UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK2130 - Modelling by stochastic processes

Day of examination: Wednesday May 27th 2020.
Examination hours: May 27th, 14.30-June 4th, 14.30
This problem set consists of 16 pages.
Appendices:
Permitted aids: All available notes and books.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Figure 1: Diagram representing the Markov chain in Problem 1a

Consider a discrete-time Markov chain $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{1,2,3,4\}$, and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
p & 0 & 0 & q \\
q & p & 0 & 0 \\
0 & 0 & p & q \\
0 & 0 & q & p
\end{array}\right]
$$

where $0<p<1,0<q<1$ and $p+q=1$.
a) Describe the Markov chain by a diagram.

SOLUTION: See Figure 1.
b) The chain has three classes, $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\{2\}$ and $\mathcal{C}_{3}=\{3,4\}$. For each of these classes discuss whether the class is transient or recurrent.

SOLUTION: We consider the probabilities:

$$
f_{i}=P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=i\right\} \mid X_{0}=i\right), \quad i \in \mathcal{X} .
$$

From the textbook we have that:

- State i is recurrent if $f_{i}=1$.
- State i is transient if $f_{i}<1$.

In this case we have:

$$
\begin{aligned}
f_{1} & =P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=1\right\} \mid X_{0}=1\right)=1-P\left(\bigcap_{r=1}^{\infty}\left\{X_{r} \neq 1\right\} \mid X_{0}=1\right) \\
& =1-P\left(X_{1}=4 \mid X_{0}=1\right)=1-q<1 . \\
f_{2} & =P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=2\right\} \mid X_{0}=2\right)=1-P\left(\bigcap_{r=1}^{\infty}\left\{X_{r} \neq 2\right\} \mid X_{0}=2\right) \\
& =1-P\left(X_{1}=1 \mid X_{0}=2\right)=1-q<1 . \\
f_{3} & =P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=3\right\} \mid X_{0}=3\right)=1-P\left(\bigcap_{r=1}^{\infty}\left\{X_{r}=4\right\} \mid X_{0}=3\right) \\
& =1-\lim _{n \rightarrow \infty} q p^{n}=1-0=1 \\
f_{4} & =P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=4\right\} \mid X_{0}=4\right)=1-P\left(\bigcap_{r=1}^{\infty}\left\{X_{r}=3\right\} \mid X_{0}=4\right) \\
& =1-\lim _{n \rightarrow \infty} q p^{n}=1-0=1
\end{aligned}
$$

Hence, we conclude that $\mathcal{C}_{1}=\{1\}, \mathcal{C}_{2}=\{2\}$ are transient, while $\mathcal{C}_{3}=\{3,4\}$ is recurrent.
c) Show that the two-step transition probability matrix is given by:

$$
\boldsymbol{P}^{(2)}=\left[\begin{array}{cccc}
p^{2} & 0 & q^{2} & 2 p q \\
2 p q & p^{2} & 0 & q^{2} \\
0 & 0 & p^{2}+q^{2} & 2 p q \\
0 & 0 & 2 p q & p^{2}+q^{2}
\end{array}\right]
$$

(Continued on page 3.)

SOLUTION: We have that:

$$
\begin{aligned}
\boldsymbol{P}^{(2)} & =\boldsymbol{P} \cdot \boldsymbol{P}=\left[\begin{array}{llll}
p & 0 & 0 & q \\
q & p & 0 & 0 \\
0 & 0 & p & q \\
0 & 0 & q & p
\end{array}\right] \cdot\left[\begin{array}{llll}
p & 0 & 0 & q \\
q & p & 0 & 0 \\
0 & 0 & p & q \\
0 & 0 & q & p
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p^{2} & 0 & q^{2} & 2 p q \\
2 p q & p^{2} & 0 & q^{2} \\
0 & 0 & p^{2}+q^{2} & 2 p q \\
0 & 0 & 2 p q & p^{2}+q^{2}
\end{array}\right]
\end{aligned}
$$

In more detail:

$$
P_{i j}^{2}=\sum_{k \in \mathcal{X}} P_{i k} \cdot P_{k j}, \quad \text { for all } i, j \in \mathcal{X} .
$$

Hence, we have:

$$
\begin{aligned}
& P_{1,1}^{2}=P_{1,1} P_{1,1}+P_{1,2} P_{2,1}+\cdots+P_{1,4} P_{4,1}=p^{2} \\
& P_{1,2}^{2}=P_{1,1} P_{1,2}+P_{1,2} P_{2,2}+\cdots+P_{1,4} P_{4,2}=0 \\
& P_{1,3}^{2}=P_{1,1} P_{1,3}+P_{1,2} P_{2,3}+\cdots+P_{1,4} P_{4,3}=q^{2} \\
& P_{1,4}^{2}=P_{1,1} P_{1,4}+P_{1,2} P_{2,4}+\cdots+P_{1,4} P_{4,4}=2 p q
\end{aligned}
$$

d) Conditioned upon the chain has entered one of the states 3 or 4 find the stationary distribution over these two states.

