UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK2130 - Modelling by stochastic processes
Day of examination: Friday June 4th 2021.
Examination hours: 15.00-19.00
This problem set consists of 11 pages.
Appendices: None.
Permitted aids: All available notes and books.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Figure 1: Diagram representing the Markov chain in Problem 1a

Consider a discrete-time Markov chain $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=\{0,1,2,3\}$, and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{llll}
p & q & 0 & 0 \\
0 & 0 & p & q \\
0 & q & 0 & p \\
0 & p & q & 0
\end{array}\right]
$$

where $0<p<1,0<q<1$ and $p+q=1$.
a) Describe the Markov chain by a diagram.

SOLUTION:

See Figure 1.
b) The chain has two classes, $\mathcal{C}_{1}=\{0\}$ and $\mathcal{C}_{2}=\{1,2,3\}$. For each of these classes discuss whether the class is transient or recurrent.

SOLUTION:

We consider the probabilities:

$$
f_{i}=P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=i\right\} \mid X_{0}=i\right), \quad i \in \mathcal{X} .
$$

From the textbook we have that state i is transient if $f_{i}<1$ and recurrent if $f_{i}=1$.

In this case we have:

$$
\begin{aligned}
f_{0} & =P\left(\bigcup_{r=1}^{\infty}\left\{X_{r}=0\right\} \mid X_{0}=0\right)=1-P\left(\bigcap_{r=1}^{\infty}\left\{X_{r} \neq 0\right\} \mid X_{0}=0\right) \\
& =1-P\left(X_{1}=1 \mid X_{0}=0\right)=1-q<1 .
\end{aligned}
$$

Hence, we conclude that $\mathcal{C}_{1}=\{0\}$ is transient.
From the diagram it is easy to see that $i \leftrightarrow j$ for all $i, j \in \mathcal{C}_{2}$. Hence, these states belong to the same class. Since transience and recurrence are class properties, it follows that either all states in \mathcal{C}_{2} are transient or all states in \mathcal{C}_{2} are recurrent. However, the Markov chain has a finite state space, which implies that at least one state must be recurrent. Thus, the only possibility is that $\mathcal{C}_{2}=\{1,2,3\}$ is recurrent.
c) Show that the two-step transition probability matrix is given by:

$$
\boldsymbol{P}^{(2)}=\left[\begin{array}{cccc}
p^{2} & p q & p q & q^{2} \\
0 & 2 p q & q^{2} & p^{2} \\
0 & p^{2} & 2 p q & q^{2} \\
0 & q^{2} & p^{2} & 2 p q
\end{array}\right]
$$

SOLUTION:

We have that:

$$
\begin{aligned}
\boldsymbol{P}^{(2)} & =\boldsymbol{P} \cdot \boldsymbol{P}=\left[\begin{array}{llll}
p & q & 0 & 0 \\
0 & 0 & p & q \\
0 & q & 0 & p \\
0 & p & q & 0
\end{array}\right] \cdot\left[\begin{array}{llll}
p & q & 0 & 0 \\
0 & 0 & p & q \\
0 & q & 0 & p \\
0 & p & q & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
p^{2} & p q & p q & q^{2} \\
0 & 2 p q & q^{2} & p^{2} \\
0 & p^{2} & 2 p q & q^{2} \\
0 & q^{2} & p^{2} & 2 p q
\end{array}\right]
\end{aligned}
$$

In more detail:

$$
P_{i j}^{2}=\sum_{k \in \mathcal{X}} P_{i k} \cdot P_{k j}, \quad \text { for all } i, j \in \mathcal{X} .
$$

Hence, we have:

$$
\begin{aligned}
& P_{0,0}^{2}=P_{0,0} P_{0,0}+P_{0,1} P_{1,0}+\cdots+P_{0,3} P_{3,0}=p^{2} \\
& P_{0,1}^{2}=P_{0,0} P_{0,1}+P_{0,1} P_{1,1}+\cdots+P_{0,3} P_{3,1}=p q \\
& P_{0,2}^{2}=P_{0,0} P_{0,2}+P_{0,1} P_{1,2}+\cdots+P_{0,3} P_{3,2}=p q \\
& P_{0,3}^{2}=P_{0,0} P_{0,3}+P_{0,1} P_{1,3}+\cdots+P_{0,3} P_{3,4}=q^{2}
\end{aligned}
$$

d) Conditioned upon that the chain has entered \mathcal{C}_{2}, find the stationary distribution over these three states.

