0$.

$$P(N(t) = n + 1) = \int_0^t P(N(t) = n + 1 | T_1 = s) f_{T_1}(s) ds$$

$$= \int_0^t P(N(t) = n + 1 | T_1 = s) \lambda(s) e^{-m(s)} ds$$

$$= \int_0^t P(N(t) - N(s) = n | T_1 = s) \lambda(s) e^{-m(s)} ds$$

$$= \int_0^t P(N(t) - N(s) = n) \lambda(s) e^{-m(s)} ds \qquad \text{(Indep. incr.)}$$

$$= \int_0^t P(N_s(t - s) = n) \lambda(s) e^{-m(s)} ds$$

By Lemma 5.4 and the induction hypothesis it follows that:

$$P(N_s(t-s) = n) = \frac{(m_s(t-s))^n}{n!} e^{-m_s(t-s)}$$
$$= \frac{(m(t) - m(s))^n}{n!} e^{-(m(t) - m(s))}$$

By inserting this into the integral we get:

$$P(N(t) = n + 1) = \int_0^t P(N_s(t - s) = n) \, \lambda(s) e^{-m(s)} ds$$
$$= \int_0^t \frac{(m(t) - m(s))^n}{n!} e^{-(m(t) - m(s))} \, \lambda(s) e^{-m(s)} ds$$

Simplifying the integrand yields:

$$P(N(t) = n + 1) = \int_0^t \frac{(m(t) - m(s))^n}{n!} e^{-(m(t) - m(s))} \lambda(s) e^{-m(s)} ds$$
$$= \frac{e^{-m(t)}}{n!} \int_0^t (m(t) - m(s))^n \lambda(s) ds$$

We then substitute: u = m(t) - m(s) and $du = -\lambda(s)ds$, and get:

$$P(N(t) = n+1) = \frac{e^{-m(t)}}{n!} \int_{m(t)}^{0} (-u^n) du = \frac{e^{-m(t)}}{n!} \int_{0}^{m(t)} u^n du$$
$$= \frac{e^{-m(t)}}{n!} \cdot \Big|_{0}^{m(t)} \frac{u^{n+1}}{n+1} = \frac{(m(t))^{n+1}}{(n+1)!} e^{-m(t)}$$

which completes the induction proof

