Consider now a general birth and death process $f \times (\pm), \pm \ge 0$ with birth rates $\lambda_0, \lambda_1, ..., and$ death rates $\mu_0, \mu_1, ..., \mu_{n-1}$ where $\mu_0 = 0$. Assume that X(0) = i, where $i \ge 0$, and define Ti to be the time until the process enders state $i \pm 1$ for the first time.

Last time, we verified that

$$\mathbb{E}[T_{0}] = \frac{1}{\lambda_{0}},$$

$$\mathbb{E}[T_{1}] = \frac{1}{\lambda_{1}} + \frac{M_{1}}{\lambda_{1} \cdot \lambda_{0}}$$

$$\mathbb{E}[T_{2}] = \frac{1}{\lambda_{2}} + \frac{M_{2}}{\lambda_{2}} \left(\frac{1}{\lambda_{1}} + \frac{M_{1}}{\lambda_{1}} \cdot \frac{1}{\lambda_{0}}\right)$$

$$\mathbb{E}[T_{1}] = \frac{1}{\lambda_{1}} + \frac{M_{1}}{\lambda_{1}} \mathbb{E}[T_{1-1}]$$

$$\mathbb{E}[T_{1}] = \frac{1}{\lambda_{1}} + \frac{M_{1}}{\lambda_{1}} \mathbb{E}[T_{1-1}]$$

More generally, assuming that X(o) = i, we let Tij be the time until the process enters state j for the first time, where j > i. Then we have

$$\begin{split} \mathbb{E}[T_{i_{\dot{\partial}}}] &= \mathbb{E}[T_{i,i_{4}}] + \mathbb{E}[T_{i_{4},i_{4}2}] + \dots + \mathbb{E}[T_{\dot{\partial}}, i_{\dot{\partial}}] \\ &= \sum_{k=i_{k}}^{\dot{\partial}^{-1}} \mathbb{E}[T_{k}]. \end{split}$$

6.4. The transition probability function

Let {X(t), t>03 be a continuous-time Markow chain with discrete state space and homogeneous transition probabilities. Denote

$$P_{i,j}(t) := \mathbb{P}(x_{i+s}) = \frac{1}{2} | x_{i+s} = \frac{1}{2} |$$

In this section, we will derive some important

differential equations for Pi, j (+). But before that, let us introduce several auxiliary lemmas.

Recall that the definition of a homogeneous Markow chain can be given as follows:

A continuous-time Markov chain with homogeneous transitions and discrete state space IC is a stochastic process such that:

(i) the times spent in different states are independent random variables (because of the Markov property); (ii) the amount of time spent in each state ie \mathfrak{X} is an exponentially distributed random variable with parameter \mathfrak{I}_i (because of the Markov property and stationarity); (iii) when the process leaves a state ie \mathfrak{X} it enters a state j with the following transition probabilities: $Q_{i,i} = \mathfrak{O}, \quad i \in \mathfrak{X},$ $\sum_{j \in \mathfrak{X}} Q_{i,j} = \mathfrak{L}, \quad i \in \mathfrak{X}.$

(iv) Transitions follow a discrete time Markov chain.

Denote
$$q_{i,j} := \exists i Q_{i,j}$$

Interpretation: $q_{i,j}$ - rate at which the process makes
a transition to state j, when in state i.

The quantities qing are called instantaneous transition rates.

Since we have that

$$\sum_{j\in\mathscr{B}} q_{i,j} = \partial_i \sum_{j\in\mathscr{B}} Q_{i,j} = \partial_i,$$

 $Q_{i,j} = \frac{q_{i,j}}{d_i} = \frac{q_{i,j}}{\sum_{j \in \mathcal{Q}_{i,j}}} \implies \text{the probabilistic properties}$ of f(X(t), t>0 are completely characterised by the $q_{i,j}$'s.

Lemma 6.2 Let
$$P_{i,j}(t) = \mathbb{P}(X(t) = j | X(o) = i)$$
, $i, j \in \mathcal{X}$. Then
(a) $\lim_{h \to 0} \frac{1 - P_{i,i}(h)}{h} = J_i$.

(b)
$$\lim_{k \to 0} \frac{P_{i,j}(k)}{k} = 1$$
; for all $j \neq i$.

under some mild

≥ ∫	Let	X(0)=	Ŀ.						
We	Start	by	noting	that	the	amount	ьł	time	Τi
unti	l a	transi	tion f	rom i	. oc	uns is	expo	nentially	ł
dist	sibuted.	In	particu	lac,	this	means u	uder	SOME	mil
assu	mptions	that							
P(there w	ill be	no tra	writion o	n int	erval [0	, & I)	=	
=	= P(T ₂ > %) = e	-) [;] e =	1 -	$\partial_i h + 0$	(ه)	,	>

 $\mathbb{P}(\text{there will be one transition on interval } [0, R]) = \partial_i h + o(h)$ P(there will be two or more transitions on [0, B] = o(B) as & >0.

