Consider now a general birth and death process $\{x(t), t \geqslant 0\}$ with birth rates $\lambda_{0}, \lambda_{1}, \ldots$, and death rates μ_{0}, μ_{1}, \ldots, where $\mu_{0}=0$. Assume that $X(0)=i$, where $i \geqslant 0$, and define T_{i} to be the time until the process enters state $i+1$ for the first time.

Last time, we verified that

$$
\begin{aligned}
& \mathbb{E}\left[T_{0}\right]= \frac{1}{\lambda_{0}} \\
& \mathbb{E}\left[T_{1}\right]= \frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1} \cdot \lambda_{0}} \\
& \mathbb{E}\left[T_{2}\right]= \frac{1}{\lambda_{2}}+\frac{\mu_{2}}{\lambda_{2}}\left(\frac{1}{\lambda_{1}}+\frac{\mu_{1}}{\lambda_{1}} \cdot \frac{1}{\lambda_{0}}\right) \\
& \cdot \cdot \\
& \mathbb{E}\left[T_{i}\right]=\frac{1}{\lambda_{i}}+\frac{\mu_{i}}{\lambda_{i}} \mathbb{E}\left[T_{i-1}\right]
\end{aligned}
$$

More generally, asseming that $X(0)=i$, we let $T_{i j}$ be the time until the process enters state j for the first time, where $j>i$. Then we have

$$
\begin{aligned}
\mathbb{E}\left[T_{i j}\right] & =\mathbb{E}\left[T_{i, i+1}\right]+\mathbb{E}\left[T_{i+1, i+2}\right]+\ldots+\mathbb{E}\left[T_{j-1, j}\right] \\
& =\sum_{k=i}^{j-1} \mathbb{E}\left[T_{k}\right] .
\end{aligned}
$$

6.4. The transition probability function

Let $\{x(t), t \geq 0\}$ be a contimusus-time Marleor chain with discrete state space and homogeneous transition probabilities. Denote

$$
P_{i, j}(t):=P P(x(t+s)=j \mid x(s)=i)
$$

In this section, we will derive some important
differential equations for $P_{i, j}(t)$. But before that, let us introduce several awriliary lemmas.

Recall that the definition of a homogeneous Markov chain can be given as follows:

A continuous-time Markov chain with homogeneous transitions and discrete state space $\not \subset$ is a stochastic process such that:
(i) the times spent in different states are independent randan variables (because of the Markov property);
(ii) the amount of time spent in each state ie \mathcal{X} is an exponentially distributed random variable with
parameter J_{i} (because of the Markov property and stationarity);
(iii) when the process leaves a state $i \in \mathcal{X}$ it enters a state j with the following transition probabilities:

$$
\begin{aligned}
& Q_{i, i}=0, \quad i \in x \\
& \sum_{j \in æ} Q_{i, j}=1, \quad i \in x
\end{aligned}
$$

(iv) Transitions follow a discrete time Marteou chain.

Denote $\quad q_{i . j}:=J_{i} Q_{i, j}$
Interpretation: $q_{i . j}$ - rate at which the process makes a transition to state j, when in state i.

The quantities $9_{i . j}$ are called instantaneous transition rates.

Since we have that

$$
\sum_{j \in \mathscr{X}} q_{i, j}=\nu_{i} \sum_{j \in \partial x} Q_{i . j}=J_{i},
$$

$Q_{i . j}=\frac{q_{i, j}}{\partial i}=\frac{q_{i, j}}{\sum_{j \in \partial c} Q_{i . j}} \Rightarrow$ the probabilistic properties of $\{X(t), t \geqslant 0\}$ are completely characterized by the $9_{i . j}{ }^{\prime}$'s.

Lemma 6.2 Let $P_{i . j}(t)=\mathbb{P}(X(t)=j \backslash X(0)=i), i, j \in \mathcal{E}$. Then
(a) $\quad \lim _{h \rightarrow 0} \frac{1-P_{i, i}(h)}{h}=J_{i}$
(b) $\quad \lim _{h \rightarrow 0} \frac{P_{i, j}(h)}{h}=9 i, j$ for all $j \neq i$.

Proof Let $X(0)=i$.
We start by noting that the amount of time T_{i} until a transition from i occurs is exponentially distributed. In particular, this means under some mild assumptions that
$\mathbb{P}($ there will be no transition on interval $[0, h])=$

$$
=\mathbb{P}\left(T_{i}>h\right)=e^{-J i h}=1-\partial_{i} h+0(h), h \rightarrow 0
$$

P (there will be one transition on interval $[0, h])=\nu_{i} h+o(h)$ $\mathbb{P}(t h e r e$ will be two or more transitions on $[0, h])=O(h)$ as $\quad h \rightarrow 0$.

