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Exam in: STK2130 –– Modelling by stochastic processes
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This problem set consists of 16 pages.
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Permitted aids: All available notes and books.
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Figure 1: Diagram representing the Markov chain in Problem 1a

Consider a discrete-time Markov chain {Xn : n ≥ 0} with state space
X = {1, 2, 3, 4}, and transition probability matrix:

P =


p 0 0 q
q p 0 0
0 0 p q
0 0 q p


where 0 < p < 1, 0 < q < 1 and p+ q = 1.

(Continued on page 2.)
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a) Describe the Markov chain by a diagram.

SOLUTION: See Figure 1.

b) The chain has three classes, C1 = {1}, C2 = {2} and C3 = {3, 4}. For
each of these classes discuss whether the class is transient or recurrent.

SOLUTION: We consider the probabilities:

fi = P

( ∞⋃
r=1

{Xr = i} | X0 = i

)
, i ∈ X .

From the textbook we have that:

– State i is recurrent if fi = 1.

– State i is transient if fi < 1.

In this case we have:

f1 = P

( ∞⋃
r=1

{Xr = 1} | X0 = 1

)
= 1− P

( ∞⋂
r=1

{Xr 6= 1} | X0 = 1

)

= 1− P (X1 = 4 | X0 = 1) = 1− q < 1.

f2 = P

( ∞⋃
r=1

{Xr = 2} | X0 = 2

)
= 1− P

( ∞⋂
r=1

{Xr 6= 2} | X0 = 2

)

= 1− P (X1 = 1 | X0 = 2) = 1− q < 1.

f3 = P

( ∞⋃
r=1

{Xr = 3} | X0 = 3

)
= 1− P

( ∞⋂
r=1

{Xr = 4} | X0 = 3

)

= 1− lim
n→∞

qpn = 1− 0 = 1

f4 = P

( ∞⋃
r=1

{Xr = 4} | X0 = 4

)
= 1− P

( ∞⋂
r=1

{Xr = 3} | X0 = 4

)

= 1− lim
n→∞

qpn = 1− 0 = 1

Hence, we conclude that C1 = {1}, C2 = {2} are transient, while
C3 = {3, 4} is recurrent.

c) Show that the two-step transition probability matrix is given by:

P (2) =


p2 0 q2 2pq
2pq p2 0 q2

0 0 p2 + q2 2pq
0 0 2pq p2 + q2


(Continued on page 3.)
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SOLUTION: We have that:

P (2) = P · P =


p 0 0 q
q p 0 0
0 0 p q
0 0 q p

 ·

p 0 0 q
q p 0 0
0 0 p q
0 0 q p



=


p2 0 q2 2pq
2pq p2 0 q2

0 0 p2 + q2 2pq
0 0 2pq p2 + q2


In more detail:

P 2
ij =

∑
k∈X

Pik · Pkj , for all i, j ∈ X .

Hence, we have:

P 2
1,1 = P1,1P1,1 + P1,2P2,1 + · · ·+ P1,4P4,1 = p2

P 2
1,2 = P1,1P1,2 + P1,2P2,2 + · · ·+ P1,4P4,2 = 0

P 2
1,3 = P1,1P1,3 + P1,2P2,3 + · · ·+ P1,4P4,3 = q2

P 2
1,4 = P1,1P1,4 + P1,2P2,4 + · · ·+ P1,4P4,4 = 2pq

· · · · · ·

d) Conditioned upon the chain has entered one of the states 3 or 4 find
the stationary distribution over these two states.

SOLUTION: We let:

Q =

[
P3,3 P3,4

P4,3 P4,4

]
=

[
p q
q p

]
denote the submatrix of Q containing the transition probabilities for
the recurrent states 3 and 4. Furthermore, we let π = (π3, π4) denote
the stationary distribution over these states. Then π must satisfy
π3 + π4 = 1 and:

πQ = π

From the last set of equations we get that:

pπ3 + qπ4 = π3

(Continued on page 4.)
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or equivalently, since q = 1− p that:

qπ4 = (1− p)π3 = qπ3

Hence, we conclude that π3 = π4, and since π3+π4 = 1 it follows that:

π3 = π4 = 1
2

e) We assume that X0 = 1, and let M be given by:

M = min{m > 0 : Xm = 4}

Thus, M is the number of steps until the Markov chain enters state 4
for the first time given that the chain starts out in state 1. Show that
the probability distribution of M is given by:

P (M = m) = pm−1q, m = 1, 2, . . .