SOLUTION: We let:

$$
\boldsymbol{Q}=\left[\begin{array}{ll}
P_{3,3} & P_{3,4} \\
P_{4,3} & P_{4,4}
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
q & p
\end{array}\right]
$$

denote the submatrix of \boldsymbol{Q} containing the transition probabilities for the recurrent states 3 and 4 . Furthermore, we let $\boldsymbol{\pi}=\left(\pi_{3}, \pi_{4}\right)$ denote the stationary distribution over these states. Then $\boldsymbol{\pi}$ must satisfy $\pi_{3}+\pi_{4}=1$ and:

$$
\pi Q=\pi
$$

From the last set of equations we get that:

$$
p \pi_{3}+q \pi_{4}=\pi_{3}
$$

or equivalently, since $q=1-p$ that:

$$
q \pi_{4}=(1-p) \pi_{3}=q \pi_{3}
$$

Hence, we conclude that $\pi_{3}=\pi_{4}$, and since $\pi_{3}+\pi_{4}=1$ it follows that:

$$
\pi_{3}=\pi_{4}=\frac{1}{2}
$$

e) We assume that $X_{0}=1$, and let M be given by:

$$
M=\min \left\{m>0: X_{m}=4\right\}
$$

Thus, M is the number of steps until the Markov chain enters state 4 for the first time given that the chain starts out in state 1. Show that the probability distribution of M is given by:

$$
P(M=m)=p^{m-1} q, \quad m=1,2, \ldots
$$

SOLUTION: The result follows since in this case:

$$
\begin{aligned}
P(M=m) & =P\left(X_{1}=1, \ldots, X_{m-1}=1, X_{m}=4 \mid X_{0}=1\right) \\
& =\left[P_{1,1}\right]^{m-1} \cdot P_{1,4}=p^{m-1} q, \quad m=1,2, \ldots
\end{aligned}
$$

f) Find $E[M]$.

SOLUTION: We observe that M has a geometric distribution. Hence, it follows that:

$$
E[M]=\frac{1}{q} .
$$

g) In the remaining part of this problem we assume that $X_{0}=2$, and let N be given by:

$$
N=\min \left\{n>0: X_{n}=3\right\}
$$

Thus, N is the number of steps until the Markov chain enters state 3 for the first time given that the chain starts out in state 2. Find $E[N]$.

SOLUTION: We note that if $X_{0}=2$ and n is the number of steps until the Markov chain enters state 3 for the first time, the chain must have gone through the states 1 and 4 before entering 3 . Thus, we introduce the following stochastic variables:

$$
\begin{aligned}
& N_{1}=\min \left\{n>0: X_{n}=1\right\} \\
& N_{2}=\min \left\{n>0: X_{N_{1}+n}=4\right\} \\
& N_{3}=\min \left\{n>0: X_{N_{2}+n}=3\right\}
\end{aligned}
$$

Using the same arguments as we used in (e) we get that:

$$
P\left(N_{i}=n\right)=p^{n-1} q, \quad n=1,2, \ldots \quad i=1,2,3
$$

Moreover, we have that $N=N_{1}+N_{2}+N_{3}$, and so:

$$
E[N]=E\left[N_{1}\right]+E\left[N_{2}\right]+E\left[N_{3}\right]=\frac{1}{q}+\frac{1}{q}+\frac{1}{q}=\frac{3}{q}
$$

h) Find the probability distribution of N.

SOLUTION: By the Markov property, it follows that N_{1}, N_{2} and N_{3} are independent random variables. Hence, N is a sum of three independent and geometrically distributed variables. By using the formula for the negative binomial distribution it follows that N has the following distribution:

$$
P(N=n)=\binom{n-1}{2} p^{n-3} q^{3}, \quad n=3,4,5 \ldots
$$

Alternatively, we may argue in more details, and introduce:

$$
J_{i}=I\left(X_{i} \neq X_{i-1}\right), \quad i=1,2, \ldots
$$

Thus, J_{i} is one if and only if the Markov chain changes its state at the i th step and zero otherwise. For the given transition probability matrix we have:

$$
P\left(J_{i}=1\right)=q, \quad i=1,2, \ldots
$$

Moreover, by the Markov property, it follows that J_{1}, J_{2}, \ldots are independent. Hence, $\left(J_{1}+\cdots+J_{k}\right) \sim \operatorname{Bin}(k, q), k=1,2, \ldots$ We also note that $\left(J_{1}+\cdots+J_{k}\right)$ is equal to the number of state changes in the first k steps.

