LIST OF FORMULAS FOR STK1100 AND STK1110

(Version of 11. November 2015)

1. Probability

Let $A, B, A_{1}, A_{2}, \ldots, B_{1}, B_{2}, \ldots$ be events, that is, subsets of a sample space Ω.
a) Axioms:

A probability function P is a function from subsets of the sample space Ω to real numbers, satisfying

$$
\begin{aligned}
& P(\Omega)=1 \\
& P(A) \geq 0 \\
& P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) \quad \text { if } A_{1} \cap A_{2}=\emptyset \\
& P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) \quad \text { if } A_{i} \cap A_{j}=\emptyset \text { for } i \neq j
\end{aligned}
$$

b) $P\left(A^{\prime}\right)=1-P(A)$
c) $P(\emptyset)=0$
d) $A \subset B \Rightarrow P(A) \leq P(B)$
e) The addition law of probability/ the sum rule:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

f) Conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { if } P(B)>0
$$

g) Total probability:

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \text { if } \bigcup_{i=1}^{n} B_{i}=\Omega \text { and } B_{i} \cap B_{j}=\emptyset \text { for } i \neq j
$$

h) Bayes' Rule:

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} \quad \text { under same conditions as in } \mathrm{g} \text {) }
$$

i) A and B are (statistically) independent events if $P(A \cap B)=P(A) P(B)$
j) A_{1}, \ldots, A_{n} are (statistically) independent events if

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{m}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{m}}\right)
$$

for any subset of indexes $i_{1}, i_{2}, \ldots, i_{m}$
k) The product rule:

$$
\begin{aligned}
& P\left(A_{1} \cap \cdots \cap A_{n}\right) \\
& \quad=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots P\left(A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right)
\end{aligned}
$$

2. Combinatorics

a) Two operations that can be done in respectively n and m different ways can be combined in $n \cdot m$ ways.
b) The number of ordered subsets of r elements drawn with replacement from a set of n elements is n^{r}
c) The number of ordered subsets of r elements drawn without replacement from a set of n elements is $n(n-1) \cdots(n-r+1)$
d) Number of permutations of n elements is n ! $=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$
e) The number of unordered subsets of r elements drawn from a set of n elements is

$$
\binom{n}{r}=\frac{n(n-1) \cdots(n-r+1)}{r!}=\frac{n!}{r!(n-r)!}
$$

f) Number of ways a set of n elements can be divided into r subsets with n_{i} elements in the i th subset is

$$
\binom{n}{n_{1} n_{2} \cdots}=\frac{n!}{n_{r}} .4 n_{2}!\cdots n_{r}!
$$

3. Probability distributions

a) For a random variable X (discrete or continuous), $F(x)=P(X \leq x)$ is the cumulative distribution function (cdf).
b) For a discrete random variable X which can take the values $x_{1}, x_{2}, x_{3}, \ldots$ we have

$$
\begin{aligned}
& p\left(x_{j}\right)=P\left(X=x_{j}\right) \\
& F(x)=\sum_{x_{j} \leq x} p\left(x_{j}\right)
\end{aligned}
$$

$p\left(x_{j}\right)$ is a point probability if

$$
\begin{aligned}
& p\left(x_{j}\right) \geq 0 \quad \text { for all } j \\
& \sum_{j} p\left(x_{j}\right)=1
\end{aligned}
$$

c) For a continuous random variable X we have

$$
\begin{aligned}
& P(a<X<b)=\int_{a}^{b} f(x) d x \\
& F(x)=\int_{-\infty}^{x} f(u) d u \\
& f(x)=F^{\prime}(x)
\end{aligned}
$$

