
STK2130: Solution to the mandatory
assignment 2023

Problem 1: a) As it is impossible to get from the states 0 and 4 to any other
states, they are their own communication classes. For the remaining states 1,
2, and 3 we can always get from one state to any other state, and hence they
form a communication class. This means that the communication classes are
{0}, {1, 2, 3}, {4}. Of these, {0} and {4} are recurrent as the process can never
leave these states, but {1, 2, 3} is transient as the probability of returning to any
of these states is less than 1 (there is a positive probability of getting trapped
in 0 or 4).

b) As the total probability going out of a state is always 1, it is easy to
compute the “missing” probabilities, and we get

P =


1 0 0 0 0
1
3 0 1

3 0 1
3

0 1
2 0 1

2 0
0 0 1

2 0 1
2

0 0 0 0 1


I put the transition matrix into MATLAB and got:

P 10 ≈


1 0 0 0 0

0.4257 0.0050 0 0.0050 0.5643
0.2821 0 0.0126 0 0.7053
0.1386 0.0075 0 0.0075 0.8464

0 0 0 0 1


I also tried

P 100 ≈


1 0 0 0 0

0.4286 0.0000 0 0.0000 0.5714
0.2857 0 0.0000 0 0.7143
0.1429 0.0000 0 0.0000 0.8571

0 0 0 0 1


This makes it natural to guess that

lim
n→∞

Pn ≈


1 0 0 0 0

0.4286 0 0 0 0.5714
0.2857 0 0 0 0.7143
0.1429 0 0 0 0.8571

0 0 0 0 1


The first column gives us the probabilities of eventually ending up in state 0
when starting from states 0, 1, 2, 3, 4, respectively, and hence our conjecture
is: q0 = 1, q1 ≈ 0.4286, q2 ≈ 0.2857, q3 ≈ 0.1429, q4 = 0.
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c) To explain the equations

q0 = 1 (1)

q1 =
1

3
q0 +

1

3
q2 +

1

3
q4 (2)

q2 =
1

2
q1 +

1

2
q3 (3)

q3 =
1

2
q2 +

1

2
q4 (4)

q4 = 0 (5)

note that the first and the last one are immediate consequences of 0 and 4 being
absorbing states. To explain the second equation, note that if we are in state
1, we will next go to each of the states 0, 2, and 4 with probability 1

3 . Hence
the probability of eventually ending up in 0 starting at 1, must be the sum of
1
3 times the probabilities of ending up in 0 starting at 0, 2, and 4, respectively,
i.e.

q1 =
1

3
q0 +

1

3
q2 +

1

3
q4.

The third and fourth equations are obtained similarly by considering processes
starting at states 2 and 3, respectively.

To solve the system, note that if we substitute the expressions for q0 and q4
into the second and fourth equation, we are left with three equations with three
unknowns:

q1 =
1

3
+

1

3
q2 (6)

q2 =
1

2
q1 +

1

2
q3 (7)

q3 =
1

2
q2 (8)

This system is easily solved by substituting the first and third expression into
the second, leaving us with

q2 =
1

2
·
(

1

3
+

1

3
q2

)
+

1

2
· 1

2
q2.

Solving for q2, we get q2 = 2
7 , which yields q3 = 1

7 and q1 = 3
7 . As 3

7 ≈ 0.4286,
2
7 ≈ 0.2857, and 1

7 ≈ 0.1429, this confirms our conjecture.

Problem 2: a) As all states communicate, the chain is irreducible, and since
in addition the state space is finite, the Markov chain is recurrent by remark 2
on page 217.

b) The time reversibility conditions (“detailed balance equations”) πijpi =
πjpji are in this case:

π0 =
1

3
π1,

1

3
π1 =

1

2
π2,

1

3
π1 =

1

3
π3,

1

2
π2 =

1

3
π3,

1

3
π3 = π4

Working from left to right, we may express all the πi’s in terms of π0:

π1 = 3π0, π2 = 2π0, π3 = 3π0, π4 = π0
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and it’s easy to check that these values satisfy all the equations. We also need
the πi’s to sum to 1:

1 = π0 + π1 + π2 + π3 + π4 = π0 + 3π0 + 2π0 + 3π0 + π0 = 10π0

Hence π0 = 1
10 , π1 = 3

10 , π2 = 2
10 , π3 = 3

10 , π4 = 1
10 . As the detailed balance

equations are satisfied, the Markov chain is reversible.

The solutions to c)-e) are based on section 4.6 in the textbook, and I use the
same notation as there.

c) As the three final questions are about what happens before we reach state
4, it’s convenient to change the process slightly by making 4 an absorbing state.
Hence we change the transition matrix into

P̃ =


0 1 0 0 0
1
3 0 1

3
1
3 0

0 1
2 0 1

2 0
0 1

3
1
3 0 1

3
0 0 0 0 1


Note that the corresponding Markov chain X̃ behaves exactly like X until it
hits 4. For the new Markov chain, the state 4 is recurrent while the others are
transient. The reduced transition matrix is therefore:

P̃T =


0 1 0 0
1
3 0 1

3
1
3

0 1
2 0 1

2
0 1

3
1
3 0


Using Matlab (or some other program), we compute

S = (I − P̃T )−1 =


8
3 5 8

3 3
5
3 5 8

3 3
4
3 4 10

3 3
1 3 2 3


According to section 4.6, the component sij is the expected time X̃ spends in
j when it is started in i. As we are starting in i = 0, the numbers we are
interested in, are in the first row of the matrix: X spends an average time of 8

3
in 0, 5 in 1, 8

3 in 2, and 3 in 3 before reaching 4.

d) The average time X uses to reach 4 for the first time equals the sum of the
average times spent in all the other states before reaching 4, i.e.: 8

3 +5+ 8
3 +3 =

40
3 .

e) According to the equation on the bottom line of page 246, the probability
is:

f02 =
s02
s22

=
8
3
10
3

=
4

5
.
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If you don’t remember this formula, there is a more pedestrian way to solve the
problem: Let qi be the probability of hitting 2 before 4 if the process starts from
state i. Then

q0 = q1

q1 =
1

3
q0 +

1

3
q2 +

1

3
q3

q2 = 1

q3 =
1

3
q1 +

1

3
q2 +

1

3
q4

q4 = 0

Solving this system of equations, we get q0 = 4
5 .

Problem 3: a) There are
(
n
k

)
ways to choose k intervals from n, and each such

selection happens with probability pk(1− p)n−k. Hence

Pk =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
.

b) Note that

Pk =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=
n(n− 1) · · · (n− k + 1)

k!

(
λ

n

)k (1− λ
n

)n(
1− λ

n

)k
=
λk

k!
· 1
(

1− 1

n

)(
1− 2

n

)
· . . . ·

(
1− k − 1

n

) (
1− λ

n

)n(
1− λ

n

)k
In this expression, both the finite products (remember that k is fixed)

1

(
1− 1

n

)(
1− 2

n

)
· . . . ·

(
1− k − 1

n

)
and (

1− λ

n

)k
go to 1 as n goes to infinity, while(

1− λ

n

)n
→ e−λ.

Hence

lim
n→∞

Pk =
λk

k!
e−λ

The result strengthens the intuition that the Poisson distribution with rate λ is
a good model for counting events that happen with a frequency that (for short
intervals) is λ times the length of the interval.
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