SOLUTION:

We let:

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
P_{1,1} & P_{1,2} & P_{1,3} \\
P_{2,1} & P_{2,2} & P_{2,3} \\
P_{3,1} & P_{3,2} & P_{3,3}
\end{array}\right]=\left[\begin{array}{lll}
0 & p & q \\
q & 0 & p \\
p & q & 0
\end{array}\right]
$$

denote the submatrix of \boldsymbol{P} containing the transition probabilities for the recurrent states $1,2,3$. Furthermore, we let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$ denote the stationary distribution over these states. Then $\boldsymbol{\pi}$ must satisfy $\pi_{1}+\pi_{2}+\pi_{3}=1$ and:

$$
\pi Q=\pi
$$

From the last set of equations we get that:

$$
\begin{aligned}
& q \pi_{2}+p \pi_{3}=\pi_{1} \\
& p \pi_{1}+q \pi_{3}=\pi_{2}
\end{aligned}
$$

Since $q=1-p$, these equations can be written as:

$$
\begin{aligned}
(1-p) \pi_{2}+p \pi_{3} & =\pi_{1} \\
p \pi_{1}+(1-p) \pi_{3} & =\pi_{2}
\end{aligned}
$$

We then multiply the first equation by p, and rearrange the terms:

$$
\begin{aligned}
p^{2} \pi_{3} & =p \pi_{1}-p(1-p) \pi_{2} \\
(1-p) \pi_{3} & =-p \pi_{1}+\pi_{2}
\end{aligned}
$$

We then add the two equations and get:

$$
\left(p^{2}-p+1\right) \pi_{3}=\left(p^{2}-p+1\right) \pi_{2}
$$

This implies that $\pi_{2}=\pi_{3}$. By inserting this into e.g., the first equation, we get that:

$$
q \pi_{2}+p \pi_{2}=\pi_{1}
$$

This implies that $\pi_{2}=\pi_{1}$. Thus, we conclude that $\pi_{1}=\pi_{2}=\pi_{3}$, and since also $\pi_{1}+\pi_{2}+\pi_{3}=1$, it follows that:

$$
\pi_{1}=\pi_{2}=\pi_{3}=\frac{1}{3}
$$

Alternatively, the result that the stationary distribution is uniform follows directly by the fact that the matrix \boldsymbol{Q} is doubly stochastic.

Problem 2

A Markov chain is said to be periodic if it can only return to a state in a multiple of $d>1$ steps. The smallest such number, d, is called the period of the Markov chain. A Markov chain which is not periodic, is said to be aperiodic.

Consider the Markov chain $\left\{X_{n}: n \geq 0\right\}$ with state space $\mathcal{X}=$ $\{1,2,3,4,5\}$, and transition probability matrix:

$$
\boldsymbol{P}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0.5 & 0 & 0 & 0 & 0.5 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

a) Determine the period of this Markov chain.

SOLUTION:

We start out by noting that in the given Markov chain we have $i \leftrightarrow j$ for all $i, j \in \mathcal{X}$. Thus, the Markov chain is irreducible, i.e., all states belong to the same class. The periodicity of an irreducible Markov chain is a class property. Thus, in order to determine the period, we may choose any state $i \in \mathcal{X}$, and consider:
$P_{i i}^{n}=$ The probability that the chain returns to state i in n steps
If $P_{i i}^{n}>0$ if and only if n is a multiple of d, then the period of the chain is d.

In this case we let $i=3$, and note that there are exactly two paths from state 3 back to state 3 :

$$
\begin{aligned}
& 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \\
& 3 \rightarrow 5 \rightarrow 4 \rightarrow 3
\end{aligned}
$$

Since both paths have length 3 , it follows that:

$$
P_{3,3}^{n}>0 \quad \text { if and only if } \quad n=3,6,9, \ldots
$$

Thus, we conclude that the period of the Markov chain is 3 .
b) Assume that $\left\{X_{n}: n \geq 0\right\}$ is an irreducible Markov chain with a finite state space \mathcal{X}. Moreover, assume that for some state $i \in \mathcal{X}$ we have:

$$
P_{i i}=P\left(X_{n+1}=i \mid X_{n}=i\right)>0
$$

Explain why this Markov chain is aperiodic.