The event that $N=n$ is equivalent to the event that there are exactly 2 state changes (one from state 2 to state 1 , and one from state 1 to state 4) among the first $n-1$ steps, and that the third state change (from state 4 to state 3) happens at the nth step. From this it follows that:

$$
\begin{aligned}
P(N=n) & =P\left(J_{1}+\cdots+J_{n-1}=2\right) \cdot P\left(J_{n}=1\right) \\
& =\binom{n-1}{2} p^{(n-1)-2} q^{2} \cdot q \\
& =\binom{n-1}{2} p^{n-3} q^{3}, \quad n=3,4, \ldots
\end{aligned}
$$

(Continued on page 6.)

Problem 2

An urn always contains 2 balls. The balls are colored either red or blue. At each stage a ball is randomly chosen and then replaced by a new ball, which with probability 0.75 is the same color, and with probability 0.25 is the opposite color, as the ball it replaces. This is modelled by a Markov chain $\left\{X_{n}: n \geq 0\right\}$ where:
$X_{n}=$ The number of red balls after the nth selection. $\quad n=0,1,2, \ldots$
Thus, the state space of the Markov chain is $\mathcal{X}=\{0,1,2\}$.
a) Explain why the transition probability matrix of this Markov chain is:

$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0.75 & 0.25 & 0 \\
0.125 & 0.75 & 0.125 \\
0 & 0.25 & 0.75
\end{array}\right]
$$

SOLUTION: The transition probabilities are:

$$
\begin{aligned}
& P_{00}=P\{\text { Blue ball selected but not replaced }\}=1.0 \cdot 0.75=0.75 \\
& P_{01}=P\{\text { Blue ball selected and replaced by red }\}=1.0 \cdot 0.25=0.25 \\
& P_{02}=0.0 \\
& P_{10}=P\{\text { Red ball selected and replaced by blue }\}=0.5 \cdot 0.25=0.125 \\
& P_{11}=P\{\text { Any ball selected but not replaced }\}=0.75 \\
& P_{12}=P\{\text { Blue ball selected and replaced by red }\}=0.5 \cdot 0.25=0.125 \\
& P_{20}=0.0 \\
& P_{21}=P\{\text { Red ball selected and replaced by blue }\}=1.0 \cdot 0.25=0.25 \\
& P_{22}=P\{\text { Red ball selected but not replaced }\}=1.0 \cdot 0.75=0.75
\end{aligned}
$$

b) It can be calculated that:

$$
\boldsymbol{P}^{(4)} \approx\left[\begin{array}{lll}
0.4238 & 0.4688 & 0.1074 \\
0.2344 & 0.5313 & 0.2344 \\
0.1074 & 0.4688 & 0.4238
\end{array}\right]
$$

You do not need to calculate this.
Find the probability that the fifth ball selected is red given that $X_{0}=2$.

SOLUTION:

$P($ Selection 5 is red $)$

$$
\begin{aligned}
& =\sum_{i=0}^{2} P\left(\text { Selection } 5 \text { is red } \mid X_{4}=i\right) \cdot P\left(X_{4}=i \mid X_{0}=2\right) \\
& =0.00 \cdot P_{2,0}^{4}+0.50 \cdot P_{2,1}^{4}+1.00 \cdot P_{2,2}^{4} \\
& =0.50 \cdot 0.4688+0.4238=0.6582
\end{aligned}
$$

c) Find the stationary distribution for the Markov chain $\left\{X_{n}: n \geq 0\right\}$.

SOLUTION: We let $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$ denote the stationary distribution over $\mathcal{X}=\{0,1,2\}$. Then $\boldsymbol{\pi}$ must satisfy $\pi_{0}+\pi_{1}+\pi_{2}=1$ and:

$$
\pi P=\pi
$$

Using the first and the last equation, we get:

$$
\begin{aligned}
& \frac{3}{4} \pi_{0}+\frac{1}{8} \pi_{1}=\pi_{0} \\
& \frac{3}{4} \pi_{2}+\frac{1}{8} \pi_{1}=\pi_{2}
\end{aligned}
$$

This is equivalent to:

$$
\begin{aligned}
\pi_{0} & =\frac{1}{2} \pi_{1} \\
\pi_{2} & =\frac{1}{2} \pi_{1}
\end{aligned}
$$

