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Markov Chain Monte Carlo Methods (MCMC)

Let Z be a discrete random variable with a state space S, and assume that:
_b
=5
We assume that b; is known for all i € S. Since the probabilities must add up to 1, we obviously have:

Z%:Bqu,‘:'l.

ieS ieS

P(Z =)=, i€s.

Hence, it follows that the normalizing constant B is given by:

B:Zb,-.

icS

Thus, in principle B is known as well. However, if |S| is large, calculating B may be a time-consuming task.
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Markov Chain Monte Carlo Methods (MCMC)

Let T and Z be two discrete random variables with state spaces 7 and S respectively. We assume that the
marginal distribution of Z and the conditional distribution of T given Z are known.

The conditional distribution of Z given T is then:

PZ=)P(T=t|Z=1i) _ b(l)
Yies PEZ=NDP(T=t1Z=j) B(t)’

P(Z=i|T=1t)= i€S teT,

where we have introduced:
bi(t)=P(Z=0NP(T=t|Z=1i), i€S,teT,
B(t):Z]P’(Z:j)IP(T:t|Z:j):IP(T:t), teT.

jes

If | S| is large, we may want to avoid calculating B(t).
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Markov Chain Monte Carlo Methods (MCMC)

Construct a Markov chain { Xy} with state space S and stationary distribution equal to the distribution of Z.

SOLUTION (Hastings-Metropolis): Let Q be any given irreducible Markov chain transition probability matrix
on S, and define:

aey ) -
ajj = min =1, i,jeS.
5] (bl Qi,j /
We then let the transition probability matrix of {X,}, denoted P, be defined as follows:
Pij= Qiaij, 1#],
Pii=1- Z Qijaij, [€S.
j#i
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Markov Chain Monte Carlo Methods (MCMC)

We then claim that {X,} is time reversible and has a stationary distribution equal to the distribution of Z.
Thatis, m; = b;/B, forall i € S, and:

'IT,'P/,/' = 'IT/‘P/‘,/, for all I'7j. €S. (1)
Since (1) is trivially satisfied for i = j, we focus on the case where i # j, where (1) can be expressed as:
b; b; .,
EIO,‘,,/O’/J = éoj,/aj,i7 i # . (2)
By eliminating B from these equations and inserting the expression for «; ; we get:
. b,-O,-,- . b/Q,’j . .
6@, min (g 1) =6y min (PEL1). 2] ®
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Markov Chain Monte Carlo Methods (MCMC)

CASE 1: b,Q;; < b;Q;.;.
In this case a;; = 1 while a;; = (b;Q;;)/(b;Q;,i), and hence, (3) simplifies to:

biQij = biQi- (biQi) /(b Qi), 1#].

CASE 2: b/Q,',j > b,-O,;,v.
In this case a;; = (b;Q;,i)/(biQi ;) while a;; = 1, and hence, (3) simplifies to:

biQi;- (b;Qi)/(biQij) = bQyi, 1 #J.

Since obviously both (4) and (5) hold true, we conclude that (1) holds true as well.
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Markov Chain Monte Carlo Methods (MCMC)
We recall that:
P,',j = Of,,‘a,',j, i;ﬁj,

Pii=1- Z Qi jaij, [€S.
J#i

Assume that X, = i. Then X,.1 can be generated using the following two-step Monte Carlo simulation
procedure:

STEP 1. Generate a random variable J with values in S such that P(J =j) = Q;j, j € S.
STEP 2. Generate K € {0,1} suchthatP(K =1 | J =) = a;j, and let:

Xoo1 =K-j+(1—K)-i

Thus, a transition from state /i to state j where i # j happens if and only if J = j and K = 1. If not, the process
stays in state .
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Markov Chain Monte Carlo Methods (MCMC)

The Monte Carlo simulation procedure can be used to estimate some unknown parameter in the distribution
of Z, e.g.:

6 = E[NZ)] = >_ h(i)P(Z = i),

i€s

where his some function of interest, and the normalizing constant B of the distribution of Z is too
time-consuming to calculate.
By simulating the Markov chain {X,}, having a stationary distribution which is equal to the distribution of Z,
we may estimate & by:

>
B
I
-
>
=3

).

We know that &, — & when n — oo.
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Markov Chain Monte Carlo Methods (MCMC)

® Xi, Xo, . .. are not independent.
® The chain may converge slowly towards its stationary distribution.

Both these issues tend to have a negative effect on the convergence rate of the estimator B
If many of the o j-s are small, the Markov chain tends to get stuck for a long time before eventually transiting

to another state. In such cases the estimator &, will converge very slowly.
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Markov Chain Monte Carlo Methods (MCMC)

For optimal performance, i.e., fast convergence, the matrix Q should ideally be chosen so that:
b;Q,,, = ijjy,‘, for all /,j €S.

Then it follows that:

ajj = min (2’8’//’,1) =1, forallijes.

Hence, Q = P, i.e., Q is itself the transition probability matrix of {X,}.

Finding the optimal matrix Q implies finding a transition probability matrix with a stationary distribution which
is equal to the distribution of Z. In real-life applications, this can be difficult.

