Solution to Mandatory Assignment

Problem 1 A Markov chain $X_{0}, X_{1}, X_{2}, \ldots$ with state space $S=\{0,1,2,3,4\}$
is defined by the transition probability matrix

$$
P:=\left(\begin{array}{ccccc}
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

a) The chain has three classes, $C_{0}=\{0,1\}, C_{1}=\{2,3\}, C_{2}=\{4\}$.

For each of these, discuss whether the class is recurrent or transient

The state diagram of the Markov chain is as follows:

- State 4 is absorbing \Rightarrow the class $C_{2}=\{4\}$ is recurrent.
- The chain stays in the class $C_{1}=\{2,3\}$ whenever reaches it and cannot escape. The probability of returning to any state in C_{1} given that the chain starts in C_{1} is $1 \Rightarrow C_{1}$ is recurrent.
- If the chain leaves $C_{0}=\{0,1\}$ (this happens with
positive probability), then it will never return to C. with probability $1 \Rightarrow C_{0}$ is transient.

Let T be the time until the chain enters C_{1} or C_{2} and define

$$
\mu_{i}:=\mathbb{E}\left[T \mid x_{0}=i\right], \text { for } \quad i \in C_{0}
$$

b) Explain why

$$
\begin{align*}
& \mu_{0}=\left(\mu_{0}+1\right) \frac{1}{5}+\left(\mu_{1}+1\right) \frac{1}{5}+\frac{3}{5}, \tag{1}\\
& \mu_{1}=\left(\mu_{0}+1\right) \frac{2}{5}+\left(\mu_{1}+1\right) \frac{1}{5}+\frac{2}{5} . \tag{2}
\end{align*}
$$

Solve the equations (1) and (2) to obtain μ_{0} and μ_{1}.

By the law of total expectation,

$$
\begin{equation*}
\mathbb{E}\left[T \mid x_{0}=i\right]=\sum_{j=0}^{4} \mathbb{E}\left[T \mid x_{0}=i, x_{1}=j\right] \cdot \mathbb{P}\left(x_{1}=j \mid x_{0}=i\right) . \tag{3}
\end{equation*}
$$

Moreover, by the definition of T,

$$
\begin{aligned}
& \mathbb{E}\left[T \mid x_{0}=0, x_{1}=0\right]=\mu_{0}+1, \\
& \mathbb{E}\left[T \mid x_{0}=0, x_{1}=1\right]=\mu_{1}+1, \\
& \mathbb{E}\left[T \mid x_{0}=1, x_{1}=0\right]=\mu_{0}+1, \\
& \mathbb{E}\left[T \mid x_{0}=1, x_{1}=1\right]=\mu_{1}+1, \\
& \mathbb{E}\left[T \mid x_{0}=0, x_{1}=j\right]=1, \quad j=2,3,4, \\
& \mathbb{E}\left[T \mid x_{0}=1, x_{1}=j\right]=1, \quad j=2,3,4 .
\end{aligned}
$$

Plugging these expressions to (3), we immediately get (1) and (2).
Next, let us solve (1)-(2).

$$
\begin{aligned}
&\left\{\begin{array}{l}
\mu_{0}= \\
\mu_{1}
\end{array}=\left(\mu_{0}+1\right) \frac{1}{5}+\left(\mu_{0}+1\right) \frac{2}{5}+\left(\mu_{1}+1\right) \frac{1}{5}+\frac{3}{5}\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ 5 \mu _ { 0 } = \mu _ { 0 } \frac { 1 } { 5 } + \frac { 2 } { 5 } } \\
{ 2 \mu _ { 0 } + \mu _ { 1 } + 5 } \\
{ 5 \mu _ { 0 } = 4 \mu _ { 1 } = 2 \mu _ { 1 } + 5 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \mu _ { 0 } + \mu _ { 1 } + 5 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ \mu _ { 1 } + 5 = 8 \mu _ { 1 } - 1 0 } \\
{ \mu _ { 0 } = \frac { \mu _ { 1 } + 5 } { 4 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mu_{1}=\frac{15}{7} \\
\mu_{0}=\frac{25}{14}
\end{array}\right.\right.\right.\right.
\end{aligned}
$$

Let 9_{i} be the probability that the chain ends up in state 4 given that $x_{0}=i, \quad i \in C_{0}$.
C) Find and explain equations for obtaining q_{0} and q_{1}, and solve these equations.