SOLUTION: The result follows since in this case:

P (M = m) = P (X1 = 1, . . . , Xm−1 = 1, Xm = 4|X0 = 1)

= [P1,1]
m−1 · P1,4 = pm−1q, m = 1, 2, . . .

f) Find E[M ].

SOLUTION: We observe that M has a geometric distribution.
Hence, it follows that:

E[M ] =
1

q
.

g) In the remaining part of this problem we assume that X0 = 2, and let
N be given by:

N = min{n > 0 : Xn = 3}

Thus, N is the number of steps until the Markov chain enters state 3
for the first time given that the chain starts out in state 2. Find E[N ].

SOLUTION: We note that if X0 = 2 and n is the number of steps
until the Markov chain enters state 3 for the first time, the chain must
have gone through the states 1 and 4 before entering 3. Thus, we
introduce the following stochastic variables:

N1 = min{n > 0 : Xn = 1}

N2 = min{n > 0 : XN1+n = 4}

N3 = min{n > 0 : XN2+n = 3}

(Continued on page 5.)
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Using the same arguments as we used in (e) we get that:

P (Ni = n) = pn−1q, n = 1, 2, . . . i = 1, 2, 3,

Moreover, we have that N = N1 +N2 +N3, and so:

E[N ] = E[N1] + E[N2] + E[N3] =
1

q
+

1

q
+

1

q
=

3

q
.

h) Find the probability distribution of N .

SOLUTION: By the Markov property, it follows that N1, N2 and
N3 are independent random variables. Hence, N is a sum of three
independent and geometrically distributed variables. By using the
formula for the negative binomial distribution it follows that N has
the following distribution:

P (N = n) =

(
n− 1

2

)
pn−3q3, n = 3, 4, 5 . . .

Alternatively, we may argue in more details, and introduce:

Ji = I(Xi 6= Xi−1), i = 1, 2, . . .

Thus, Ji is one if and only if the Markov chain changes its state at
the ith step and zero otherwise. For the given transition probability
matrix we have:

P (Ji = 1) = q, i = 1, 2, . . .

Moreover, by the Markov property, it follows that J1, J2, . . . are
independent. Hence, (J1 + · · · + Jk) ∼ Bin(k, q), k = 1, 2, . . .. We
also note that (J1 + · · ·+ Jk) is equal to the number of state changes
in the first k steps.

The event that N = n is equivalent to the event that there are exactly
2 state changes (one from state 2 to state 1, and one from state 1 to
state 4) among the first n − 1 steps, and that the third state change
(from state 4 to state 3) happens at the nth step. From this it follows
that:

P (N = n) = P (J1 + · · ·+ Jn−1 = 2) · P (Jn = 1)

=

(
n− 1

2

)
p(n−1)−2q2 · q

=

(
n− 1

2

)
pn−3q3, n = 3, 4, . . .

(Continued on page 6.)
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Problem 2

An urn always contains 2 balls. The balls are colored either red or blue.
At each stage a ball is randomly chosen and then replaced by a new ball,
which with probability 0.75 is the same color, and with probability 0.25 is
the opposite color, as the ball it replaces. This is modelled by a Markov
chain {Xn : n ≥ 0} where:

Xn = The number of red balls after the nth selection. n = 0, 1, 2, . . .

Thus, the state space of the Markov chain is X = {0, 1, 2}.

a) Explain why the transition probability matrix of this Markov chain is:

P =

 0.75 0.25 0
0.125 0.75 0.125

0 0.25 0.75


SOLUTION: The transition probabilities are:

P00 = P{Blue ball selected but not replaced} = 1.0 · 0.75 = 0.75,

P01 = P{Blue ball selected and replaced by red} = 1.0 · 0.25 = 0.25,

P02 = 0.0

P10 = P{Red ball selected and replaced by blue} = 0.5 · 0.25 = 0.125

P11 = P{Any ball selected but not replaced} = 0.75

P12 = P{Blue ball selected and replaced by red} = 0.5 · 0.25 = 0.125

P20 = 0.0

P21 = P{Red ball selected and replaced by blue} = 1.0 · 0.25 = 0.25

P22 = P{Red ball selected but not replaced} = 1.0 · 0.75 = 0.75

b) It can be calculated that:

P (4) ≈

 0.4238 0.4688 0.1074
0.2344 0.5313 0.2344
0.1074 0.4688 0.4238


You do not need to calculate this.

