STK2130: Solution to the mandatory assignment 2023

Problem 1: a) As it is impossible to get from the states 0 and 4 to any other states, they are their own communication classes. For the remaining states 1, 2 , and 3 we can always get from one state to any other state, and hence they form a communication class. This means that the communication classes are $\{0\},\{1,2,3\},\{4\}$. Of these, $\{0\}$ and $\{4\}$ are recurrent as the process can never leave these states, but $\{1,2,3\}$ is transient as the probability of returning to any of these states is less than 1 (there is a positive probability of getting trapped in 0 or 4).
b) As the total probability going out of a state is always 1 , it is easy to compute the "missing" probabilities, and we get

$$
P=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

I put the transition matrix into MATLAB and got:

$$
P^{10} \approx\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0.4257 & 0.0050 & 0 & 0.0050 & 0.5643 \\
0.2821 & 0 & 0.0126 & 0 & 0.7053 \\
0.1386 & 0.0075 & 0 & 0.0075 & 0.8464 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

I also tried

$$
P^{100} \approx\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0.4286 & 0.0000 & 0 & 0.0000 & 0.5714 \\
0.2857 & 0 & 0.0000 & 0 & 0.7143 \\
0.1429 & 0.0000 & 0 & 0.0000 & 0.8571 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

This makes it natural to guess that

$$
\lim _{n \rightarrow \infty} P^{n} \approx\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0.4286 & 0 & 0 & 0 & 0.5714 \\
0.2857 & 0 & 0 & 0 & 0.7143 \\
0.1429 & 0 & 0 & 0 & 0.8571 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The first column gives us the probabilities of eventually ending up in state 0 when starting from states $0,1,2,3,4$, respectively, and hence our conjecture is: $q_{0}=1, q_{1} \approx 0.4286, q_{2} \approx 0.2857, q_{3} \approx 0.1429, q_{4}=0$.
c) To explain the equations

$$
\begin{align*}
q_{0} & =1 \tag{1}\\
q_{1} & =\frac{1}{3} q_{0}+\frac{1}{3} q_{2}+\frac{1}{3} q_{4} \tag{2}\\
q_{2} & =\frac{1}{2} q_{1}+\frac{1}{2} q_{3} \tag{3}\\
q_{3} & =\frac{1}{2} q_{2}+\frac{1}{2} q_{4} \tag{4}\\
q_{4} & =0 \tag{5}
\end{align*}
$$

note that the first and the last one are immediate consequences of 0 and 4 being absorbing states. To explain the second equation, note that if we are in state 1 , we will next go to each of the states 0,2 , and 4 with probability $\frac{1}{3}$. Hence the probability of eventually ending up in 0 starting at 1 , must be the sum of $\frac{1}{3}$ times the probabilities of ending up in 0 starting at 0,2 , and 4 , respectively, i.e.

$$
q_{1}=\frac{1}{3} q_{0}+\frac{1}{3} q_{2}+\frac{1}{3} q_{4} .
$$

The third and fourth equations are obtained similarly by considering processes starting at states 2 and 3 , respectively.

To solve the system, note that if we substitute the expressions for q_{0} and q_{4} into the second and fourth equation, we are left with three equations with three unknowns:

$$
\begin{align*}
q_{1} & =\frac{1}{3}+\frac{1}{3} q_{2} \tag{6}\\
q_{2} & =\frac{1}{2} q_{1}+\frac{1}{2} q_{3} \tag{7}\\
q_{3} & =\frac{1}{2} q_{2} \tag{8}
\end{align*}
$$

This system is easily solved by substituting the first and third expression into the second, leaving us with

$$
q_{2}=\frac{1}{2} \cdot\left(\frac{1}{3}+\frac{1}{3} q_{2}\right)+\frac{1}{2} \cdot \frac{1}{2} q_{2}
$$

Solving for q_{2}, we get $q_{2}=\frac{2}{7}$, which yields $q_{3}=\frac{1}{7}$ and $q_{1}=\frac{3}{7}$. As $\frac{3}{7} \approx 0.4286$, $\frac{2}{7} \approx 0.2857$, and $\frac{1}{7} \approx 0.1429$, this confirms our conjecture.