Inserting this into the equation $\pi_{0}+\pi_{1}+\pi_{2}=1$ we get:

$$
\frac{1}{2} \pi_{1}+\pi_{1}+\frac{1}{2} \pi_{1}=2 \pi_{1}=1
$$

From this we get the stationary distribution $\pi_{0}=\frac{1}{4}, \pi_{1}=\frac{1}{2}, \pi_{2}=\frac{1}{4}$.
d) Let ρ_{n} denote the probability that the nth ball selected is red given that $X_{0}=2$. Find:

$$
\lim _{n \rightarrow \infty} \rho_{n}
$$

SOLUTION:

$$
\begin{aligned}
\rho_{n} & =P(\text { The } n \text {th selection is red }) \\
& =\sum_{i=0}^{2} P\left(\text { The } n \text {th selection is red } \mid X_{n-1}=i\right) \cdot P\left(X_{n-1}=i \mid X_{0}=2\right) \\
& =0.00 \cdot P_{2,0}^{n-1}+0.50 \cdot P_{2,1}^{n-1}+1.00 \cdot P_{2,2}^{n-1} \\
& =0.50 \cdot P_{2,1}^{n-1}+1.00 \cdot P_{2,2}^{n-1}
\end{aligned}
$$

Hence, we get:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \rho_{n} & =0.50 \cdot \lim _{n \rightarrow \infty} P_{2,1}^{n-1}+1.00 \cdot \lim _{n \rightarrow \infty} P_{2,2}^{n-1} \\
& =0.50 \cdot \pi_{1}+1.00 \cdot \pi_{2}=0.50 \cdot \frac{1}{2}+1.00 \cdot \frac{1}{4}=\frac{1}{2} .
\end{aligned}
$$

e) We now introduce:

$$
N_{j}=\min \left\{n>0: X_{n}=j\right\}, \quad j \in \mathcal{X} .
$$

Thus, N_{j} is the number of steps until the Markov chain makes a transition into state j. We then let:

$$
m_{j}=E\left[N_{j} \mid X_{0}=j\right], \quad j \in \mathcal{X}
$$

That is, m_{j} is the expected number of steps until the Markov chain returns to state j given that it starts out in state j.

Find m_{j} for all $j \in \mathcal{X}$.
SOLUTION: In the textbook (Ross (2019) page 216) we have the following result:
PROPOSITION 4.4. If a Markov chain is irreducible and recurrent, then for any initial state X_{0}, we have:

$$
\pi_{j}=1 / m_{j}, \quad \text { for all } j \in \mathcal{X}
$$

Since the Markov chain under consideration is irreducible and recurrent, it follows that:

$$
\begin{aligned}
& m_{0}=1 / \pi_{0}=1 / 0.25=4 \\
& m_{1}=1 / \pi_{1}=1 / 0.50=2 \\
& m_{2}=1 / \pi_{2}=1 / 0.25=4
\end{aligned}
$$

Problem 3

In this problem we consider a population consisting of individuals able to produce offspring of the same kind. We assume that each individual will, by the end of its lifetime, have produced r new offspring with probability p_{r}, $r=0,1,2, \ldots$, independently of the numbers produced by other individuals. We assume that $p_{0}>0$, and that $p_{r}<1$ for $r=0,1,2, \ldots$.

The number of individuals initially present, denoted by X_{0}, is called the size of the 0 -th generation. Moreover, we let:
$X_{n}=$ The population size in the nth generation, $\quad n=0,1,2, \ldots$
a) Explain why $\left\{X_{n}: n \geq 0\right\}$ is a Markov chain.

SOLUTION: Given the population size in the nth generation, i.e., X_{n}, the number of offspring produced by this generation, i.e., X_{n+1} depends only on X_{n} and not on the size of the previous generations. This follows since X_{n+1} given $X_{n}=x_{n}$ is the sum of x_{n} independent and identically distributed variables. Hence, $\left\{X_{n}: n \geq 0\right\}$ is a Markov chain.
b) Explain why state 0 is a recurrent state, and why any state $j>0$ is transient.

SOLUTION: Since $P_{00}=1$, then 0 is a recurrent state.
Since $p_{0}>0$, it follows that $P_{j 0}=p_{0}^{j}>0$. Hence, any state $j>0$ is transient.
c) In the rest of this problem we assume that $X_{0}=1$, and $E\left[X_{1}\right]=\mu$. Show that $E\left[X_{n}\right]=\mu^{n}$.