SOLUTION:

In this case it follows that:

$$
P_{i i}^{n}>\left(P_{i i}\right)^{n}>0 \quad n=1,2, \ldots
$$

Thus, the period of the Markov chain is 1, i.e., the Markov chain is aperiodic.

Problem 3

Consider a continuous-time Markov chain $\{X(t): t \geq 0\}$ with state space $\mathcal{X}=\{1,2,3\}$. The transition probability matrix of the built-in discrete time Markov chain is given by:

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
Q_{1,1} & Q_{1,2} & Q_{1,3} \\
Q_{2,1} & Q_{2,2} & Q_{2,3} \\
Q_{3,1} & Q_{3,2} & Q_{3,3}
\end{array}\right]=\left[\begin{array}{lll}
0 & p & q \\
q & 0 & p \\
p & q & 0
\end{array}\right]
$$

(Continued on page 6.)
where $0<p<1,0<q<1$ and $p+q=1$.
The amount of time spent in state i is exponentially distributed with rate $\lambda_{i}, i=1,2,3$, and we let:

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

For all $i, j \in \mathcal{X}$ we let:
$q_{i j}=\lambda_{i} Q_{i j}=$ The transition rate from state i to state j if $i \neq j$.
Finally, we let the matrix \boldsymbol{R} be given by:

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
-\lambda_{1} & q_{1,2} & q_{1,3} \\
q_{2,1} & -\lambda_{2} & q_{2,3} \\
q_{3,1} & q_{3,2} & -\lambda_{3}
\end{array}\right]
$$

a) Show that:

$$
\boldsymbol{R}=\boldsymbol{\Lambda}(\boldsymbol{Q}-\boldsymbol{I})
$$

where:

$$
\boldsymbol{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

SOLUTION:

We start out by noting that by definition we have:

$$
q_{i j}=\lambda_{i} Q_{i j}, \quad \text { for all } i, j \in \mathcal{X} .
$$

Hence, it follows that:

$$
\boldsymbol{R}=\left[\begin{array}{ccc}
-\lambda_{1} & q_{1,2} & q_{1,3} \\
q_{2,1} & -\lambda_{2} & q_{2,3} \\
q_{3,1} & q_{3,2} & -\lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\lambda_{1} & \lambda_{1} Q_{1,2} & \lambda_{1} Q_{1,3} \\
\lambda_{2} Q_{2,1} & -\lambda_{2} & \lambda_{2} Q_{2,3} \\
\lambda_{3} Q_{3,1} & \lambda_{3} Q_{3,2} & -\lambda_{3}
\end{array}\right]
$$

On the other hand, since $Q_{i i}=0$, for $i=1,2,3$, we have:

$$
\begin{aligned}
\boldsymbol{\Lambda}(\boldsymbol{Q}-\boldsymbol{I}) & =\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \cdot\left[\begin{array}{ccc}
-1 & Q_{1,2} & Q_{1,3} \\
Q_{2,1} & -1 & Q_{2,3} \\
Q_{3,1} & Q_{3,2} & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-\lambda_{1} & \lambda_{1} Q_{1,2} & \lambda_{1} Q_{1,3} \\
\lambda_{2} Q_{2,1} & -\lambda_{2} & \lambda_{2} Q_{2,3} \\
\lambda_{3} Q_{3,1} & \lambda_{3} Q_{3,2} & -\lambda_{3}
\end{array}\right]
\end{aligned}
$$

Thus, we conclude that:

$$
R=\Lambda(Q-I),
$$

b) Assume that $\boldsymbol{\rho}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$ is a vector such that:

$$
\rho Q=\rho
$$

and let $\boldsymbol{\kappa}=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)=\boldsymbol{\rho} \boldsymbol{\Lambda}^{-1}$. Show that:

$$
\kappa R=0
$$

SOLUTION:

By using the result from (a) and that $\boldsymbol{\kappa}=\boldsymbol{\rho} \boldsymbol{\Lambda}^{-1}$ we get:

$$
\begin{aligned}
\boldsymbol{\kappa} \boldsymbol{R} & =\rho \boldsymbol{\Lambda}^{-1} \boldsymbol{\Lambda}(Q-\boldsymbol{I})=\rho(Q-\boldsymbol{I}) \\
& =\rho Q-\rho=\mathbf{0} .
\end{aligned}
$$

c) We now introduce:

$$
P_{i j}(t)=P(X(t)=j \mid X(0)=i), \quad \text { for all } i, j \in \mathcal{X},
$$

and let $\boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$, where:

$$
\pi_{j}=\lim _{t \rightarrow \infty} P_{i j}(t), \quad \text { for all } j \in \mathcal{X},
$$

assuming that the limits exist.
Kolmogorov's forward equations can be written as:

$$
\boldsymbol{P}^{\prime}(t)=\boldsymbol{P}(t) \boldsymbol{R},
$$

where:

$$
\boldsymbol{P}(t)=\left[\begin{array}{lll}
P_{1,1}(t) & P_{1,2}(t) & P_{1,3}(t) \\
P_{2,1}(t) & P_{2,2}(t) & P_{2,3}(t) \\
P_{3,1}(t) & P_{3,2}(t) & P_{3,3}(t)
\end{array}\right]
$$

Use this to show that $\boldsymbol{\pi}$ must satisfy the following set of equations:

$$
\pi R=0
$$

SOLUTION:

Since we have assumed that the above limits exist, it follows that:

$$
\lim _{t \rightarrow \infty} P_{i j}^{\prime}(t)=0, \quad \text { for all } i, j \in \mathcal{X}
$$

Hence, by taking the limit, the left-hand side of Kolmogorov's forward equations becomes:

$$
\lim _{t \rightarrow \infty} \boldsymbol{P}^{\prime}(t)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Furthermore, the right-hand side of Kolmogorov's forward equations becomes:

$$
\lim _{t \rightarrow \infty} \boldsymbol{P}(t) \boldsymbol{R}=\left[\begin{array}{ccc}
\pi_{1} & \pi_{2} & \pi_{3} \\
\pi_{1} & \pi_{2} & \pi_{3} \\
\pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right] \cdot \boldsymbol{R}
$$

Hence, we get that:

$$
\boldsymbol{\pi} \boldsymbol{R}=\mathbf{0}
$$

d) Show that:

$$
\pi_{j}=\frac{\lambda_{j}^{-1}}{\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}}, \quad j=1,2,3 .
$$

[Hint: Substitute $y_{j}=\lambda_{j} \pi_{j}, j=1,2,3$ in the equations.]

SOLUTION:

The limit distribution π can be found by solving the set of linear equations $\boldsymbol{\pi} \boldsymbol{R}=\mathbf{0}$ combined with the equation $\pi_{1}+\pi_{2}+\pi_{3}=1$.

These equations can be written as:

$$
\begin{aligned}
-\lambda_{1} \pi_{1}+\lambda_{2} q \pi_{2}+\lambda_{3} p \pi_{3} & =0 \\
\lambda_{1} p \pi_{1}-\lambda_{2} \pi_{2}+\lambda_{3} q \pi_{3} & =0 \\
\lambda_{1} q \pi_{1}+\lambda_{2} p \pi_{2}-\lambda_{3} \pi_{3} & =0
\end{aligned}
$$

We simplify the equations by substituting $y_{j}=\lambda_{j} \pi_{j}, j=1,2,3$:

$$
\begin{aligned}
-y_{1}+q y_{2}+p y_{3} & =0 \\
p y_{1}-y_{2}+q y_{3} & =0 \\
q y_{1}+p y_{2}-y_{3} & =0
\end{aligned}
$$

By 1(d) these equations are satisfied if $y_{1}=y_{2}=y_{3}$. Hence, by substituting back we get that:

$$
\lambda_{1} \pi_{1}=\lambda_{2} \pi_{2}=\lambda_{3} \pi_{3}
$$

This implies that $\boldsymbol{\pi}=c\left(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \lambda_{3}^{-1}\right)$ where c is a constant. Finally, we determine c so that $\pi_{1}+\pi_{2}+\pi_{3}=1$, and get:

$$
\pi_{j}=\frac{\lambda_{j}^{-1}}{\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}}, \quad j=1,2,3 .
$$

Alternatively, we observe that the matrix \boldsymbol{Q} is doubly stochastic. Thus, it follows that if $\boldsymbol{\rho}=c(1,1,1)$, where c is a constant, then:

$$
\rho Q=\rho
$$

We proceed by letting:

$$
\boldsymbol{\kappa}=\boldsymbol{\rho} \boldsymbol{\Lambda}^{-1}=c(1,1,1) \cdot\left[\begin{array}{ccc}
\lambda_{1}^{-1} & 0 & 0 \\
0 & \lambda_{2}^{-1} & 0 \\
0 & 0 & \lambda_{3}^{-1}
\end{array}\right]=c\left(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \lambda_{3}^{-1}\right)
$$