$f(x)$ is a probability density function if

$$
\begin{aligned}
& f(x) \geq 0 \\
& \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

d) For two random variables X and Y (discrete or continuous) the joint cumulative distribution function is $F(x, y)=P(X \leq x, Y \leq y)$
e) For discrete random variables X and Y which can take the values x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots respectively, we have

$$
\begin{aligned}
& p\left(x_{i}, y_{j}\right)=P\left(X=x_{i}, Y=y_{j}\right) \\
& F(x, y)=\sum_{x_{i} \leq x} \sum_{y_{j} \leq y} p\left(x_{i}, y_{j}\right)
\end{aligned}
$$

$p\left(x_{i}, y_{j}\right)$ is a joint point probability if it fullfills the same conditions as in b)
f) For continuous random variables X and Y we have

$$
\begin{aligned}
& P((X, Y) \in A)=\iint_{A} f(u, v) d v d u \\
& F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d v d u \\
& f(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}
\end{aligned}
$$

$f(x, y)$ is a joint probability density function if it fullfills the same conditions as in c)
g) Marginal point probabilities:

$$
\begin{align*}
& p_{X}\left(x_{i}\right)=\sum_{j} p\left(x_{i}, y_{j}\right) \\
& p_{Y}\left(y_{j}\right)=\sum_{i} p\left(x_{i}, y_{j}\right)
\end{align*}
$$

h) Marginal probability densities:

$$
\begin{array}{ll}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y & (\text { for } X) \\
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x & (\text { for } Y)
\end{array}
$$

i) Independence:

The random variables X and Y are independent if

$$
\begin{align*}
& p\left(x_{i}, y_{j}\right)=p_{X}\left(x_{i}\right) p_{Y}\left(y_{j}\right) \tag{discrete}\\
& f(x, y)=f_{X}(x) f_{Y}(y)
\end{align*}
$$

(continuous)
j) Conditional point probabilities:

$$
\begin{array}{ll}
p_{X \mid Y}\left(x_{i} \mid y_{j}\right)=\frac{p\left(x_{i}, y_{j}\right)}{p_{Y}\left(y_{j}\right)} & \text { (for } X \text { given } Y=y_{j} \text {) } \\
p_{Y \mid X}\left(y_{j} \mid x_{i}\right)=\frac{p\left(x_{i}, y_{j}\right)}{p_{X}\left(x_{i}\right)} & \text { (for } Y \text { given } X=x_{i} \text {) }
\end{array}
$$

Assuming $p_{Y}\left(y_{j}\right)>0$ and $p_{X}\left(x_{i}\right)>0$, respectively. Conditional point probabilities can be treated as regular point probabilities.
k) Conditional probability densities:

$$
\begin{array}{ll}
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} & \text { (for } X \text { given } Y=y \text {) } \\
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} & \text { (for } Y \text { given } X=x \text {) }
\end{array}
$$

Assuming $f_{Y}(y)>0$ and $f_{X}(x)>0$, respectively. Conditional probability densities can be treated as regular probability densities.

4. Expectation

a) The expected value of a random variable X is defined as

$$
\begin{aligned}
& \mathrm{E}(X)=\sum_{j} x_{j} p\left(x_{j}\right) \\
& \mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x
\end{aligned}
$$

b) For a real function $g(X)$ of a random variable X, the expectated value is

$$
\begin{aligned}
& \mathrm{E}[g(X)]=\sum_{j} g\left(x_{j}\right) p\left(x_{j}\right) \\
& \mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
\end{aligned}
$$

c) $\mathrm{E}(a+b X)=a+b \mathrm{E}(X)$
d) For a real function $g(X, Y)$ of two random variables X and Y, the expected value is

$$
\begin{aligned}
& \mathrm{E}[g(X, Y)]=\sum_{i} \sum_{j} g\left(x_{i}, y_{j}\right) p\left(x_{i}, y_{j}\right) \\
& \mathrm{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d y d x
\end{aligned}
$$