Hence

Pro

$$\mathbb{P}(X(k) \neq i \mid X(o) = i) = 1 - \mathbb{P}(X(k) = i \mid X(o) = i) = 1 - P_{i,i}(k)$$
$$= \Im(k + O(k), \ k \to 0.$$

Hence

$$\lim_{k \to 0} \frac{1 - P_{i,i}(k)}{k} = D_{i}.$$

Similarly, if
$$i \neq j$$
, we get
 $P_{i,j}(k) = \mathbb{P}(X(k) = j \mid X(0) = i) = \sum_{i=1}^{j} Q_{i,j}(k) + O(k)$, whence
 $\lim_{k \to 0} \frac{P_{i,j}(k)}{k} = \sum_{i=1}^{j} Q_{i,j}(k) = Q_{i,j}(k)$

Lemma 6.3 (Chapman - Kolmogorov equations) For all
$$s, \pm \ge 0$$
 and
 $i,j \in \mathfrak{X}$, we have
 $P_{i,j}(\pm \pm s) = \sum_{k \in \mathfrak{X}} P_{i,k}(\pm) P_{k,j}(s)$.

Proof We have:

$$P_{i,j}(t+s) = P(X(t+s) = j | X(o) = i)$$

$$= \sum_{\substack{k \in \mathcal{X} \\ k \in \mathcal{X}}} \mathbb{P}(x_{i}t_{+}s) = \frac{1}{2}, x_{i}(t_{+}) = \frac{1}{2} | x_{i}(t_{+}$$

Theorem 6.1 For all t

$$P'_{i,j}(t) = \sum_{k \in \mathcal{X}(i)} q_{i,k} P_{k,j}(t) - \partial; P_{i,j}(t). \quad (KBE)$$

Proo f

By Lemma 6.3, we have:

$$P_{i,j}(\pm + k) - P_{i,j}(\pm) = \sum_{k \in \infty} P_{i,k}(k) P_{k,j}(\pm) - P_{i,j}(\pm)$$

$$= \sum_{k \in \infty} P_{i,k}(k) P_{k,j}(\pm) + P_{i,i}(k) P_{i,j}(\pm) - P_{i,j}(\pm)$$

$$= \sum_{k \in \infty \setminus \{i\}} P_{i,k}(k) P_{k,j}(\pm) - P_{i,j}(\pm) (1 - P_{i,i}(k))$$

Hence

$$\frac{P_{i,j}(\pm+R)-P_{i,j}(\pm)}{R} = \sum_{k \in \mathcal{B} \setminus \{i\}} \frac{P_{i,k}(R)}{R} P_{k,j}(\pm) - P_{i,j}(\pm) \frac{1-P_{i,i}(R)}{R}$$

By
$$h \rightarrow 0$$
 and Lemma 6.2, we obtain the result

$$P'_{i,j}(t) = \sum_{\substack{k \in \mathcal{X} \setminus \{i\}}} \mathcal{P}_{i,k} \mathcal{P}_{k,j}(t) - \mathcal{D}_i \mathcal{P}_{i,j}(t), \quad i,j \in \mathcal{X}.$$

Remark Recell that $\exists i = \sum_{j \in \mathcal{X}} q_{i,j} = \sum_{j \in \mathcal{X}} \exists i Q_{i,j} = [Q_{i,1} = o] = \sum_{j \in \mathcal{X} \setminus \{i\}} q_{i,j}$ Hence $\sum_{k \in \mathcal{X} \setminus \{i\}} q_{i,k} - \exists i = o.$

We now assume that $\Im C = \{1, 2, ..., n\}$ and introduce the following matrices:

$$R := \begin{pmatrix} -\partial_{n} & q_{1,2} & q_{1,3} & \cdots & q_{1,n} \\ q_{2,1} & -\partial_{2} & q_{2,3} & \cdots & q_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ q_{n,1} & q_{n,2} & q_{n,3} & \cdots & -\partial_{n} \end{pmatrix}$$

$$P(t) = \begin{pmatrix} P_{1,1}(t) & P_{1,2}(t) & \cdots & P_{1,n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ P_{n,1}(t) & P_{n,2}(t) & \cdots & P_{n,n}(t) \end{pmatrix}$$