Find the probability that the fifth ball selected is red given that
X0 = 2.

SOLUTION:

P (Selection 5 is red)

=

2∑
i=0

P (Selection 5 is red|X4 = i) · P (X4 = i|X0 = 2)

= 0.00 · P 4
2,0 + 0.50 · P 4

2,1 + 1.00 · P 4
2,2

= 0.50 · 0.4688 + 0.4238 = 0.6582

(Continued on page 7.)
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c) Find the stationary distribution for the Markov chain {Xn : n ≥ 0}.

SOLUTION: We let π = (π0, π1, π2) denote the stationary
distribution over X = {0, 1, 2}. Then π must satisfy π0 + π1 + π2 = 1
and:

πP = π

Using the first and the last equation, we get:

3
4π0 + 1

8π1 = π0
3
4π2 + 1

8π1 = π2

This is equivalent to:

π0 = 1
2π1

π2 = 1
2π1

Inserting this into the equation π0 + π1 + π2 = 1 we get:

1
2π1 + π1 + 1

2π1 = 2π1 = 1

From this we get the stationary distribution π0 = 1
4 , π1 = 1

2 , π2 = 1
4 .

d) Let ρn denote the probability that the nth ball selected is red given
that X0 = 2. Find:

lim
n→∞

ρn

SOLUTION:

ρn = P (The nth selection is red)

=
2∑
i=0

P (The nth selection is red|Xn−1 = i) · P (Xn−1 = i|X0 = 2)

= 0.00 · Pn−12,0 + 0.50 · Pn−12,1 + 1.00 · Pn−12,2

= 0.50 · Pn−12,1 + 1.00 · Pn−12,2

Hence, we get:

lim
n→∞

ρn = 0.50 · lim
n→∞

Pn−12,1 + 1.00 · lim
n→∞

Pn−12,2

= 0.50 · π1 + 1.00 · π2 = 0.50 · 12 + 1.00 · 14 = 1
2 .

(Continued on page 8.)
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e) We now introduce:

Nj = min{n > 0 : Xn = j}, j ∈ X .

Thus, Nj is the number of steps until the Markov chain makes a
transition into state j. We then let:

mj = E[Nj |X0 = j], j ∈ X .

That is, mj is the expected number of steps until the Markov chain
returns to state j given that it starts out in state j.

Find mj for all j ∈ X .

SOLUTION: In the textbook (Ross (2019) page 216) we have the
following result:

PROPOSITION 4.4. If a Markov chain is irreducible and recurrent,
then for any initial state X0, we have:

πj = 1/mj , for all j ∈ X .

Since the Markov chain under consideration is irreducible and
recurrent, it follows that:

m0 = 1/π0 = 1/0.25 = 4

m1 = 1/π1 = 1/0.50 = 2

m2 = 1/π2 = 1/0.25 = 4

Problem 3

In this problem we consider a population consisting of individuals able to
produce offspring of the same kind. We assume that each individual will, by
the end of its lifetime, have produced r new offspring with probability pr,
r = 0, 1, 2, . . ., independently of the numbers produced by other individuals.
We assume that p0 > 0, and that pr < 1 for r = 0, 1, 2, . . ..

The number of individuals initially present, denoted by X0, is called the
size of the 0-th generation. Moreover, we let:

Xn = The population size in the nth generation, n = 0, 1, 2, . . .

a) Explain why {Xn : n ≥ 0} is a Markov chain.

SOLUTION: Given the population size in the nth generation, i.e.,
Xn, the number of offspring produced by this generation, i.e., Xn+1

depends only on Xn and not on the size of the previous generations.
This follows since Xn+1 given Xn = xn is the sum of xn independent
and identically distributed variables. Hence, {Xn : n ≥ 0} is a Markov
chain.

(Continued on page 9.)
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b) Explain why state 0 is a recurrent state, and why any state j > 0 is
transient.

SOLUTION: Since P00 = 1, then 0 is a recurrent state.