e) If X and Y are independent $\mathrm{E}[g(X) h(Y)]=\mathrm{E}[g(X)] \cdot \mathrm{E}[h(Y)]$
f) If X and Y are independent $\mathrm{E}(X Y)=\mathrm{E}(X) \cdot \mathrm{E}(Y)$
g) $\mathrm{E}\left(a+\sum_{i=1}^{n} b_{i} X_{i}\right)=a+\sum_{i=1}^{n} b_{i} \mathrm{E}\left(X_{i}\right)$
h) Conditional expectation:

$$
\begin{aligned}
& \mathrm{E}\left(Y \mid X=x_{i}\right)=\sum_{j} y_{j} p_{Y \mid X}\left(y_{j} \mid x_{i}\right) \\
& \mathrm{E}(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y
\end{aligned}
$$

5. Variance and standard deviation

a) The variance and standard deviation of a random variable X are defined as

$$
\begin{array}{r}
\mathrm{V}(X)=\mathrm{E}\left[(X-\mu)^{2}\right] \\
\quad \operatorname{sd}(X)=\sqrt{\mathrm{V}(X)}
\end{array}
$$

b) $\mathrm{V}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$
c) $\mathrm{V}(a+b X)=b^{2} \mathrm{~V}(X)$
d) If X_{1}, \ldots, X_{n} are independent we have

$$
\mathrm{V}\left(a+\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} b_{i}^{2} \mathrm{~V}\left(X_{i}\right)
$$

e)

$$
\mathrm{V}\left(a+\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} b_{i}{ }^{2} \mathrm{~V}\left(X_{i}\right)+\sum_{i=1}^{n} \sum_{j \neq i} b_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

f) Chebyshev's inequality:

Let X be a random variable with $\mu=\mathrm{E}(X)$ and $\sigma^{2}=\mathrm{V}(X)$.
For all $t>0$ we have

$$
P(|X-\mu|>t) \leq \frac{\sigma^{2}}{t^{2}}
$$

6. Covariance and correlation

a) Let X and Y be random variables with $\mu_{X}=\mathrm{E}(X), \sigma_{X}^{2}=\mathrm{V}(X), \mu_{Y}=\mathrm{E}(Y)$ and $\sigma_{Y}^{2}=\mathrm{V}(Y)$. The covariance and correlation of X and Y is then defined as

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& \rho=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
\end{aligned}
$$

b) $\operatorname{Cov}(X, X)=\mathrm{V}(X)$
c) $\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)$
d) X, Y independent $\Rightarrow \operatorname{Cov}(X, Y)=0$
e)

$$
\operatorname{Cov}\left(a+\sum_{i=1}^{n} b_{i} X_{i}, c+\sum_{j=1}^{m} d_{j} Y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} d_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

f) $-1 \leq \operatorname{Corr}(X, Y) \leq 1$ and $\operatorname{Corr}(X, Y)= \pm 1$ if and only if there exists two numbers a, b such that $Y=a+b X$ (except, eventually, on areas of zero probability)

7. Moment generating functions

a) For a random variable X (discrete or continuous) the moment generating function is $M_{X}(t)=\mathrm{E}\left(e^{t X}\right)$
b) If the moment generating function $M_{X}(t)$ exists for t in an open interval containing 0 , then it uniquely determines the distribution of X.
c) If the moment generating function $M_{X}(t)$ exists for t in an open interval containing 0 , then all moments of X exist, and we can find the r th moment by $\mathrm{E}\left(X^{r}\right)=M_{X}^{(r)}(0)$
d) $M_{a+b X}(t)=e^{a t} M_{X}(b t)$
e) If X and Y are independent: $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$

8. Some discrete probability distributions

a) Binomial distribution:

Point probability: $\quad P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad k=0,1, \ldots, n$
Moment generating function: $\quad M_{X}(t)=\left(1-p+p e^{t}\right)^{n}$
Expectation: $\quad \mathrm{E}(X)=n p$
Variance: $\quad \mathrm{V}(X)=n p(1-p)$
Approximation 1: $\quad Z=\frac{X-n p}{\sqrt{n p(1-p)}}$ is approximately normally distributed when $n p$ and $n(1-p)$ both are sufficiently big (at least 10)