Then the Kolmogorov backward equations can be written as

$$P'(t) = RP(t)$$

Example 6.10 Let $\{x(t), \pm zo\}$ be a birth and death process with rates $\{\lambda_n\}_{n>0}$, $\{\mu_n\}_{n>0}$. We have: $q_{n,n+1} = (\lambda_n + \mu_n) \cdot \frac{\lambda_n}{\lambda_n + \mu_n} = \lambda_n, n \ge 0$ $q_{n,n-1} = (\lambda_n + \mu_n) \cdot \frac{\mu_n}{\lambda_n + \mu_n} = \mu_n, n \ge 0$ $q_{n,k} = 0$ otherwise.

The motrix R then has the form

$$R = \begin{pmatrix} -\lambda_{0} & \lambda_{0} & 0 & 0 & \cdots \\ \mathcal{M}_{1} & -(\lambda_{1}+\mathcal{M}_{1}) & \lambda_{1} & 0 & 0 & \cdots \\ 0 & \mathcal{M}_{2} & -(\lambda_{2}+\mathcal{M}_{2}) & \lambda_{2} & 0 & \cdots \\ 0 & 0 & \mathcal{M}_{3} & -(\lambda_{5}+\mathcal{M}_{5}) & \lambda_{3} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$P'(t) = RP(t)$$

$$P'_{0,j}(t) = -\lambda_0 P_{0,j}(t) + \lambda_0 P_{1,j}(t) = \lambda_0 P_{3,j}(t) - \lambda_0 P_{0,j}(t)$$

$$P'_{i,j}(t) = \mathcal{M}_i P_{i,j}(t) + \lambda_i P_{i+3,j}(t) - (\lambda_i + \mathcal{M}_i) P_{i,j}(t), \quad i \neq 0.$$

Theorem 6.2	For	all	tso	and	states	i,je X	سو	have:
	Pi,j (E) = (∑ F <eæ\{j}< th=""><th>^{>}i, k (+) (</th><th>7 ĸ.j -</th><th>Pi,;(+));</th><th></th><th>(KFE)</th></eæ\{j}<>	^{>} i, k (+) (7 ĸ.j -	Pi,;(+));		(KFE)
Proof	By Le	unina	۵. کې					

$$P_{i,\dot{b}}(t+k) - P_{i,\dot{b}}(t) = \sum_{k \in \mathcal{X}} P_{i,k}(t) \cdot P_{k,\dot{b}}(k) - P_{i,\dot{b}}(t) =$$

$$= \sum_{k \in \mathcal{X} \setminus \{j\}} P_{i,k}(t) P_{k,\dot{b}}(k) - \left(P_{i,\dot{b}}(t) - P_{i,\dot{b}}(t) P_{j,\dot{b}}(k) \right) =$$

$$= \sum_{k \in \mathcal{X} \setminus \{j\}} P_{i,k}(t) P_{k,\dot{b}}(k) - P_{i,\dot{b}}(t) \left(1 - P_{\dot{b},\dot{b}}(k) \right).$$

Now divide both sides by R and apply Lemma 6.3 Equations (KFE) are called Kolmogorov forward equations.

For "reasonable" Markov chains they hold, but in general one should be very careful: one can come up with an example of a Markov chain such that for some its state i

$$\lim_{h \to 0} \frac{1 - P_{i,i}(h)}{h} = -\infty;$$

which completely spoils all the arguments we had. However, these technicalities are out of scope of our course.

Example 6.12

$$R = \begin{pmatrix} -\lambda_{0} & \lambda_{0} & 0 & 0 & 0 & \cdots \\ \mathcal{M}_{1} & -(\lambda_{1}+\mathcal{M}_{1}) & \lambda_{1} & 0 & 0 & \cdots \\ 0 & \mathcal{M}_{2} & -(\lambda_{2}+\mathcal{M}_{2}) & \lambda_{2} & 0 & \cdots \\ 0 & 0 & \mathcal{M}_{3} & -(\lambda_{5}+\mathcal{M}_{5}) & \lambda_{3} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Then the Kolmogorov forward equations look as follows: there was a type here in the $P'_{i,0}(t) = P_{i,1}(t) \mu_1 - P_{i,0}(t) \lambda_0$ $P'_{i,j}(t) = P_{i,j-1}(t) \lambda_{j-1} + P_{i,j+1}(t) \mu_{j+1} - (\lambda_j + \mu_j) P_{i,j}(t)$