Since p0 > 0, it follows that Pj0 = pj0 > 0. Hence, any state j > 0 is
transient.

c) In the rest of this problem we assume that X0 = 1, and E[X1] = µ.
Show that E[Xn] = µn.

SOLUTION: We start out by introducing for r = 1, . . . , Xn−1:

Zr = Number of offspring from individual r in generation (n− 1).

By conditioning on Xn−1 we get:

E[Xn] = E[E[Xn | Xn−1]]

= E[E[

Xn−1∑
r=1

Zr | Xn−1]]

= E[Xn−1µ] = µE[Xn−1]

Since we have assumed that X0 = 1, it follows by induction that:

E[Xn] = µn.

d) We then consider the probability that the population eventually dies
out:

π0 = lim
n→∞

P (Xn = 0 | X0 = 1)

Show that π0 satisfies the following equation:

π0 =

∞∑
r=0

πr0 pr (1)

SOLUTION: By conditioning on X1 we get:

π0 = P (The population dies out)

=
∞∑
j=0

P (The population dies out | X1 = j)pj

=
∞∑
j=0

πj0pj

(Continued on page 10.)
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e) In the following you may use without proof that π0 is the smallest
positive number that satisfies (1).

Assume that p0 = 1
5 , p1 = 1

5 , p2 = 3
5 , and that pr = 0, for r > 2.

Calculate µ and π0 in this case.

SOLUTION: If p0 = 1
5 , p1 = 1

5 , p2 = 3
5 , and that pr = 0, for r > 2,

we get:

µ = E[X1] =
∞∑
r=1

r · pr

= 1 · p1 + 2 · p2 = 1 · 15 + 2 · 35
= 1

5 + 6
5 = 7

5 .

In order to determine π0, we use the fact that π0 is the smallest positive
number that satisfies (1). In this case (1) is reduced to:

π0 = π00p0 + π10p1 + π20p2

= 1
5 + 1

5π0 + 3
5π

2
0

This is equivalent to:

3π20 − 4π0 + 1 = 0

which has the two solutions: π0 = 1
3 and π0 = 1. Since π0 is the

smallest positive number that satisfies (1), we get that:

π0 = 1
3 .

Problem 4

A system can be in three possible states denoted respectively 0, 1 and
2. If the system is in state 0, it is considered to be failed, while if the
system is in state 2, it is considered to be functioning perfectly. The state
1 represents an intermediate case where the system is functioning, but at a
lower performance level than when it is in state 2.

We model this as a continuous-time Markov chain {X(t) : t ≥ 0} with
state space X = {0, 1, 2}. The system can transit from state i to state i+ 1
with rate µ, i = 0, 1. Such a transition is called a repair. Moreover, the
system can transit from state i to state i − 1 with rate λ, i = 1, 2. Such
a transition is called a failure. Thus, a single repair can only increase the
state by 1. Similarly, a single failure can only reduce the state by 1. It is
not possible to transit directly from state 0 to state 2 or directly from state
2 to state 0. Finally, we assume that µ > 0 and λ > 0.

(Continued on page 11.)
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We also introduce:

Pij(t) = P (X(t) = j|X(0) = i), for all i, j ∈ X .

Moreover, for all i, j ∈ X we let:

qij = The transition rate from state i to state j if i 6= j.

vi =
∑
j∈X\i

qij .

Finally, we let the matrix R be given by:

R =

 −v0 q0,1 q0,2
q1,0 −v1 q1,2
q2,0 q2,1 −v2


a) Determine the matrix R expressed in terms of µ and λ.

SOLUTION: It follows that:

qi,i+1 = µ, i = 0, 1

qi,i−1 = λ, i = 1, 2

qi,j = 0, for all i, j ∈ X such that |i− j| > 1.

From this we also get that:

v0 = q0,1 + q0,2 = µ+ 0 = µ

v1 = q1,0 + q1,2 = λ+ µ

v2 = q2,0 + q2,1 = 0 + λ = λ

Hence, the matrix R is given by:

R =

 −µ µ 0
λ −(λ+ µ) µ
0 λ −λ



b) Let π = (π0, π1, π2), where:

πj = lim
t→∞

Pij(t), for all j ∈ X .

Formulate a set of equations which can be used to determine π, and
solve these equations.