Problem 2: a) As all states communicate, the chain is irreducible, and since in addition the state space is finite, the Markov chain is recurrent by remark 2 on page 217.
b) The time reversibility conditions ("detailed balance equations") $\pi_{i j} p_{i}=$ $\pi_{j} p_{j i}$ are in this case:

$$
\pi_{0}=\frac{1}{3} \pi_{1}, \quad \frac{1}{3} \pi_{1}=\frac{1}{2} \pi_{2}, \quad \frac{1}{3} \pi_{1}=\frac{1}{3} \pi_{3}, \quad \frac{1}{2} \pi_{2}=\frac{1}{3} \pi_{3}, \quad \frac{1}{3} \pi_{3}=\pi_{4}
$$

Working from left to right, we may express all the π_{i} 's in terms of π_{0} :

$$
\pi_{1}=3 \pi_{0}, \quad \pi_{2}=2 \pi_{0}, \quad \pi_{3}=3 \pi_{0}, \quad \pi_{4}=\pi_{0}
$$

and it's easy to check that these values satisfy all the equations. We also need the π_{i} 's to sum to 1 :

$$
1=\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=\pi_{0}+3 \pi_{0}+2 \pi_{0}+3 \pi_{0}+\pi_{0}=10 \pi_{0}
$$

Hence $\pi_{0}=\frac{1}{10}, \pi_{1}=\frac{3}{10}, \pi_{2}=\frac{2}{10}, \pi_{3}=\frac{3}{10}, \pi_{4}=\frac{1}{10}$. As the detailed balance equations are satisfied, the Markov chain is reversible.

The solutions to c)-e) are based on section 4.6 in the textbook, and I use the same notation as there.
c) As the three final questions are about what happens before we reach state 4, it's convenient to change the process slightly by making 4 an absorbing state. Hence we change the transition matrix into

$$
\tilde{P}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Note that the corresponding Markov chain \tilde{X} behaves exactly like X until it hits 4. For the new Markov chain, the state 4 is recurrent while the others are transient. The reduced transition matrix is therefore:

$$
\tilde{P}_{T}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Using Matlab (or some other program), we compute

$$
S=\left(I-\tilde{P}_{T}\right)^{-1}=\left(\begin{array}{cccc}
\frac{8}{3} & 5 & \frac{8}{3} & 3 \\
\frac{5}{3} & 5 & \frac{8}{3} & 3 \\
\frac{4}{3} & 4 & \frac{10}{3} & 3 \\
1 & 3 & 2 & 3
\end{array}\right)
$$

According to section 4.6, the component $s_{i j}$ is the expected time \tilde{X} spends in j when it is started in i. As we are starting in $i=0$, the numbers we are interested in, are in the first row of the matrix: X spends an average time of $\frac{8}{3}$ in 0,5 in $1, \frac{8}{3}$ in 2 , and 3 in 3 before reaching 4 .
d) The average time X uses to reach 4 for the first time equals the sum of the average times spent in all the other states before reaching 4, i.e.: $\frac{8}{3}+5+\frac{8}{3}+3=$ $\frac{40}{3}$.
e) According to the equation on the bottom line of page 246 , the probability is:

$$
f_{02}=\frac{s_{02}}{s_{22}}=\frac{\frac{8}{3}}{\frac{10}{3}}=\frac{4}{5}
$$

If you don't remember this formula, there is a more pedestrian way to solve the problem: Let q_{i} be the probability of hitting 2 before 4 if the process starts from state i. Then

$$
\begin{aligned}
q_{0} & =q_{1} \\
q_{1} & =\frac{1}{3} q_{0}+\frac{1}{3} q_{2}+\frac{1}{3} q_{3} \\
q_{2} & =1 \\
q_{3} & =\frac{1}{3} q_{1}+\frac{1}{3} q_{2}+\frac{1}{3} q_{4} \\
q_{4} & =0
\end{aligned}
$$

Solving this system of equations, we get $q_{0}=\frac{4}{5}$.
Problem 3: a) There are $\binom{n}{k}$ ways to choose k intervals from n, and each such selection happens with probability $p^{k}(1-p)^{n-k}$. Hence

$$
P_{k}=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

b) Note that

$$
\begin{gathered}
P_{k}=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
=\frac{n(n-1) \cdots(n-k+1)}{k!}\left(\frac{\lambda}{n}\right)^{k} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{k}} \\
=\frac{\lambda^{k}}{k!} \cdot 1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdot \ldots \cdot\left(1-\frac{k-1}{n}\right) \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{\lambda}{n}\right)^{k}}
\end{gathered}
$$

In this expression, both the finite products (remember that k is fixed)

$$
1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdot \ldots \cdot\left(1-\frac{k-1}{n}\right)
$$

and

$$
\left(1-\frac{\lambda}{n}\right)^{k}
$$

go to 1 as n goes to infinity, while

$$
\left(1-\frac{\lambda}{n}\right)^{n} \rightarrow e^{-\lambda}
$$

Hence

$$
\lim _{n \rightarrow \infty} P_{k}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

The result strengthens the intuition that the Poisson distribution with rate λ is a good model for counting events that happen with a frequency that (for short intervals) is λ times the length of the interval.