SOLUTION: We start out by introducing for $r=1, \ldots, X_{n-1}$:
$Z_{r}=$ Number of offspring from individual r in generation $(n-1)$.
By conditioning on X_{n-1} we get:

$$
\begin{aligned}
E\left[X_{n}\right] & =E\left[E\left[X_{n} \mid X_{n-1}\right]\right] \\
& =E\left[E\left[\sum_{r=1}^{X_{n-1}} Z_{r} \mid X_{n-1}\right]\right] \\
& =E\left[X_{n-1} \mu\right]=\mu E\left[X_{n-1}\right]
\end{aligned}
$$

Since we have assumed that $X_{0}=1$, it follows by induction that:

$$
E\left[X_{n}\right]=\mu^{n} .
$$

d) We then consider the probability that the population eventually dies out:

$$
\pi_{0}=\lim _{n \rightarrow \infty} P\left(X_{n}=0 \mid X_{0}=1\right)
$$

Show that π_{0} satisfies the following equation:

$$
\begin{equation*}
\pi_{0}=\sum_{r=0}^{\infty} \pi_{0}^{r} p_{r} \tag{1}
\end{equation*}
$$

SOLUTION: By conditioning on X_{1} we get:

$$
\begin{aligned}
\pi_{0} & =P(\text { The population dies out }) \\
& =\sum_{j=0}^{\infty} P\left(\text { The population dies out } \mid X_{1}=j\right) p_{j} \\
& =\sum_{j=0}^{\infty} \pi_{0}^{j} p_{j}
\end{aligned}
$$

e) In the following you may use without proof that π_{0} is the smallest positive number that satisfies (1).

Assume that $p_{0}=\frac{1}{5}, p_{1}=\frac{1}{5}, p_{2}=\frac{3}{5}$, and that $p_{r}=0$, for $r>2$.
Calculate μ and π_{0} in this case.
SOLUTION: If $p_{0}=\frac{1}{5}, p_{1}=\frac{1}{5}, p_{2}=\frac{3}{5}$, and that $p_{r}=0$, for $r>2$, we get:

$$
\begin{aligned}
\mu & =E\left[X_{1}\right]=\sum_{r=1}^{\infty} r \cdot p_{r} \\
& =1 \cdot p_{1}+2 \cdot p_{2}=1 \cdot \frac{1}{5}+2 \cdot \frac{3}{5} \\
& =\frac{1}{5}+\frac{6}{5}=\frac{7}{5} .
\end{aligned}
$$

In order to determine π_{0}, we use the fact that π_{0} is the smallest positive number that satisfies (1). In this case (1) is reduced to:

$$
\begin{aligned}
\pi_{0} & =\pi_{0}^{0} p_{0}+\pi_{0}^{1} p_{1}+\pi_{0}^{2} p_{2} \\
& =\frac{1}{5}+\frac{1}{5} \pi_{0}+\frac{3}{5} \pi_{0}^{2}
\end{aligned}
$$

This is equivalent to:

$$
3 \pi_{0}^{2}-4 \pi_{0}+1=0
$$

which has the two solutions: $\pi_{0}=\frac{1}{3}$ and $\pi_{0}=1$. Since π_{0} is the smallest positive number that satisfies (1), we get that:

$$
\pi_{0}=\frac{1}{3} .
$$

Problem 4

A system can be in three possible states denoted respectively 0,1 and 2. If the system is in state 0 , it is considered to be failed, while if the system is in state 2 , it is considered to be functioning perfectly. The state 1 represents an intermediate case where the system is functioning, but at a lower performance level than when it is in state 2 .

We model this as a continuous-time Markov chain $\{X(t): t \geq 0\}$ with state space $\mathcal{X}=\{0,1,2\}$. The system can transit from state i to state $i+1$ with rate $\mu, i=0,1$. Such a transition is called a repair. Moreover, the system can transit from state i to state $i-1$ with rate $\lambda, i=1,2$. Such a transition is called a failure. Thus, a single repair can only increase the state by 1 . Similarly, a single failure can only reduce the state by 1 . It is not possible to transit directly from state 0 to state 2 or directly from state 2 to state 0 . Finally, we assume that $\mu>0$ and $\lambda>0$.

We also introduce:

$$
P_{i j}(t)=P(X(t)=j \mid X(0)=i), \quad \text { for all } i, j \in \mathcal{X} .
$$

Moreover, for all $i, j \in \mathcal{X}$ we let:

$$
\begin{aligned}
q_{i j} & =\text { The transition rate from state } i \text { to state } j \text { if } i \neq j . \\
v_{i} & =\sum_{j \in \mathcal{X} \backslash i} q_{i j} .
\end{aligned}
$$

Finally, we let the matrix \boldsymbol{R} be given by:

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
-v_{0} & q_{0,1} & q_{0,2} \\
q_{1,0} & -v_{1} & q_{1,2} \\
q_{2,0} & q_{2,1} & -v_{2}
\end{array}\right]
$$

a) Determine the matrix \boldsymbol{R} expressed in terms of μ and λ.