SOLUTION: We know that π0 + π1 + π2 = 1. Furthermore, by
using Kolmogorov’s forward equations, and taking the limit as t goes
to infinity, we get the following set of equations:

πR = 0

(Continued on page 12.)
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Using the first and the last equation, we get:

µπ0 = λπ1

µπ1 = λπ2

We then use these equations to express π1 and π2 in terms of π0:

π1 =
µ

λ
π0

π2 =
µ

λ
π1 =

µ2

λ2
π0

Since π0 + π1 + π2 = 1, we get:

π0 + π1 + π2 = π0 +
µ

λ
π0 +

µ2

λ2
π0 = π0

(
1 +

µ

λ
+
µ2

λ2

)
= 1

Hence, we obtain the following solution:

π0 =
1

1 + µ
λ + µ2

λ2

, π1 =
µ
λ

1 + µ
λ + µ2

λ2

, π2 =
µ2

λ2

1 + µ
λ + µ2

λ2

or alternatively:

π0 =
λ2

λ2 + λµ+ µ2
, π1 =

λµ

λ2 + λµ+ µ2
, π2 =

µ2

λ2 + λµ+ µ2

c) Assume that X(0) = 2, and let:

T = min{t > 0 : X(t) 6= 2}

Explain briefly why we have:

P (T > t) = e−λt, for all t > 0.

SOLUTION: Since {X(t) : t ≥ 0} is a continuous-time Markov
chain, we know that the times between transitions are independent and
exponentially distributed. Since T is the time to the first transition,
and the only possible transition from state 2 is a transition to state
1, which happens at rate λ, it follows that T ∼ exp(q2,1) = exp(λ).
Hence, we have:

P (T > t) =

∫ ∞
t

λe−λudu = e−λt, for all t > 0.

(Continued on page 13.)
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d) We still assume that X(0) = 2. However, we now consider the case
where µ = 0, and let:

S = min{t > 0 : X(t) = 0}

What is the probability distribution of S? Explain your answer.

SOLUTION: When µ = 0, the only transitions possible are
transitions from state 2 to state 1 and transitions from state 1 to
state 0.

At time S we know that the Markov chain has had exactly two
transitions: one from state 2 to state 1 and one from state 1 to
state 0. We denote the times between these transitions by T1 and
T2 respectively. By the Markov property it follows that T1 and T2 are
independent.

By the same arguments we used in the previous point, it follows that
Ti ∼ exp(λ), i = 1, 2.

Finally, since S = T1 + T2, it follows that S ∼ Gamma(2, λ). Thus,
the density of S is given by:

fS(s) =
λ2

Γ(2)
s2−1e−λs

= λ2se−λs, s > 0.

Problem 5

Let {X(t) : t ≥ 0} be a standard Brownian motion process, and let
0 < t1 < t2.

a) Find the joint density of X1 = X(t1) and X2 = X(t2).

SOLUTION: We want to determine the joint density of X1 and X2,
which denote by ft(x1, x2), where t = (t1, t2).

In order to do so, we let Y1 = X1 and Y2 = X2−X1. By the properties
of a standard Brownian motion process it follows that Y1 and Y2 are
independent, and that Y1 ∼ N(0, t1) and Y2 ∼ N(0, t2 − t1). Hence,
the joint density of Y1 and Y2 is given by:

ft1(y1) · ft2−t1(y2)

where:

ft(y) =
1√
2πt

e−y
2/(2t), t > 0, −∞ < y <∞.

The joint density of X1 and X2 is then obtained by transforming the
Yis to the Xis.

(Continued on page 14.)
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This is a simple linear transformation with a Jacobian given by:

J =

[
1 0
−1 1

]
The Jacobian determinant of this transformation is 1. Thus, by the
change of variable formula we get that:

ft(x1, x2) = ft1(x1) · ft2−t1(x2 − x1)

More specifically, the joint density has the form:

ft(x1, x2) = C(t)e−(1/2)Q(x1,x2)

where C(t) is a suitable normalizing constant, and where:

Q(x1, x2) =
x21
t1

+
(x2 − x1)2

t2 − t1

b) Show that (X2|X1 = x1) ∼ N(x1, t2 − t1).