Approximation 2: $\quad X$ is approximately Poisson distributed with parameter $\lambda=n p$ when n is big and p is small

Sum rule: $\quad X \sim \operatorname{binomial}(n, p), \quad Y \sim \operatorname{binomial}(m, p)$ and X, Y independent $\Rightarrow X+Y \sim \operatorname{binomial}(n+m, p)$
b) Geometric distribution:

Point probability: $\quad P(X=k)=(1-p)^{k-1} p \quad k=1,2, \ldots$
Moment generating function: $\quad M_{X}(t)=e^{t} p /\left[1-(1-p) e^{t}\right]$
Expectation: $\quad \mathrm{E}(X)=1 / p$
Variance: $\quad \mathrm{V}(x)=(1-p) / p^{2}$
Sum rule: If X is geometrically distributed with probability p then $X-1$ is negative binomial $(1, p)$. Then if X and Y are geometrically distributed with same p and independent then $X+Y-2$ is negative binomial $(2, p)$
c) Negative binomial distribution:

Point probability: $P(X=k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k} \quad k=0,1,2, \ldots$
Moment generating function: $\quad M_{X}(t)=\left\{p /\left[1-(1-p) e^{t}\right]\right\}^{r}$
Expectation: $\quad \mathrm{E}(X)=r(1-p) / p$
Variance: $\quad \mathrm{V}(X)=r(1-p) / p^{2}$
Sum rule:
$X \sim$ negative binomial $\left(r_{1}, p\right)$,
$Y \sim$ negative binomial $\left(r_{2}, p\right)$
and X, Y independent
$\Rightarrow X+Y \sim$ negative binomial $\left(r_{1}+r_{2}, p\right)$
d) Hypergeometric distribution:

Point probability: $\quad P(X=k)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$
Expectation: $\quad \mathrm{E}(X)=n \cdot \frac{M}{N}$
Variance: $\quad \mathrm{V}(X)=n \frac{M}{N}\left(1-\frac{M}{N}\right) \frac{N-n}{N-1}$
Approximation: $\quad X$ is approximately binomial $\left(n, \frac{M}{N}\right)$ when n is much smaller than N
e) Poisson distribution:

Point probability: $\quad P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad k=0,1, \ldots$
Moment generating function: $\quad M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$
Expectation: $\quad \mathrm{E}(X)=\lambda$

Variance: $\quad \mathrm{V}(X)=\lambda$
Approximation: $Z=\frac{X-\lambda}{\sqrt{\lambda}}$ is approximately normally distributed when λ is sufficiently big (at least 10)

$$
\begin{array}{ll}
\text { Sum rule: } & X \sim \operatorname{Poisson}\left(\lambda_{1}\right), \quad Y \sim \operatorname{Poisson}\left(\lambda_{2}\right) \\
& \text { and } X, Y \text { independent } \Rightarrow X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)
\end{array}
$$

e) Multinomial distribution:

Point probability: $\quad P\left(N_{1}=n_{1}, \ldots, N_{r}=n_{r}\right)=\frac{n!}{n_{1}!\cdots n_{r}!} p_{1}^{n_{1}} \cdots p_{r}^{n_{r}}$

$$
\text { Here } \sum_{i=1}^{r} p_{i}=1 \text { and } \sum_{i=1}^{r} n_{i}=n
$$

Marginal distribution: $\quad N_{i} \sim \operatorname{binomial}\left(n, p_{i}\right)$

9. Some continuous probability distributions

a) Normal distribution:

Density: $\quad f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \quad-\infty<x<\infty$
Moment generating function: $\quad M_{X}(t)=e^{\mu t} e^{\sigma^{2} t^{2} / 2}$
Expectation: $\quad \mathrm{E}(X)=\mu$
Variance: $\mathrm{V}(X)=\sigma^{2}$
Transformation: $\quad X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow a+b X \sim N\left(a+b \mu, b^{2} \sigma^{2}\right)$

$$
X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

Sum rule: $\quad X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), \quad Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$,

$$
X, Y \text { independent }
$$

$\Rightarrow X+Y \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$
b) Exponential distribution:

Density: $\quad f(x)=\lambda e^{-\lambda x} \quad x>0$
Moment generating function: $\quad M_{X}(t)=\lambda /(\lambda-t)$ for $t<\lambda$
Expectation: $\mathrm{E}(X)=1 / \lambda$
Variance: $\mathrm{V}(X)=1 / \lambda^{2}$
Sum rule: $\quad X \sim \exp (\lambda), \quad Y \sim \exp (\lambda), \quad X$ and Y independent $\Rightarrow X+Y \sim \operatorname{gamma}(2,1 / \lambda)$
c) Gamma distribution:

Density: $\quad f(x)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta} \quad x>0$

Gamma function: $\quad \Gamma(\alpha)=\int_{0}^{\infty} u^{\alpha-1} e^{-u} d u$

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha)
$$

$$
\Gamma(n)=(n-1)!\text { when } n \text { is an integer }
$$

$$
\Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(1)=1
$$

Moment generating function: $\quad M_{X}(t)=[1 /(1-\beta t)]^{\alpha}$
Expectation: $\mathrm{E}(X)=\alpha \beta$
Variance: $\mathrm{V}(X)=\alpha \beta^{2}$
Sum rule: $\quad X \sim \operatorname{gamma}(\alpha, \beta), \quad Y \sim \operatorname{gamma}(\delta, \beta)$,

$$
X \text { and } Y \text { independent } \Rightarrow X+Y \sim \operatorname{gamma}(\alpha+\delta, \beta)
$$

d) Chi-squared distribution:

Density: $f(v)=\frac{1}{2^{n / 2} \Gamma(n / 2)} v^{(n / 2)-1} e^{-v / 2} \quad v>0$
n degrees of freedom
Expectation: $\mathrm{E}(V)=n$
Variance: $\mathrm{V}(V)=2 n$
Sum rule: $U \sim \chi_{n}^{2}, V \sim \chi_{m}^{2}, U$ and V independent

$$
\Rightarrow U+V \sim \chi_{n+m}^{2}
$$

Result: $\quad Z \sim N(0,1) \Rightarrow Z^{2} \sim \chi_{1}^{2}$
e) Student's t-distribution:

Density: $\quad f(t)=\frac{\Gamma[(n+1) / 2]}{\sqrt{n \pi \Gamma(n / 2)}}\left(1+\frac{t^{2}}{n}\right)^{-(n+1) / 2} \quad-\infty<t<\infty$ n degrees of freedom

Expectation: $\mathrm{E}(T)=0 \quad(n \geq 2)$
Variance: $\mathrm{V}(T)=n /(n-2) \quad(n \geq 3)$
Result: $\quad Z \sim N(0,1), \quad U \sim \chi_{n}^{2}, \quad Z, U$ independent $\Rightarrow Z / \sqrt{U / n} \sim t_{n}$
f) Binormal distribution:

Density:

$$
\begin{aligned}
& f(x, y)= \\
& \quad \frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-2 \rho \frac{\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right]\right\}
\end{aligned}
$$

Marginal distribution: $\quad X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right), \quad Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
Correlation: $\operatorname{Corr}(X, Y)=\rho$
Conditional distribution: Given $X=x, Y$ is normally distributed with expectation $\mathrm{E}(Y \mid X=x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)$ and variance $\mathrm{V}(Y \mid X=x)=\sigma_{Y}^{2}\left(1-\rho^{2}\right)$

10. One normally distributed sample

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent and $N\left(\mu, \sigma^{2}\right)$ distributed then we have that:
a) $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad$ and $\quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad$ are independent
b) $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$
c) $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$
d) $\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}$