SOLUTION: It follows that:

$$
\begin{aligned}
q_{i, i+1}=\mu, & i=0,1 \\
q_{i, i-1}=\lambda, & i=1,2 \\
q_{i, j}=0, & \text { for all } i, j \in \mathcal{X} \text { such that }|i-j|>1 .
\end{aligned}
$$

From this we also get that:

$$
\begin{aligned}
& v_{0}=q_{0,1}+q_{0,2}=\mu+0=\mu \\
& v_{1}=q_{1,0}+q_{1,2}=\lambda+\mu \\
& v_{2}=q_{2,0}+q_{2,1}=0+\lambda=\lambda
\end{aligned}
$$

Hence, the matrix \boldsymbol{R} is given by:

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
-\mu & \mu & 0 \\
\lambda & -(\lambda+\mu) & \mu \\
0 & \lambda & -\lambda
\end{array}\right]
$$

b) Let $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$, where:

$$
\pi_{j}=\lim _{t \rightarrow \infty} P_{i j}(t), \quad \text { for all } j \in \mathcal{X}
$$

Formulate a set of equations which can be used to determine $\boldsymbol{\pi}$, and solve these equations.

SOLUTION: We know that $\pi_{0}+\pi_{1}+\pi_{2}=1$. Furthermore, by using Kolmogorov's forward equations, and taking the limit as t goes to infinity, we get the following set of equations:

$$
\pi R=0
$$

Using the first and the last equation, we get:

$$
\begin{aligned}
& \mu \pi_{0}=\lambda \pi_{1} \\
& \mu \pi_{1}=\lambda \pi_{2}
\end{aligned}
$$

We then use these equations to express π_{1} and π_{2} in terms of π_{0} :

$$
\begin{aligned}
& \pi_{1}=\frac{\mu}{\lambda} \pi_{0} \\
& \pi_{2}=\frac{\mu}{\lambda} \pi_{1}=\frac{\mu^{2}}{\lambda^{2}} \pi_{0}
\end{aligned}
$$

Since $\pi_{0}+\pi_{1}+\pi_{2}=1$, we get:

$$
\pi_{0}+\pi_{1}+\pi_{2}=\pi_{0}+\frac{\mu}{\lambda} \pi_{0}+\frac{\mu^{2}}{\lambda^{2}} \pi_{0}=\pi_{0}\left(1+\frac{\mu}{\lambda}+\frac{\mu^{2}}{\lambda^{2}}\right)=1
$$

Hence, we obtain the following solution:

$$
\pi_{0}=\frac{1}{1+\frac{\mu}{\lambda}+\frac{\mu^{2}}{\lambda^{2}}}, \quad \pi_{1}=\frac{\frac{\mu}{\lambda}}{1+\frac{\mu}{\lambda}+\frac{\mu^{2}}{\lambda^{2}}}, \quad \pi_{2}=\frac{\frac{\mu^{2}}{\lambda^{2}}}{1+\frac{\mu}{\lambda}+\frac{\mu^{2}}{\lambda^{2}}}
$$

or alternatively:

$$
\pi_{0}=\frac{\lambda^{2}}{\lambda^{2}+\lambda \mu+\mu^{2}}, \quad \pi_{1}=\frac{\lambda \mu}{\lambda^{2}+\lambda \mu+\mu^{2}}, \quad \pi_{2}=\frac{\mu^{2}}{\lambda^{2}+\lambda \mu+\mu^{2}}
$$

c) Assume that $X(0)=2$, and let:

$$
T=\min \{t>0: X(t) \neq 2\}
$$

Explain briefly why we have:

$$
P(T>t)=e^{-\lambda t}, \quad \text { for all } t>0
$$

SOLUTION: Since $\{X(t): t \geq 0\}$ is a continuous-time Markov chain, we know that the times between transitions are independent and exponentially distributed. Since T is the time to the first transition, and the only possible transition from state 2 is a transition to state 1 , which happens at rate λ, it follows that $T \sim \exp \left(q_{2,1}\right)=\exp (\lambda)$. Hence, we have:

$$
P(T>t)=\int_{t}^{\infty} \lambda e^{-\lambda u} d u=e^{-\lambda t}, \quad \text { for all } t>0
$$

d) We still assume that $X(0)=2$. However, we now consider the case where $\mu=0$, and let:

$$
S=\min \{t>0: X(t)=0\}
$$

What is the probability distribution of S ? Explain your answer.
SOLUTION: When $\mu=0$, the only transitions possible are transitions from state 2 to state 1 and transitions from state 1 to state 0 .

At time S we know that the Markov chain has had exactly two transitions: one from state 2 to state 1 and one from state 1 to state 0 . We denote the times between these transitions by T_{1} and T_{2} respectively. By the Markov property it follows that T_{1} and T_{2} are independent.

By the same arguments we used in the previous point, it follows that $T_{i} \sim \exp (\lambda), i=1,2$.

