UiO **Department of Mathematics** University of Oslo

Lecture 3. First passage probabilities

STK2130 – Modellering av stokastiske prosesser

Anton Yurchenko-Tytarenko

Brush up: Markov chains

Definition

A discrete time, discrete space stochastic process $\{X_0, X_1, X_2, ...\}$ is called a *time homogeneous Markov chain* if its *transition probabilities* satisfy the following:

$$\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0) = \mathbb{P}(X_{n+1} = j \mid X_n = i)$$

for all states $i_0, i_1, \ldots, i_{n-1}, i, j \in S$ and all $n \ge 0$.

Notation

- $P_{i,j} := \mathbb{P}(X_{n+1} = j \mid X_n = i) = \mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0).$
- One-step transition probability matrix: $\mathbf{P} = [P_{i,j}]_{i,j\in\mathcal{S}}$, where $P_{i,j} \ge 0$ for all $i, j \in \mathcal{S}$, and $\sum_{j\in\mathcal{S}} P_{i,j} = 1$ for all $i \in \mathcal{S}$.

Brush up: Chapman–Kolmogorov equations

For a homogeneous Markov chain $\{X_n\}$, we denote

$$P_{i,j}^n := \mathbb{P}(X_{k+n} = j \mid X_k = i)$$

- probability that, starting from the state *i*, the process will get to the state *j* in *n* steps.

Chapman-Kolmogorov equations

$$\mathcal{P}_{i,j}^{n+m} = \sum_{l\in\mathcal{S}} \mathcal{P}_{i,l}^n \mathcal{P}_{l,j}^m, \quad n,m\geq 1, \quad i,j\in\mathcal{S}.$$

Chapman-Kolmogorov equations in matrix form

Denote $\mathbf{P}^{(n)} := [P_{i,i}^n]_{i,j \in S}$ – the matrix of *n*-step transition probabilities.

 $\mathbf{P}^{(n+m)} = \mathbf{P}^{(n)}\mathbf{P}^{(m)}.$

First passage probabilities

Consider a Markov chain $\{X_n\}$ with state space S and transition probability matrix **P**, and let A be a non-empty proper subset of S.

We want to calculate the following probability:

 $\beta := \mathbb{P}(X_k \in \mathcal{A} \text{ for some } 1 \leq k \leq m \mid X_0 = i),$

where we assume that $i \notin A$. In other words, we are interested in probability that $\{X\}$ will visit A at least once within *m* steps given that is starts in *i*.

In order to analyze this, we introduce:

 $N:=\min\{n>0:X_n\in\mathcal{A}\}.$

Thus, *N* represents the first time the Markov chain enters A.

First passage probabilities

 $\beta := \mathbb{P}(X_k \in \mathcal{A} \text{ for some } 1 \leq k \leq m \mid X_0 = i).$

Consider a new Markov chain $\{W_n\}$ derived from $\{X_n\}$ as follows:

l

$$W_n := egin{cases} X_n, & ext{ if } n < N, \ A, & ext{ if } n \geq N, \end{cases}$$

where *A* is an arbitrary state from A.

Then the state space of $\{W_n\}$ becomes $(S \setminus A) \cup \{A\}$ and observe that, when $\{X_n\}$ enters A, i.e. at (random!) time N, $\{W_n\}$ is absorbed in state A.

First passage probabilities: Transition probabilities of $\{W_n\}$

$$eta := \mathbb{P}(X_k \in \mathcal{A} ext{ for some } 1 \leq k \leq m \mid X_0 = i), \quad W_n := egin{cases} X_n, & ext{ if } n < N, \ \mathcal{A}, & ext{ if } n \geq N. \end{cases}$$

The transition probability matrix of $\{W_n\}$, denoted $\mathbf{Q} = (Q_{i,j})$, is given by:

• if $i \notin A$, $j \notin A$, • if $i \notin A$, $Q_{i,j} = P_{i,j}$. $Q_{i,A} = \sum_{i \in A} P_{i,j}$.

•
$$Q_{A,A} = 1$$
.
We now have:

$$\beta = \mathbb{P}(X_k \in \mathcal{A} \text{ for some } 1 \le k \le m \mid X_0 = i)$$
$$= \mathbb{P}(W_m = \mathcal{A} \mid W_0 = i) = Q_{i,\mathcal{A}}^m.$$

Example 4.12

In a sequence of independent flips of a fair coin, we introduce a Markov chain $\{X_n\}$ such that X_n represents the length of the current sequence of consecutive heads.

The state space of this Markov chain is $S = \{0, 1, 2, ...\}$, and we note that $X_0 = 0$. Moreover, the transition probability matrix of $\{X_n\}$ is given by:

$$\mathbf{P} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 & \cdots \\ 1/2 & 0 & 1/2 & 0 & \cdots \\ 1/2 & 0 & 0 & 1/2 & \cdots \\ 1/2 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Problem

Let N denote the number of flips until there is a run of three consecutive heads. Find

$$\mathbb{P}(N \leq 8), \mathbb{P}(N = 8).$$

Example 4.12

We then let $\mathcal{A} = \{3, 4, 5, ...\}$ and introduce:

 $N = \min\{n : X_n \in \mathcal{A}\}.$

N denotes the number of flips until there is a run of 3 consecutive heads.

We want to calculate $\mathbb{P}(N \le 8)$ and $\mathbb{P}(N = 8)$. To solve this problem, we introduce a Markov chain $\{W_n\}$ with states $\mathcal{T} = \{0, 1, 2, 3\}$ defined relative to the sequence of coin flips as follows:

$$\mathcal{N}_n := egin{cases} X_n & ext{if } n < N, \ 3 & ext{if } n \geq N. \end{cases}$$

We note that state 3 is an absorbing state for W_n , and that the transition probability matrix of $\{W_n\}$ is given by:

$$\mathbf{Q} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example 4.12

We then calculate the 7 and 8 steps transition probability matrices:

$$\mathbf{Q}^{(7)} = \begin{pmatrix} 0.3438 & 0.1875 & 0.1016 & 0.3672 \\ 0.2891 & 0.1563 & 0.0859 & 0.4688 \\ 0.1875 & 0.1016 & 0.0547 & 0.6563 \\ 0.0000 & 0.0000 & 0.0000 & 1.0000 \end{pmatrix}, \quad \mathbf{Q}^{(8)} = \begin{pmatrix} 0.3164 & 0.1719 & 0.0938 & 0.4180 \\ 0.2656 & 0.1445 & 0.0781 & 0.5117 \\ 0.1719 & 0.0938 & 0.0508 & 0.6836 \\ 0.0000 & 0.0000 & 0.0000 & 1.0000 \end{pmatrix}$$

Using these matrices we get that:

$$\begin{split} \mathbb{P}(N\leq 8) &= Q_{0,3}^8 = 0.4180, \\ \mathbb{P}(N=8) &= \mathbb{P}(N\leq 8) - \mathbb{P}(N\leq 7) = Q_{0,3}^8 - Q_{0,3}^7 = 0.4180 - 0.3672 = 0.0508. \end{split}$$

Alternatively:

$$\mathbb{P}(N=8) = 0.5Q_{0,2}^7 = 0.0508.$$

UiO **Department of Mathematics** University of Oslo

Lecture 3. First passage probabilities STK2130 – Modellering av stokastiske prosesser