SOLUTION: By the properties of a standard Brownian motion we
know that Xi ∼ N(0, ti), i = 1, 2. Hence, the marginal densities of X1

and X2 are respectively:

ft1(x1) = C(t1)e
−(1/2)(x21/t1)

ft2(x2) = C(t2)e
−(1/2)(x22/t2)

The conditional density of X2 given X1 = x1 then becomes:

fX2|X1=x1 =
ft(x1, x2)

ft1(x1)
=
C(t)e

−(1/2)
[
x21
t1

+
(x2−x1)

2

t2−t1

]

C(t1)e
−(1/2)

[
x21
t1

]

= C(t2|t1)e
−(1/2)

[
(x2−x1)

2

t2−t1

]

where the normalizing constant C(t2|t1) = C(t)/C(t1).

From this it follows that (X2|X1 = x1) ∼ N(x1, t2 − t1).

c) Show that (X1|X2 = x2) ∼ N( t1t2x2,
t1
t2

(t2 − t1)).

(Continued on page 15.)
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SOLUTION: In order to find the conditional density of X1 given
X2 = x2, we rewrite Q(x1, x2) as follows:

Q(x1, x2) =
x21
t1

+
(x2 − x1)2

t2 − t1
=
x21
t1

+
x22 − 2x2x1 + x21

t2 − t1

=

[
1

t1
+

1

t2 − t1

]
x21 −

2x2
t2 − t1

x1 +
1

t2 − t1
x22

=
t2

t1(t2 − t1)
x21 −

2x2
t2 − t1

x1 +
1

t2 − t1
x22

=
t2

t1(t2 − t1)

[
x21 − 2

t1x2
t2

x1 +
t1
t2
x22

]

=
t2

t1(t2 − t1)

[
x21 − 2

t1x2
t2

x1 +
t21
t22
x22 +

(
t1
t2
− t21
t22

)
x22

]

=
t2

t1(t2 − t1)

(
x1 −

t1
t2
x2

)2

+
t2

t1(t2 − t1)
t1
t2

(
1− t1

t2

)
x22

=
(x1 − t1x2/t2)2

t1(t2 − t1)/t2
+
x22
t2

The conditional density of X1 given X2 = x2 then becomes:

fX1|X2=x2 =
ft(x1, x2)

ft2(x2)
=
C(t)e

−(1/2)
[
(x1−t1x2/t2)

2

t1(t2−t1)/t2
+

x22
t2

]

C(t2)e
−(1/2)

[
x22
t2

]

= C(t1|t2)e
−(1/2)

[
(x1−t1x2/t2)

2

t1(t2−t1)/t2

]

where the normalizing constant C(t1|t2) = C(t)/C(t2).

From this it follows that (X1|X2 = x2) ∼ N( t1t2x2,
t1
t2

(t2 − t1)).

d) Find P (max0≤s≤4X(s) ≥ 2).

SOLUTION: We introduce the following random variable:

T = inf{t > 0 : X(t) = 2} = The first time the process hits 2,

and note that:

max
0≤s≤4

X(s) ≥ 2 ⇔ T ≤ 4

Thus, we have that:

P ( max
0≤s≤4

X(s) ≥ 2) = P (T ≤ 4)

(Continued on page 16.)
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In order to find P (T ≤ 4), we instead consider P (X(4) ≥ 2), and
condition on the event {T ≤ 4}:

P (X(4) ≥ 2) = P (X(4) ≥ 2|T ≤ 4)P (T ≤ 4)

+ P (X(4) ≥ 2|T > 4)P (T > 4)

By symmetry, it follows that:

P (X(4) ≥ 2|T ≤ 4) = 1
2

Moreover, we obviously have:

P (X(4) ≥ 2|T > 4) = 0

Hence, we have:

P (X(4) ≥ 2) = 1
2P (T ≤ 4)

and since X(4) ∼ N(0, 4), we get:

P (T ≤ 4) = 2 · P (X(4) ≥ 2) = 2 · P (
X(4)√

4
≥ 2√

4
) = 2 · Φ(−1),

where Φ denotes the cumulative distribution function of the standard
normal distribution. Hence, we conclude that:

P ( max
0≤s≤4

X(s) ≥ 2) = P (T ≤ 4) = 2Φ(−1) ≈ 2 · 0.15865 = 0.31730

END