Finally, since $S=T_{1}+T_{2}$, it follows that $S \sim \operatorname{Gamma}(2, \lambda)$. Thus, the density of S is given by:

$$
\begin{aligned}
f_{S}(s) & =\frac{\lambda^{2}}{\Gamma(2)} s^{2-1} e^{-\lambda s} \\
& =\lambda^{2} s e^{-\lambda s}, \quad s>0 .
\end{aligned}
$$

Problem 5

Let $\{X(t): t \geq 0\}$ be a standard Brownian motion process, and let $0<t_{1}<t_{2}$.
a) Find the joint density of $X_{1}=X\left(t_{1}\right)$ and $X_{2}=X\left(t_{2}\right)$.

SOLUTION: We want to determine the joint density of X_{1} and X_{2}, which denote by $f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)$, where $\boldsymbol{t}=\left(t_{1}, t_{2}\right)$.
In order to do so, we let $Y_{1}=X_{1}$ and $Y_{2}=X_{2}-X_{1}$. By the properties of a standard Brownian motion process it follows that Y_{1} and Y_{2} are independent, and that $Y_{1} \sim N\left(0, t_{1}\right)$ and $Y_{2} \sim N\left(0, t_{2}-t_{1}\right)$. Hence, the joint density of Y_{1} and Y_{2} is given by:

$$
f_{t_{1}}\left(y_{1}\right) \cdot f_{t_{2}-t_{1}}\left(y_{2}\right)
$$

where:

$$
f_{t}(y)=\frac{1}{\sqrt{2 \pi t}} e^{-y^{2} /(2 t)}, \quad t>0, \quad-\infty<y<\infty .
$$

The joint density of X_{1} and X_{2} is then obtained by transforming the $Y_{i} \mathrm{~s}$ to the $X_{i} \mathrm{~s}$.

This is a simple linear transformation with a Jacobian given by:

$$
J=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

The Jacobian determinant of this transformation is 1 . Thus, by the change of variable formula we get that:

$$
f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)=f_{t_{1}}\left(x_{1}\right) \cdot f_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right)
$$

More specifically, the joint density has the form:

$$
f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)=C(\boldsymbol{t}) e^{-(1 / 2) Q\left(x_{1}, x_{2}\right)}
$$

where $C(\boldsymbol{t})$ is a suitable normalizing constant, and where:

$$
Q\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}
$$

b) Show that $\left(X_{2} \mid X_{1}=x_{1}\right) \sim N\left(x_{1}, t_{2}-t_{1}\right)$.

SOLUTION: By the properties of a standard Brownian motion we know that $X_{i} \sim N\left(0, t_{i}\right), i=1,2$. Hence, the marginal densities of X_{1} and X_{2} are respectively:

$$
\begin{aligned}
f_{t_{1}}\left(x_{1}\right) & =C\left(t_{1}\right) e^{-(1 / 2)\left(x_{1}^{2} / t_{1}\right)} \\
f_{t_{2}}\left(x_{2}\right) & =C\left(t_{2}\right) e^{-(1 / 2)\left(x_{2}^{2} / t_{2}\right)}
\end{aligned}
$$

The conditional density of X_{2} given $X_{1}=x_{1}$ then becomes:

$$
\begin{aligned}
f_{X_{2} \mid X_{1}=x_{1}} & =\frac{f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)}{f_{t_{1}}\left(x_{1}\right)}=\frac{C(\boldsymbol{t}) e^{-(1 / 2)\left[\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}\right]}}{C\left(t_{1}\right) e^{-(1 / 2)\left[\frac{x_{1}^{2}}{t_{1}}\right]}} \\
& =C\left(t_{2} \mid t_{1}\right) e^{-(1 / 2)\left[\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}\right]}
\end{aligned}
$$

where the normalizing constant $C\left(t_{2} \mid t_{1}\right)=C(\boldsymbol{t}) / C\left(t_{1}\right)$.

From this it follows that $\left(X_{2} \mid X_{1}=x_{1}\right) \sim N\left(x_{1}, t_{2}-t_{1}\right)$.
c) Show that $\left(X_{1} \mid X_{2}=x_{2}\right) \sim N\left(\frac{t_{1}}{t_{2}} x_{2}, \frac{t_{1}}{t_{2}}\left(t_{2}-t_{1}\right)\right)$.