11. Two normally distributed samples

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and $N\left(\mu_{X}, \sigma^{2}\right)$ distributed, and $Y_{1}, Y_{2}, \ldots, Y_{m}$ independent and $N\left(\mu_{Y}, \sigma^{2}\right)$ distributed. The two samples are independent of each other. Let $\bar{X}, \bar{Y}, S_{X}^{2}$ and S_{Y}^{2} be defined as in 10a). Then we have that:
a) $S_{p}^{2}=\left[(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}\right] /(m+n-2) \quad$ is a weighted estimator for σ^{2}
b) $\bar{X}-\bar{Y} \sim N\left(\mu_{X}-\mu_{Y}, \sigma^{2}\left(\frac{1}{n}+\frac{1}{m}\right)\right)$
c) $(n+m-2) S_{p}^{2} / \sigma^{2} \sim \chi_{m+n-2}^{2}$
d) $\frac{\bar{X}-\bar{Y}-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t_{m+n-2}$

12. Regression analysis

Assume $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} ; i=1,2, \ldots, n$; where $x_{i j}$-S are given numbers and ϵ_{i}-s are independent and $N\left(0, \sigma^{2}\right)$ distributed. Then we have that:
a) The least squares estimators for β_{0} and β_{1} are

$$
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{x} \quad \text { and } \quad \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

b) The estimators in a) are normally distributed and unbiased, and

$$
\operatorname{Var}\left(\hat{\beta}_{0}\right)=\frac{\sigma^{2} \sum_{i=1}^{n} x_{i}^{2}}{n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

c) Let $\mathrm{SSE}=\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}$. Then $S^{2}=\mathrm{SSE} /(n-2)$ is an unbiased estimator for σ^{2}, and $(n-2) S^{2} / \sigma^{2} \sim \chi_{n-2}^{2}$

13. Multiple linear regression

Assume $Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}+\epsilon_{i} ; i=1,2, \ldots, n$; where $x_{i j}$-S are given numbers and ϵ_{i}-s are independent and $N\left(0, \sigma^{2}\right)$ distributed. The model can be written in matrix form as $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}$, where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$ and $\boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{k}\right)^{T}$ are n - and $(k+1)$ dimentional vectors, and $\mathbf{X}=\left\{x_{i j}\right\}$ (with $x_{i 0}=1$) is a $n \times(k+1)$-dimentional matrix. Then:

1. The least squares estimator for $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$.
2. Let $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{k}\right)^{T}$. Then $\hat{\beta}_{j}$-s are normally distributed and unbiased, and

$$
\operatorname{Var}\left(\hat{\beta}_{j}\right)=\sigma^{2} c_{j j} \quad \text { og } \quad \operatorname{Cov}\left(\hat{\beta}_{j}, \hat{\beta}_{l}\right)=\sigma^{2} c_{j l}
$$

where $c_{j l}$ is element (j, l) in the $(k+1) \times(k+1)$ matrix $\mathbf{C}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$.
3. Let $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\cdots+\hat{\beta}_{k} x_{i k}$, og let $S S E=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$. Then $S^{2}=$ $\mathrm{SSE} /[n-(k+1)]$ is an unbiased estimator for σ^{2}, and $[n-(k+1)] S^{2} / \sigma^{2} \sim \chi_{n-(k+1)}^{2}$. Also, S^{2} and $\hat{\boldsymbol{\beta}}$ are independent.
4. Let $S_{\hat{\beta}_{j}}^{2}$ be the variance estimator for $\hat{\beta}_{j}$ we get by replacing σ^{2} with S^{2} in the formula for $\operatorname{Var}\left(\hat{\beta}_{j}\right)$ (in b). Then $\left(\hat{\beta}_{j}-\beta_{j}\right) / S_{\hat{\beta}_{j}} \sim t_{n-(k+1)}$.