Denote N - the first moment of reaching state 4. Then

$$
\begin{aligned}
q_{0} & =\mathbb{P}\left(N<\infty \mid x_{0}=0\right)=\sum_{i=0}^{4} \mathbb{P}\left(N<\infty \mid x_{0}=0, x_{1}=i\right) \mathbb{P}\left(x_{1}=i \mid x_{0}=0\right) \\
& =\sum_{i=0}^{4} q_{i} \mathbb{P}\left(x_{1}=i \mid x_{0}=0\right)=\left[q_{i}=0, i=2,3 ; q_{4}=1\right] \\
& =9_{0} \frac{1}{5}+q_{1} \cdot \frac{1}{5}+\frac{1}{5} .
\end{aligned}
$$

Similarly, $\quad q_{1}=q_{0} \cdot \frac{2}{5}+q_{1} \cdot \frac{1}{5}+\frac{1}{5}$. Thus

$$
\begin{aligned}
\left\{\begin{array}{l}
q_{0}=\frac{1}{5} q_{0}+\frac{1}{5} q_{1}+\frac{1}{5} \\
q_{1}=\frac{2}{5} q_{0}+\frac{1}{5} q_{1}+\frac{1}{5}
\end{array}\right. & \Rightarrow\left\{\begin{array} { l }
{ 4 q _ { 0 } = q _ { 1 } + 1 } \\
{ 4 q _ { 1 } = 2 q _ { 0 } + 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
q_{1}=4 q_{0}-1 \\
16 q_{0}-4=2 q_{0}+1
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ q _ { 1 } = 4 q _ { 0 } - 1 } \\
{ 1 4 q _ { 0 } = 5 }
\end{array} \Rightarrow \left\{\begin{array}{l}
q_{1}=\frac{3}{7} \\
q_{0}=\frac{5}{14}
\end{array}\right.\right.
\end{aligned}
$$

Let $S_{i . j}$ denote the expected number of visits to state j given that $X_{0}=i, \quad i, j \in C_{0}$.
d) Find and explain the equations for obtaining $s_{0,0}, s_{0,1}, s_{1,0}, s_{1,1}$ and solve these equations.

States $\{0,1\}$ form the class of all transient states. In Lecture 10 it was proved that the matrix

$$
S=\left(\begin{array}{ll}
S_{0,0} & S_{0,1} \\
S_{1,0} & S_{1,1}
\end{array}\right)
$$

can be found as

$$
S=\left(I-P_{T}\right)^{-1}
$$

where I is the identity matrix and P_{T} is the matrix that contains transition probabilities $P_{i, j}, i, j \in C_{0}$.

$$
\begin{aligned}
& S=\left(I-P_{T}\right)^{-1}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right)\right)^{-1}=\left(\begin{array}{cc}
\frac{4}{5} & -\frac{1}{5} \\
-\frac{2}{5} & \frac{4}{5}
\end{array}\right)^{-1} \\
& \left(\begin{array}{cc|cc}
\frac{4}{5} & -\frac{1}{5} & 1 & 0 \\
-\frac{2}{5} & \frac{4}{5} & 0 & 1
\end{array}\right) \sim\left(\begin{array}{cc|cc}
\frac{4}{5} & -\frac{1}{5} & 1 & 0 \\
0 & \frac{7}{10} & \frac{1}{2} & 1
\end{array}\right) \sim\left(\begin{array}{cc|cc}
\frac{4}{5} & -\frac{1}{5} & 1 & 0 \\
0 & 1 & \frac{5}{7} & \frac{10}{7}
\end{array}\right) \sim \\
& \sim\left(\begin{array}{cc|cc}
\frac{4}{5} & 0 & \frac{8}{7} & \frac{2}{7} \\
0 & 1 & \frac{5}{7} & \frac{10}{7}
\end{array}\right) \sim\left(\begin{array}{cc|cc}
1 & 0 & \frac{10}{7} & \frac{5}{14} \\
0 & 1 & \frac{5}{7} & \frac{10}{7}
\end{array}\right)> \\
& \text { ide. }
\end{aligned}
$$