SOLUTION: In order to find the conditional density of X_{1} given $X_{2}=x_{2}$, we rewrite $Q\left(x_{1}, x_{2}\right)$ as follows:

$$
\begin{aligned}
Q\left(x_{1}, x_{2}\right) & =\frac{x_{1}^{2}}{t_{1}}+\frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}=\frac{x_{1}^{2}}{t_{1}}+\frac{x_{2}^{2}-2 x_{2} x_{1}+x_{1}^{2}}{t_{2}-t_{1}} \\
& =\left[\frac{1}{t_{1}}+\frac{1}{t_{2}-t_{1}}\right] x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} x_{1}^{2}-\frac{2 x_{2}}{t_{2}-t_{1}} x_{1}+\frac{1}{t_{2}-t_{1}} x_{2}^{2} \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}}{t_{2}} x_{2}^{2}\right] \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left[x_{1}^{2}-2 \frac{t_{1} x_{2}}{t_{2}} x_{1}+\frac{t_{1}^{2}}{t_{2}^{2}} x_{2}^{2}+\left(\frac{t_{1}}{t_{2}}-\frac{t_{1}^{2}}{t_{2}^{2}}\right) x_{2}^{2}\right] \\
& =\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)}\left(x_{1}-\frac{t_{1}}{t_{2}} x_{2}\right)^{2}+\frac{t_{2}}{t_{1}\left(t_{2}-t_{1}\right)} \frac{t_{1}}{t_{2}}\left(1-\frac{t_{1}}{t_{2}}\right) x_{2}^{2} \\
& =\frac{\left(x_{1}-t_{1} x_{2} / t_{2}\right)^{2}}{t_{1}\left(t_{2}-t_{1}\right) / t_{2}}+\frac{x_{2}^{2}}{t_{2}}
\end{aligned}
$$

The conditional density of X_{1} given $X_{2}=x_{2}$ then becomes:

$$
\begin{aligned}
f_{X_{1} \mid X_{2}=x_{2}} & =\frac{f_{\boldsymbol{t}}\left(x_{1}, x_{2}\right)}{f_{t_{2}}\left(x_{2}\right)}=\frac{C(\boldsymbol{t}) e^{-(1 / 2)\left[\frac{\left(x_{1}-t_{1} x_{2} / t_{2}\right)^{2}}{t_{1}\left(t_{2}-t_{1}\right) / t_{2}}+\frac{x_{2}^{2}}{t_{2}}\right]}}{C\left(t_{2}\right) e^{-(1 / 2)\left[\frac{x_{2}^{2}}{t_{2}}\right]}} \\
& =C\left(t_{1} \mid t_{2}\right) e^{-(1 / 2)\left[\frac{\left(x_{1}-t_{1} x_{2} / t_{2}\right)^{2}}{t_{1}\left(t_{2}-t_{1}\right) / t_{2}}\right]}
\end{aligned}
$$

where the normalizing constant $C\left(t_{1} \mid t_{2}\right)=C(\boldsymbol{t}) / C\left(t_{2}\right)$.
From this it follows that $\left(X_{1} \mid X_{2}=x_{2}\right) \sim N\left(\frac{t_{1}}{t_{2}} x_{2}, \frac{t_{1}}{t_{2}}\left(t_{2}-t_{1}\right)\right)$.
d) Find $P\left(\max _{0 \leq s \leq 4} X(s) \geq 2\right)$.

SOLUTION: We introduce the following random variable:

$$
T=\inf \{t>0: X(t)=2\}=\text { The first time the process hits } 2,
$$

and note that:

$$
\max _{0 \leq s \leq 4} X(s) \geq 2 \quad \Leftrightarrow \quad T \leq 4
$$

Thus, we have that:

$$
P\left(\max _{0 \leq s \leq 4} X(s) \geq 2\right)=P(T \leq 4)
$$

In order to find $P(T \leq 4)$, we instead consider $P(X(4) \geq 2)$, and condition on the event $\{T \leq 4\}$:

$$
\begin{aligned}
P(X(4) \geq 2) & =P(X(4) \geq 2 \mid T \leq 4) P(T \leq 4) \\
& +P(X(4) \geq 2 \mid T>4) P(T>4)
\end{aligned}
$$

By symmetry, it follows that:

$$
P(X(4) \geq 2 \mid T \leq 4)=\frac{1}{2}
$$

Moreover, we obviously have:

$$
P(X(4) \geq 2 \mid T>4)=0
$$

Hence, we have:

$$
P(X(4) \geq 2)=\frac{1}{2} P(T \leq 4)
$$

and since $X(4) \sim N(0,4)$, we get:

$$
P(T \leq 4)=2 \cdot P(X(4) \geq 2)=2 \cdot P\left(\frac{X(4)}{\sqrt{4}} \geq \frac{2}{\sqrt{4}}\right)=2 \cdot \Phi(-1),
$$

where Φ denotes the cumulative distribution function of the standard normal distribution. Hence, we conclude that:

$$
P\left(\max _{0 \leq s \leq 4} X(s) \geq 2\right)=P(T \leq 4)=2 \Phi(-1) \approx 2 \cdot 0.15865=0.31730
$$