Instead we may think of Q as our best guess, while the «; ;-s are correction factors which are used to
generate a Markov chain with the correct stationary distribution.
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Gibbs sampling

Assume that Z = (4, ..., Z;) is a discrete random vector with values in S where:
P(Z=2z)=p(z) =9g(z)/B, forallzes,

where the g(z) is known for all z € S and B is an unknown normalizing constant.

Utilization of the Gibbs sampler assumes that for any i and values x;, j # i, we can generate a random
variable Z having the probability mass function

PZ=2)=PZ=2|Z=zj#i)

We then consider the first step of the Hastings-Metropolis algorithm, and assume that X, =z = (z, ..., z).
The candidate for the next state, X,.1, is generated as follows:

© Generate K uniformly from the set {1, ..., r}.
® For K = k, generate Zx = z conditionalon Z; = z;,i=1,...,(k —1),(k+ 1)...,r.
The resulting candidate for the next state, denoted y, is then:

y = (217"'7Zk71727 Zk+1,...,Zr).
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Gibbs sampling
This implies that we have the following transition probabilities:
Qz7y:17]P)(Zk:Z‘Z,':Z,', I#k)

_ a(y)/B _ a(y)
r->, 9z, 2..2)/B -3, 9(z1,.., 2, ...2r)

By the same type of argument, we also have:

Q. 9(2)

r-32,9@

This implies that:
9(2)Qy = 9(y)Qyz, forallz,yeS.
Hence, azy = 1 for all z,y € S, and thus, Q is an optimal transition probability matrix.

Anton Yurchenko-Tytarenko Lecture 14. Markov Chain Monte Carlo Methods. The Exponential Distribution

3rd March 2022



The Exponential Distribution

A continuous random variable X is said to have an exponential distribution with parameter A > 0, denoted
as X ~ exp(A), if its probability density function is given by:

—Ax >
F(x) = Ae ", x>0,
0, x < 0.

If X ~ exp(A), then the cumulative distribution function of X is given by:

x>0,
x < 0.

X 1— e—?l)(7
F(x) = B(X < x) :/ f(odt =<
0 )
Moreover, the survival function of X is given by:

F(x)=P(X >x) =1 F(X)_{GAX7 x>0,
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The Exponential Distribution

The exponential distribution is a special case of the gamma distribution with parameters o > 0 and A > 0,
denoted as X ~ Gamma(a, A) with probability density function:

A2 a—14—2Ax
x“"le ™, x>0,
f(x) =< @ -
0, x <0,

where I'(a), defined for all o > 0, is the gamma function given by:
Mo) = / x*'e¥dx, T(n)=(n—1)l, n=12 .
0
By substituting u = Ax and du = Adx, we find that:

oo 1 Oo a—1 _—u
fxdx:—/ U e Tdu=1.
Ji o=y
Thus, f(x) is indeed a proper probability density.
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The Exponential Distribution
Assume that X ~ exp(2), and let p > —1. We then have:

E[X"] = / xPf(x)dx = / AxPe=™dx
0 0

_ I'(p+1)/°° P i1 ax
Tk 0 r(p+1)x e " ax

Gamma(p + 1)
2P

In particular:

E[X] = % _ (2;1)! _ % E[X?] — r}(lg,) _ (3;21)! Azz
Var[X] = E[X?] - (E[X))’ = 5 — o =

E R
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The Exponential Distribution
Assume that X ~ Gamma(a, A). Then the moment generating function of X is given by:

e A
Mx(t) = E[e* :/ " x*"'e Mdx
K() =Ele") = | e
AT a1 —(—nx
= xe dx
/o M(a)
_ X C(A=DT ac1_—(a—0)x
e A o
—_— Aa
G
forall t < A
In particular, if X ~ exp(A), we have:
A
MX(t) mv

forall t < A.
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The Exponential Distribution

Proposition 5.1

Assume that Xi, ..., X, are independent and X; ~ exp(A), i =1, ..., n, and let:
Y = X1 Feceqr Xn
Then Y ~ Gamma(n, 7).

PROOF: Using moment generating functions we get:

My (t) = E[6"] = E[e™ 7] = My, (1) - My, (1)
A A A"

A—t A=t (QA-t"

Hence, Y ~ Gamma(n, 7).
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The Exponential Distribution

Proposition 5.1 is a special case of the following more general result:

Assume that Xi, . . ., X, are independent and X; ~ Gamma(a;, A), i = 1, ..., n, and let:
Y=Xi+ -+ X

Then Y ~ Gamma(a, ), where a = Y"1, a;.

PROOF: Using moment generating functions we get:

My (t) = E[6"] = E[e”"" 0] = My, (1) - My (1)
o S
T A= A= (A-0)

Hence, Y ~ Gamma(a, 7).
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Memoryless stochastic variables
A random variable X is said to be memoryless if:

PX>s+t| X>tH)=PX—-t>s|X>t)=P(X>s), foralls,t>0.
Thus, X is memoryless if (X — t) | (X > t) has the same distribution as X.

