løsninger 23.02

Eivind Tørstad

February 2023

4.56

This is a variant of the gamblers ruin problem presented in section 4.5.1 of Ross. The solution is easily adapted from 4.5 .1 by realizing we can define the states $i=0,1, \ldots, m+n$, where being in state $i=0$ is equivalent to being down m, being in state $i=m+n$ is equivalent to being up n and being in state $i=m$ is equivalent to break-even.
Then let P_{i} denote the probability that, starting in state i, the gambler will eventually win(i.e. reach state $i=m+n$, i.e. be up n). From 4.5.1 the solution for P_{i} is:

$$
P_{i}=\left\{\begin{array}{l}
\frac{1-\left(\frac{1-p}{p}\right)^{i}}{1-\left(\frac{1-p}{p}\right)^{m+n}}, \text { if } p \neq 1 / 2 \\
\frac{i}{m+n}, \text { if } p=1 / 2
\end{array}\right.
$$

We want to calculate P_{m}, i.e. the probability going up n when starting at break-even. The solution then is

$$
P_{m}=\left\{\begin{array}{l}
\frac{1-\left(\frac{1-p}{p}\right)^{m}}{1-\left(\frac{1-p}{p}\right)^{m+n}}, \text { if } p \neq 1 / 2 \\
\frac{m}{m+n}, \text { if } p=1 / 2
\end{array}\right.
$$

4.57

This is also a variant of the gamblers ruin problem in 4.5.1. The solution is easily adapted from 4.5 .1 by realizing that conditioned on the whether first step is clockwise or anti-clockwise, the probability of passing through all other states before reaching state 0 is the same as the probability of reaching the step before winning (i.e. reaching state $n-1$) in the gamblers ruin problem.

Let $P_{1}^{(a)}$ denote the probability of passing through all other states before reaching state 0 , conditioned on the first step being counter-clockwise. Then from section 4.5 .1 we have

$$
P_{1}^{(a)}=\left\{\begin{array}{l}
\frac{1-(q / p)}{1-(q / p)^{n-1}}, \text { if } p \neq 1 / 2 \\
\frac{1}{n-1}, \text { if } p=1 / 2
\end{array}\right.
$$

Let $P_{1}^{(b)}$ be defined similarly, but conditioned on the first step being clockwise. Then we have

$$
P_{1}^{(b)}=\left\{\begin{array}{l}
\frac{1-(p / q)}{1-(p / q)^{n-1}}, \text { if } p \neq 1 / 2 \\
\frac{1}{n-1}, \text { if } p=1 / 2
\end{array}\right.
$$

Finally, let P_{0} be the probability of passing through all other states before reaching state 0 , conditioned on starting in state 0 , the solution of our problem. Then by the law of total probability we have the solution $P_{0}=p P_{1}^{(a)}+q P_{1}^{(b)}$

