UiO : Department of Mathematics University of Oslo

Lecture 3. First passage probabilities

STK2130 - Modellering av stokastiske prosesser

Anton Yurchenko-Tytarenko

Brush up: Markov chains

Definition

A discrete time, discrete space stochastic process $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ is called a time homogeneous Markov chain if its transition probabilities satisfy the following:

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all states $i_{0}, i_{1}, \ldots, i_{n-1}, i, j \in \mathcal{S}$ and all $n \geq 0$.

Notation

- $P_{i, j}:=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right)$.
- One-step transition probability matrix: $\mathbf{P}=\left[P_{i, j}\right]_{i, j \in \mathcal{S}}$, where $P_{i, j} \geq 0$ for all $i, j \in \mathcal{S}$, and $\sum_{j \in \mathcal{S}} P_{i, j}=1$ for all $i \in \mathcal{S}$.

Brush up: Chapman-Kolmogorov equations

For a homogeneous Markov chain $\left\{X_{n}\right\}$, we denote

$$
P_{i, j}^{n}:=\mathbb{P}\left(X_{k+n}=j \mid X_{k}=i\right)
$$

- probability that, starting from the state i, the process will get to the state j in n steps.

Chapman-Kolmogorov equations

$$
P_{i, j}^{n+m}=\sum_{l \in \mathcal{S}} P_{i, l}^{n} P_{l, j}^{m}, \quad n, m \geq 1, \quad i, j \in \mathcal{S} .
$$

Chapman-Kolmogorov equations in matrix form

Denote $\mathbf{P}^{(n)}:=\left[P_{i, j}^{n}\right]_{i, j \in \mathcal{S}}$ - the matrix of n-step transition probabilities.

$$
\mathbf{P}^{(n+m)}=\mathbf{P}^{(n)} \mathbf{P}^{(m)} .
$$

First passage probabilities

Consider a Markov chain $\left\{X_{n}\right\}$ with state space \mathcal{S} and transition probability matrix \mathbf{P}, and let \mathcal{A} be a non-empty proper subset of \mathcal{S}.

We want to calculate the following probability:

$$
\beta:=\mathbb{P}\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right),
$$

where we assume that $i \notin \mathcal{A}$. In other words, we are interested in probability that $\{X\}$ will visit \mathcal{A} at least once within m steps given that is starts in i.

In order to analyze this, we introduce:

$$
N:=\min \left\{n>0: X_{n} \in \mathcal{A}\right\} .
$$

Thus, N represents the first time the Markov chain enters \mathcal{A}.

First passage probabilities

$$
\beta:=\mathbb{P}\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right) .
$$

Consider a new Markov chain $\left\{W_{n}\right\}$ derived from $\left\{X_{n}\right\}$ as follows:

$$
W_{n}:= \begin{cases}x_{n}, & \text { if } n<N \\ A, & \text { if } n \geq N,\end{cases}
$$

where A is an arbitrary state from \mathcal{A}.
Then the state space of $\left\{W_{n}\right\}$ becomes $(\mathcal{S} \backslash \mathcal{A}) \cup\{A\}$ and observe that, when $\left\{X_{n}\right\}$ enters \mathcal{A}, i.e. at (random!) time $N,\left\{W_{n}\right\}$ is absorbed in state A.

First passage probabilities: Transition probabilities of $\left\{W_{n}\right\}$

$$
\beta:=\mathbb{P}\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right), \quad W_{n}:= \begin{cases}X_{n}, & \text { if } n<N, \\ A, & \text { if } n \geq N .\end{cases}
$$

The transition probability matrix of $\left\{W_{n}\right\}$, denoted $\mathbf{Q}=\left(Q_{i, j}\right)$, is given by:

- if $i \notin \mathcal{A}, j \notin \mathcal{A}$,

$$
Q_{i, j}=P_{i, j} .
$$

- if $i \notin \mathcal{A}$,

$$
Q_{i, A}=\sum_{j \in \mathcal{A}} P_{i, j} .
$$

- $Q_{A, A}=1$.

We now have:

$$
\begin{aligned}
\beta & =\mathbb{P}\left(X_{k} \in \mathcal{A} \text { for some } 1 \leq k \leq m \mid X_{0}=i\right) \\
& =\mathbb{P}\left(W_{m}=A \mid W_{0}=i\right)=Q_{i, A}^{m} .
\end{aligned}
$$

Example 4.12

In a sequence of independent flips of a fair coin, we introduce a Markov chain $\left\{X_{n}\right\}$ such that X_{n} represents the length of the current sequence of consecutive heads.

The state space of this Markov chain is $\mathcal{S}=\{0,1,2, \ldots\}$, and we note that $X_{0}=0$. Moreover, the transition probability matrix of $\left\{X_{n}\right\}$ is given by:

$$
\mathbf{P}=\left(\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & \cdots \\
1 / 2 & 0 & 1 / 2 & 0 & \cdots \\
1 / 2 & 0 & 0 & 1 / 2 & \cdots \\
1 / 2 & 0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Problem

Let N denote the number of flips until there is a run of three consecutive heads. Find

$$
\mathbb{P}(N \leq 8), \quad \mathbb{P}(N=8)
$$

Example 4.12

We then let $\mathcal{A}=\{3,4,5, \ldots\}$ and introduce:

$$
N=\min \left\{n: X_{n} \in \mathcal{A}\right\} .
$$

N denotes the number of flips until there is a run of 3 consecutive heads.
We want to calculate $\mathbb{P}(N \leq 8)$ and $\mathbb{P}(N=8)$. To solve this problem, we introduce a Markov chain $\left\{W_{n}\right\}$ with states $\mathcal{T}=\{0,1,2,3\}$ defined relative to the sequence of coin flips as follows:

$$
W_{n}:= \begin{cases}x_{n} & \text { if } n<N, \\ 3 & \text { if } n \geq N\end{cases}
$$

We note that state 3 is an absorbing state for W_{n}, and that the transition probability matrix of $\left\{W_{n}\right\}$ is given by:

$$
\mathbf{Q}=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Example 4.12

We then calculate the 7 and 8 steps transition probability matrices:

$$
\mathbf{Q}^{(7)}=\left(\begin{array}{llll}
0.3438 & 0.1875 & 0.1016 & 0.3672 \\
0.2891 & 0.1563 & 0.0859 & 0.4688 \\
0.1875 & 0.1016 & 0.0547 & 0.6563 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right), \quad \mathbf{Q}^{(8)}=\left(\begin{array}{llll}
0.3164 & 0.1719 & 0.0938 & 0.4180 \\
0.2656 & 0.1445 & 0.0781 & 0.5117 \\
0.1719 & 0.0938 & 0.0508 & 0.6836 \\
0.0000 & 0.0000 & 0.0000 & 1.0000
\end{array}\right)
$$

Using these matrices we get that:

$$
\begin{aligned}
& \mathbb{P}(N \leq 8)=Q_{0,3}^{8}=0.4180 \\
& \mathbb{P}(N=8)=\mathbb{P}(N \leq 8)-\mathbb{P}(N \leq 7)=Q_{0,3}^{8}-Q_{0,3}^{7}=0.4180-0.3672=0.0508
\end{aligned}
$$

Alternatively:

$$
\mathbb{P}(N=8)=0.5 Q_{0,2}^{7}=0.0508
$$

UiO 8 Department of Mathematics

 University of Oslo
Anton Yurchenko-Tytarenko

Lecture 3. First passage probabilities
STK2130 - Modellering av stokastiske prosesser