Note that if X is the lifetime of some unit, (X — t) is the remaining lifetime given that the unit has survived up
to the time t.

If X ~ exp(A), we have:

PH{X >s+t}n{X >t}) _ P(X >s+1)

PX>s+1t|X>1)= P(X > 1) P(X > 1)

o As+D)

= = e =P(X >s).

Hence, we conclude that X is memoryless.
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Memoryless stochastic variables
The memoryless property:

P(X>s+t| X>t)=P(X >s), forallst>0.
is equivalent to the following:

P(X >s+t)=P(X >s)P(X >1t), foralls,t>0.
Since F(x) = P(X > x), this property can also be written as:

F(s+1t)=F(s)F(t), foralls,t>0.

We now show that the exponential distribution is essentially the only distribution with this property.
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Memoryless stochastic variables
Let X be a random variable and let F(x) = P(X > x) be such that:
F(x+y)=F(x)-F(y), forallx,y>0. (6)

Denote
A= —log(F(1)) > 0. (7)

Then X ~ exp(A).
PROOF: We first note that by (7), it follows that:
0<F()=e"<1. (8)

Secondly we note that since cumulative distribution functions always are right-continuous, it follows that
F =1 — Fis right-continuous as well.
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Memoryless stochastic variables
By repeated use of (6) it follows that for n, m € N*, we have:

F‘(%):F‘(%+m+%):ﬁ"’<%), ©)

where the sum contains m terms. In particular, by letting m = n, we get:

= —/n =n (1
F(1):F<E):F (B) (10)
Alternatively, (10) can be written as:
F (15) = (F(1))'/". (11)

By (8) and that F is right-continuous, (11) implies that:

n— oo n— oo

F(0)= lim F (%) = lim (F(1))"/" = 1.

Hence, since F must be non-increasing, F(x) = 1 for all x < 0.
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Memoryless stochastic variables
We now combine (9) and (11), and get:

F(T)=pn (1) = F(1)™", forallm,neN*.
n n

Thus, since F(1) = e~*, we have proved that:
F(q)=F(1)7=e, forallgeQ".
Now, let x € RT. Since the set Q" is dense in R*, there exists a decreasing sequence {g-} C Q* such that:

lim g = x.

r—oo
Since F is right-continuous, this implies that:
= T = T —Aqr _ o—Ax
F(x) = rILngo F(gr) = rango e =e""

Hence, we conclude that X ~ exp(A).
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Example 5.2

The amount of time one spends in a bank, denoted X, is exponentially distributed with mean ten minutes.
That is, X ~ exp(2) = exp (15)-
© What is the probability that a customer will spend more than fifteen minutes in the bank?
® What is the probability that a customer will spend more than fifteen minutes in the bank given that she
is still in the bank after ten minutes?
SOLUTION:

(1]
P(X > 15) = e ™ = ¢ '%/"0  0.223.

(2]
P(X > 15| X > 10) = e ("*7101 = 75/10 », 0.607.
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The Exponential Distribution

Assume that Xj, Xz are independent and that X; ~ exp(A;), i = 1,2. We want to calculate the probability of
the event that X; < X.
The 2-dimensional random variable (X1, X2) has distribution with density

f(x1, %) = MAge” W21 oo,

therefore

[ee] X2
P(Xi < Xo) = / / f(x1, X2)dx1Oxe = A4 2z / / e~ Mx72%) gy, dlx,
X1 <Xo 0 0

oS Xo oo
= 22 / P ( / oM dx1) dxs = M7 / el (1 — e*”*xz) dx
0 Jo 0 A

oo _ oo _ A
=2 e "2 —71/ e Mtlegy, — 1 - 22
2/0 X2 2 A X2 A+
T A+ A
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The Exponential Distribution

Assume that Xj, . . ., X, are independent and that X; ~ exp(A;), i=1,...,n
IP( min X, > X) <ﬂ{X, > x})
i=1
=[P > x)
i=1
n
_ H e—?l,-x
i=1
— o (S Mx

Thus, we have shown that mini<j<, Xi ~ exp (X7, Ai).
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The Exponential Distribution

The following result combines the two previous results.
Assume that Xj, . . ., X, are independent and that X; ~ exp(4;), i = 1, ..., n. We want to calculate the
probability that X; is the smallest of all the variables, i.e., that X; < X; for all j # /.

P(Xi < X; forall j # i) = P(X; < min X))
JF#i
— 7‘/
Ai + Z/-#,- Aj
— Ai
27:1 A
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The Exponential Distribution

Proposition 5.2

Assume that Xi, . . ., X, are independent and that X; ~ exp(A;), i = 1,..., n. Then mini X; ~ exp(>_7_, A;).
Moreover, min; X; and the rank order of Xj, . . . , X, are independent.

PROOF: Since the exponential distribution is memoryless, we get that:

P(X, <--- <X, | 1rl1ii2nX; > 1)

PlX, < - <X

Ny X; > f)

:IP()(,'1—1<~~~<X,'n—t‘ ﬂ,”:1X,->t>

:P(Xi <<X/)
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