Then by the result in (b) it follows that:

$$
\kappa R=0
$$

Finally, we determine c so that $\kappa_{1}+\kappa_{2}+\kappa_{3}=1$. That is, c must satisfy:

$$
c\left(\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}\right)=1
$$

Thus, we get that:

$$
c=\left(\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}\right)^{-1}
$$

With this c-value the vector κ satisfies all conditions for the limit distribution. That is, $\boldsymbol{\pi}=\boldsymbol{\kappa}$, or more specifically:

$$
\pi_{j}=\frac{\lambda_{j}^{-1}}{\lambda_{1}^{-1}+\lambda_{2}^{-1}+\lambda_{3}^{-1}}, \quad j=1,2,3,
$$

as before.

Problem 4

Let $\{N(t): t \geq 0\}$ be a renewal process with interarrival times X_{1}, X_{2}, \ldots. The renewal times, denoted by S_{0}, S_{1}, \ldots, are given by:

$$
S_{0}=0, \quad S_{n}=\sum_{i=1}^{n} X_{i}, \quad n=1,2, \ldots
$$

The cumulative distribution function of the interarrival times is denoted by F, and we let $\bar{F}(t)=1-F(t)$.
a) Show that:

$$
P(N(t)=n)=\int_{0}^{t} \bar{F}(t-s) f_{S_{n}}(s) d s, \quad n=1,2, \ldots
$$

where $f_{S_{n}}$ denotes the density function of $S_{n}, n=1,2, \ldots$
(Continued on page 10.)

SOLUTION:

$P(N(t)=n)$ can be calculated by conditioning on S_{n} :

$$
\begin{aligned}
P(N(t)=n) & =\int_{0}^{\infty} P\left(N(t)=n \mid S_{n}=s\right) f_{S_{n}}(s) d s \\
& =\int_{0}^{t} P\left(N(t)=n \mid S_{n}=s\right) f_{S_{n}}(s) d s+\int_{t}^{\infty} 0 \cdot f_{S_{n}}(s) d s \\
& =\int_{0}^{t} P\left(X_{n+1}>t-s \mid S_{n}=s\right) f_{S_{n}}(s) d s \\
& =\int_{0}^{t} \bar{F}(t-s) f_{S_{n}}(s) d s
\end{aligned}
$$

b) Assume that X_{1}, X_{2}, \ldots are independent and exponentially distributed with rate λ. Explain briefly why this implies that:

$$
f_{S_{n}}(s)=\frac{\lambda^{n}}{(n-1)!} s^{n-1} e^{-\lambda s}, \quad s>0, \quad n=1,2, \ldots
$$

and use this to show that:

$$
P(N(t)=n)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}, \quad n=0,1, \ldots
$$

SOLUTION:

If X_{1}, X_{2}, \ldots are independent and exponentially distributed with rate λ it follows that:

$$
S_{n} \sim \operatorname{Gamma}(n, \lambda), \quad n=1,2, \ldots
$$

Thus, the density of S_{n} is:

$$
f_{S_{n}}(s)=\frac{\lambda^{n}}{(n-1)!} s^{n-1} e^{-\lambda s}, \quad s>0, \quad n=1,2, \ldots
$$

We proceed by using the result from (a), and get:

$$
\begin{aligned}
P(N(t)=n) & =\int_{0}^{t} e^{-\lambda(t-s)} \cdot \frac{\lambda^{n}}{(n-1)!} s^{n-1} e^{-\lambda s} d s \\
& =\frac{\lambda^{n} e^{-\lambda t}}{(n-1)!} \int_{0}^{t} s^{n-1} d s \\
& =\frac{\lambda^{n} e^{-\lambda t}}{(n-1)!}\left[\frac{1}{n} s^{n}\right]_{0}^{t} \\
& =\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}, \quad n=1,2, \ldots
\end{aligned}
$$

Finally, we have:

$$
P(N(t)=0)=P\left(X_{1}>t\right)=e^{-\lambda t}=\frac{(\lambda t)^{0}}{0!} e^{-\lambda t}, \quad t>0 .
$$

