Løsninger stk2130 09.02 V1

Eivind Tørstad

February 2023

Based on some of the previous solutions provided by Anton YurchenkoTytarenko and Kristina Rognlien Dahl

Excercise 4.9

Define a markov-chain X_{n} with states $i=0,1,2,3$ where $i<3$ is the number of consecutive heads and $i=3$ is the absorbing state where 3 consecutive heads have been reached. The probability transition matrix for X_{n} is

$$
\mathbf{P}=\left(\begin{array}{cccc}
0.4 & 0.6 & 0 & 0 \\
0.4 & 0 & 0.6 & 0 \\
0.4 & 0 & 0 & 0.6 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then the probability of getting three consecutive heads for $n \leq 10$ is $\mathbf{P}_{0,3}^{10}=$ 0.7

Excercise 4.13

For this problem it will be enough to prove that \mathbf{P}^{r+1} has all positive entries (since then by induction \mathbf{P}^{r+n} must have all positive entries). Consider any $i, j \in \mathcal{S}$, then $\mathbf{P}_{i, j}^{r+1}=\sum_{s \in \mathcal{S}} \mathbf{P}_{i, s}^{r} \mathbf{P}_{s, j}=0$ if and only if all the entries of the j-th column of \mathbf{P} are 0 . (Since $\mathbf{P}_{i, s}^{r}>0$ for all $s \in \mathcal{S}$, then $\mathbf{P}_{s, j}$ must be 0 for all $s \in \mathcal{S}$ for $\mathbf{P}_{i, j}^{r+1}$ to be 0). But if the j-th column of \mathbf{P} is all 0 , then the probability of reaching state j from any state $s \in \mathcal{S}$ in $n \geq 1$ steps is also 0 . Then it is impossible that \mathbf{P}^{r} has all positive entries and we have arrived at a contradiction. Thus \mathbf{P} cannot have a zero j-th column and $\mathbf{P}_{i, j}^{r+1}>0$

Excercise 4.15

We let $\mathcal{N}:=\left\{n \geq 0 \mid \mathbf{P}_{i, j}^{n}>0\right\}$. We know that, since $i \rightarrow j, \mathcal{N} \neq \emptyset$, so we can consider $M^{*}:=\min \mathcal{N}$. Assume for contradiction that $M^{*}>$ M. By definition of M^{*} we have $\mathbf{P}_{i, j}^{M^{*}}>0$. So there exists at path from
i to j, in M^{*} steps, where all the transitions have probability greater than 0. Denote the states of this path as $i_{1}, i_{2}, \ldots, i_{M^{*}-1}$ and let $i=i_{0}$. Then $\mathbf{P}_{i, j}^{M^{*}}=\mathbf{P}_{i_{0}, i_{1}} \mathbf{P}_{i_{1}, i_{2}} \cdots \mathbf{P}_{i_{M^{*}-1}, j}>0$. Since $M^{*}>M$, there must exist $n, m \in$ $\left\{0,1, \ldots, M^{*}-1\right\}$, where $m<n$, such that $i_{n}=i_{m}$ (as in, since we are taking more steps than the number of states in the markov chain, we must be visiting at least one state twice). By the markov assumption $\mathbf{P}_{i_{m}, i_{n+1}}=$ $\mathbf{P}_{i_{n}, i_{n+1}}$. So $\mathbf{P}_{i, j}^{M^{*}-n+m}=\mathbf{P}_{i_{0}, i_{1}} \mathbf{P}_{i_{1}, i_{2}} \cdots \mathbf{P}_{i_{m-1}, i_{m}} \mathbf{P}_{i_{m}, i_{n+1}} \cdots \mathbf{P}_{i_{M^{*}-1}, j}>0$. Then $M^{*}-n+m \in \mathcal{N}$, but $M^{*}-n+m<M^{*}$ which condraticts the assumption $M^{*}=\min \mathcal{N}$. Therefore we must have $M^{*} \leq M$.

Excercise 4.17

We have a sequence of independent bernoulli trials where for $i=1,2, \ldots, n$

$$
Y_{i}=\left\{\begin{array}{cl}
1, & \text { with probability } p \\
-1, & \text { with probability } 1-p
\end{array}\right.
$$

And a markov chain where at time n the state is $\sum_{i=1}^{n} Y_{i}$. The strong law of large numbers states that $\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{\text { a.s. }} \mathrm{E}[Y]$ as $n \rightarrow \infty$. We have that $\mathrm{E}[Y]=-1(1-p)+1 p=2 p-1$ which is obviously negative when $p<1 / 2$, positive when $p>1 / 2$ and zero when $p=1 / 2$. Then $\sum_{i=1}^{n} Y_{i} \xrightarrow{\text { a.s. }} n(2 p-1)$ as $n \rightarrow \infty$, where $n(2 p-1)$ obviously diverges when $p \neq 1 / 2$. We have then that when $p \neq 1 / 2$, then $\operatorname{Pr}\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} Y_{i}= \pm \infty\right)=1$ (Definition of almost sure convergence). So there is a zero probability that the chain will visit any state infinitely often and the chain is transient.