Hence

$$
\begin{aligned}
\mathbb{P}(X(h) \neq i \mid X(0)=i) & =1-\mathbb{P}(X(h)=i \mid X(0)=i)=1-P_{i, i}(h) \\
& =J_{i} h+0(h), h \rightarrow 0 .
\end{aligned}
$$

Hence

$$
\lim _{h \rightarrow 0} \frac{1-P_{i, i}(h)}{h}=J_{i}
$$

Similarly, if $i \neq j$, we get

$$
\begin{aligned}
& P_{i, j}(h)=\mathbb{P}(X(h)=j \mid X(0)=i)=J_{i} Q_{i, j} h+O(h) \text {, whence } \\
& \quad \lim _{h \rightarrow 0} \frac{P_{i, j}(h)}{h}=J_{i} Q_{i, j}=9_{i, j}
\end{aligned}
$$

Lemma 6.3 (Chapman-Kalmogorov equations) For all $s, t \geqslant 0$ and
$i . j \in \mathscr{X}$, we have

$$
P_{i, j}(t+s)=\sum_{k \in \nsim} P_{i, k}(t) P_{k, j}(s) .
$$

Proof We have:

$$
\begin{aligned}
& P_{i, j}(t+s)=\mathbb{P}(x(t+s)=j \mid x(0)=i) \\
= & \sum_{k \in x} \mathbb{P}(x(t+s)=j, x(t)=k \mid x(0)=i)= \\
= & \sum_{k \in æ} \mathbb{P}(x(t+s)=j \mid x(t)=k, x(0)=i) \mathbb{P}(x(t)=k \mid x(0)=i) \\
= & \sum_{k \in x} \mathbb{P}(x(t+s)=j \mid x(t)=k) \mathbb{P}(x(t)=k \mid x(0)=i) \\
= & \sum_{k \in x} P_{i, k}(t) P_{k, j}(s)
\end{aligned}
$$

Theorem 6.1 For all $t \geqslant 0$ and states $i, j \in \mathscr{X}$, we have

$$
P_{i, j}^{\prime}(t)=\sum_{k \in x \backslash\{i\}} q_{i, k} P_{k, j}(t)-\partial_{i} P_{i, j}(t) . \quad(K B E)
$$

Proof By Lemma 6．3，we hove：

$$
\begin{aligned}
& P_{i, j}(t+h)-P_{i, j}(t)=\sum_{k \in x} P_{i, k}(h) P_{k, j}(t)-P_{i, j}(t) \\
&=\sum_{k \in æ \backslash\{i\}} P_{i, k}(h) P_{k, j}(t)+P_{i, i}(h) P_{i, j}(t)-P_{i, j}(t) \\
&=\sum_{k \in æ \backslash\{i\}} P_{i, k}(h) P_{k, j}(t)-P_{i, j}(t)\left(1-P_{i, i}(h)\right)
\end{aligned}
$$

Hence

$$
\frac{P_{i, j}(t+h)-P_{i, j}(t)}{h}=\sum_{k \in ⿱ 亠 䒑 \backslash\{i\}} \frac{P_{i, k}(h)}{h} P_{k, j}(t)-P_{i, j}(t) \frac{1-P_{i, i}(h)}{h}
$$

By and Lemma 6．2，we obtain the result

Kolmogorov backward equations：

$$
P_{i, j}^{\prime}(t)=\sum_{k \in \mathscr{X} \backslash\{i\}} q_{i, k} P_{k, j}(t)-\partial_{i} P_{i, j}(t), \quad i, j \in \mathcal{X} .
$$

Remark Recall that

$$
\partial_{i}=\sum_{j \in \mathscr{x}} q_{i . j}=\sum_{j \in x} J_{i} Q_{i, j}=\left[Q_{i, i}=0\right]=\sum_{j \in \nsim \backslash\{i\}} q_{i . j}
$$

Hence $\sum_{k \in x \backslash\{i\}} q_{i, k}-J_{i}=0$ ．

We now assume that $\mathcal{D}=\{1,2, \ldots, n\}$ and introduce the following matrices：

$$
\begin{aligned}
& R:=\left(\begin{array}{ccccc}
-J_{1} & q_{1,2} & q_{1,3} & \cdots & q_{1, n} \\
q_{2,1} & -\nu_{2} & q_{2,3} & \cdots & q_{2, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
q_{n, 1} & q_{n, 2} & q_{n, 3} & \cdots & -j_{n}
\end{array}\right) \\
& P(t)=\left(\begin{array}{cccc}
P_{1,1}(t) & P_{1,2}(t) & \cdots & P_{1, n}(t) \\
\vdots & \vdots & \ddots & \vdots \\
P_{n, 1}(t) & P_{n, 2}(t) & \cdots & P_{n, n}(t)
\end{array}\right)
\end{aligned}
$$