$$
S=\left(\begin{array}{ll}
s_{0,0} & s_{0,1} \\
s_{1,0} & s_{1,1}
\end{array}\right)=\left(\begin{array}{cc}
\frac{10}{7} & \frac{5}{14} \\
\frac{5}{7} & \frac{10}{7}
\end{array}\right)
$$

Problem 2 Suppose that every second a router accepts letters from some alphabet $\mathcal{A}=\left\{a_{1}, \ldots, a_{m}\right\}$ with positive probabilities p_{1}, \ldots, p_{m} respectively. The letters come independently. A letter a_{k} at the moment n is coded by a number $x_{k}(n) \in\{1, \ldots, m\}$ (different letters are coded by different codes).

The coding algorithm is built in the following way. Assume that at the moment n the letter a_{k} arrives. Then $x_{k}(n+1)=1$. Letters encoded at the moment n by numbers $1, \ldots, x_{k}(n)-1$ are re-encoded by numbers $2, \ldots, x_{k}(n)$ respectively. The codes of other letters are left unchanged. We also assume that $x_{k}(0)=k, k=1, \ldots, m$.
a) Define $X_{n}:=\left(x_{1}(n), \ldots, x_{m}(n)\right)$. Prove that it is an ergodic Markov chain (i.e. irreducible, aperiodic and positive recurrent).

First, note that the state of $\left\{x_{n}\right\}$ at the time $n+1$ depends exclusively on its state at the moment n (and the letter arriving at time n which is independent of the past) Whence $\left\{x_{n}\right\}$ is Markovian. The state space ρ consists of all permutations of numbers $1,2, \ldots, m, \quad\left|\sum\right|=m$!

Now, let us argue that $\left\{x_{n}\right\}$ is ergodic.
$\left\{x_{n}\right\}$ is irreducible. Indeed, let us take two arbitrary states of $\left\{X_{n}\right\}$ (i.e. two arbitrary permutations of $1,2, \ldots, m$)

$$
S=\left(S_{1}, S_{2}, \ldots, S_{m}\right) \quad \text { and } \quad \tilde{S}=\left(\tilde{S}_{1}, \tilde{S}_{2}, \ldots, \tilde{S}_{m}\right)
$$

and assume that $X_{n}=S$. Assume that k_{1} is such that $\tilde{S}_{k_{1}}=m$, k_{2} is such that $\tilde{S}_{k_{2}}=m-1, \ldots, k_{m}$ is such that $\tilde{S}_{k_{m}}=1$. Then, if

- letter $a_{k_{1}}$ arrives at moment n,
- letter $a_{k 2}$ arrives at moment $n+1$,
- letter $a_{k 2}$ arrives at moment $n+2$,
- letter $a_{k m}$ arrives at moment $n+(m-1)$.

This happens with probability $\prod_{k=1}^{m} p_{k}>0$ and in this case $\quad x_{n+m}=\tilde{s}$. Thus

$$
\mathbb{P}\left(x_{n+m}=\tilde{s} \mid x_{n}=s\right) \geqslant \prod_{k=1}^{m} p_{k}>0
$$

and the chain is irreducible.
\{ $\left.x_{n}\right\}$ is aperiodic. Indeed, for any permutation

$$
\begin{aligned}
& s \in S, \quad s=\left(s_{1}, \ldots, s_{m}\right) \\
& \quad \mathbb{P}\left(x_{n+1}=s \mid x_{n}=s\right)=P l_{1}>0,
\end{aligned}
$$

where l_{1} is such that $S_{P_{1}}=1$.
Whence $\left\{X_{n}\right\}$ cannot be periodic \Rightarrow it is aperiodic. $\left\{x_{n}\right\}$ is positive recurrent. That follows from the fact that $\left\{x_{n}\right\}$ is irreducible and has finite state space.
b) Find the probability that a letter a_{1} at the moment $n>1$ is encoded by 1 .

Letter a_{1} is encoded by 1 at the moment $n>1$ if and only if the letter a_{1} arrived at the moment $n-1$. This happens with probability p_{1}. Whence

$$
\mathbb{P}\left(x_{1}(n)=1\right)=p_{1} .
$$

C) Find the limit

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(x_{1}(n)=1, x_{2}(n)=2\right)
$$

First of all, $\left\{x_{n}\right\}$ is ergodic \Longrightarrow this limit exists. Next,

$$
\begin{aligned}
& \mathbb{P}\left(x_{1}(n+1)=1, x_{2}(n+1)=2\right)= \mathbb{P}\left(x_{1}(n)=1, x_{2}(n)=2, a_{1} \text { arrives at moment } n\right)+ \\
&+\mathbb{P}\left(x_{2}(n)=1, a_{1} \text { arrives at moment } n\right)= \\
&=\mathbb{P}\left(x_{1}(n)=1, x_{2}(n)=2\right) \mathbb{P}\left(a_{1} \text { arrives at moment } n\right)+ \\
&+\mathbb{P}\left(x_{2}(n)=1\right) \mathbb{P}\left(a_{1} \text { arrives at moment } n\right)
\end{aligned}
$$

Thus, if we denote $r_{n}:=\mathbb{P}\left(x_{1}(n)=1, x_{2}(n)=2\right)$, we have that

$$
r_{n+1}=r_{n} p_{1}+p_{1} p_{2}
$$

Moving $n \rightarrow \infty$, we obtain:

$$
r=r p_{1}+p_{1} p_{2} \Longrightarrow r=\frac{p_{1} p_{2}}{1-p_{1}}
$$

Problem 3 Give an example of a Marlon chain $\left\{x_{n}\right\}$ and a subset $A \subset \Phi^{6}$ for which the sequence

$$
\left\{Y_{n}=\prod_{\left\{x_{n} \in A\right\}}\right\}
$$

a) is a Markov chain;

Let $\left\{X_{n}\right\}$ be a Markov chain with state space $\{0,1,2,3\}$ and the transition probability matrix,

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

and initial distribution $\mathbb{P}\left(x_{0}=i\right)=\frac{1}{4}, i=0,1,2,3$.
Let $\mathcal{A}=\{0,2\}$. Then

- either $Y_{2 n}=0, Y_{2 n+1}=1$ for all $n \geqslant 0$ (with probability $\frac{1}{2}$),
- or $Y_{2 n}=1, Y_{2 n+1}=0$ for all $n \geqslant 0$ (with probability $\frac{1}{2}$),
i.e. $\left\{Y_{n}, n \geq 0\right\}$ is a Markov chain with transition probability matrix

$$
Q=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and initial distribution $\mathbb{P}\left(Y_{0}=j\right)=\frac{1}{2}, j=0,1$.
b) is not a Markov chain.Let $\left\{x_{n}\right\}$ be from the item $\left.a\right)$, but $\mathcal{A}=\{0,1\}$. Then obviously

$$
\mathbb{P}\left(Y_{2}=1 \mid Y_{1}=0, Y_{0}=0\right)=1
$$

but

$$
\left.\mathbb{P}\left(Y_{2}=1 \mid Y_{1}=0\right)=\frac{1}{2}\right\rangle
$$

i.e. the Markov property is violated.