Then the Kolnogorov backward equations can be written as

$$
P^{\prime}(t)=R P(t) .
$$

Example 6.10 Let $\{x(t), t \geqslant 0\}$ be a birth and death
process with rates $\left\{\lambda_{n}\right\}_{n \geqslant 0},\left\{\mu_{n}\right\}_{n \geqslant 0}$. We have:

$$
\begin{aligned}
& q_{n, n+1}=\left(\lambda_{n}+\mu_{n}\right) \cdot \frac{\lambda_{n}}{\lambda_{n}+\mu_{n}}=\lambda_{n}, n \geqslant 0 \\
& q_{n, n-1}=\left(\lambda_{n}+\mu_{n}\right) \cdot \frac{\mu_{n}}{\lambda_{n+j}}=\mu_{n} \\
& q_{n, k}=0 \quad \text { otherwise. }
\end{aligned}
$$

The matrix R then has the form

$$
R=\left(\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \cdots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\begin{gathered}
P^{\prime}(t)=R P(t) \\
P_{0, j}^{\prime}(t)=-\lambda_{0} P_{0, j}(t)+\lambda_{0} P_{1, j}(t)=\lambda_{0} P_{1, j}(t)-\lambda_{0} P_{0, j}(t) \\
P_{i, j}^{\prime}(t)=\quad \mu \mu_{i} P_{i-1, j}(t)+\lambda_{i} P_{i+1, j}(t)-\left(\lambda_{i}+\mu \mu_{i}\right) P_{i, j}(t), i \neq 0 .
\end{gathered}
$$

Theorem 6.2 For all $t \geq 0$ and states $i, j \in \mathcal{C}$ we have:

$$
P_{i, j}^{\prime}(t)=\sum_{k \in \nsim \backslash\{j\}} P_{i, k}(t) q_{k, j}-P_{i, j}(t) \nu_{j} \quad(K F E)
$$

Proof By Lemma 6.2,

$$
\begin{aligned}
P_{i, j}(t+h)-P_{i, j}(t)= & \sum_{k \in \notin} P_{i, k}(t) \cdot P_{k, j}(h)-P_{i, j}(t)= \\
& =\sum_{k \in æ \backslash\{j\}} P_{i, k}(t) P_{k, j}(h)-\left(P_{i, j}(t)-P_{i, j}(t) P_{j, j}(h)\right)= \\
& =\sum_{k \in æ \backslash\{j\}} P_{i, k}(t) P_{k, j}(h)-P_{i, j}(t)\left(1-P_{j, j}(h)\right) .
\end{aligned}
$$

Now divide both sides by h and apply Lemma 6.3 Equations (KFE) are called Kolmagarov forward equations.

Matrix form:

$$
P^{\prime}(t)=P(t) R
$$

Remark (Warning) In the "proofs" of Lemma 6.2, Theorem 6.1 and Theorem 6.2 we performed unjustified interchanges of limiting operations, interchanges of sums and limits etc

For "reasonable" Markov chains they hold, but in general one should be very careful: one can come up with on example of a Markov chain such that for some its state i

$$
\lim _{h \rightarrow 0} \frac{1-P_{1 . i}(h)}{h}=-\infty
$$

which completely spoils all the arguments we had. However, these technicalities are out of scope of our course.

Example 6.12 Let $\{x(t), t \geqslant 0\}$ be again a birth and death process.

$$
R=\left(\begin{array}{cccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & 0 & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & 0 & \cdots \\
0 & 0 & \mu_{3} & -\left(\lambda_{3}+\mu_{3}\right) & \lambda_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots
\end{array}\right)
$$

Then the Kolmogorov forward equations look as follows:

$$
\begin{aligned}
& P_{i, 0}^{\prime}(t)=P_{i, 1}(t) \mu_{1}-P_{i, 0}(t) \lambda_{0} \stackrel{\text { there was a typo here in the }}{ } \begin{array}{l}
\text { previous version of the lecture }
\end{array} \\
& P_{i, j}^{\prime}(t)=P_{i, j, 1}(t) \lambda_{j-1}+P_{i, j+1}(t) \mu_{j+1}-\left(\lambda_{j+} \mu_{j}\right) P_{i, j}(t)
\end{aligned}
$$

