STK 2130-3.apn'l 2024
(2.27) Rock concert with arrivals @ rate 50 $\rightarrow 30$ are female 20 are male
\rightarrow THINNING
"Main" Poisson process with rate 50 splits into two independent
PP with rates 30 and 20
a) What is the probability for all 3 of the first 3 arrivals to be females?
\rightarrow recommend: furn off STK 2130 brains it is a simple question
From rates (*) $\rightarrow 3: 2$ ratio of females to males.
\rightarrow chance of first guest being female $=3 / 5$.
\qquad

$$
=3 / 5
$$

EVEN gIVEN
THAT Mst guest is fence
(Markov property)

- 11 -
third -1)

$$
=3 / 5
$$

$P($ first 3 guests female $)=(3 / 5)^{3}$.
b) Same situation: arrivals to concent @ $\left\{\begin{array}{l}20 \text { males } \\ 30 \text { females }\end{array}\right.$
$\mathbb{P}($ both guests arriving in $[0,3]$ |both arrived in $[0,5])$
ONE WAY:

$$
\left.=\frac{\mathbb{P}\left(\{\text { both great } i[0,3]\}_{0}\right.}{\{\text { both greets } \cap[0,5)\}\}}\right)
$$

=... the STK1100 way.
$B \cup T:$
THEOREM 2.15 (in the book)
Let $T_{1}, T_{2}, T_{3}, \ldots$ be arrival times of a $P P$ and $U_{1}, U_{2}, \ldots, U_{n} \sim \operatorname{Unil}[0, t], U_{1}, U_{2}, \ldots U_{n}$ indep.
Conditioning on $N(t)=n, \quad\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ has the same distribution as $\left(U_{1}, U_{2}, \ldots, U_{n}\right)$.
$[0, t] \rightarrow$ impose that there are 4 arrival tines

b) $\left(\operatorname{cont}^{\prime} d\right)$
because it is giver that

$\underbrace{\mathbb{P}\left(U_{1} \leq 3, U_{2} \leq 3\right)} \stackrel{\downarrow}{=} \mathbb{P}($ both greet anking in $[0,3] \mid$ both amived in $[0,5])$
U_{1}, U_{2} independent,

$$
\begin{aligned}
& \quad U_{1}, U_{2} \sim \operatorname{Unil}([0,5]) \\
& =\operatorname{indep} \mathbb{P}\left(U_{1} \leq 3\right) \cdot \mathbb{P}\left(U_{2} \leq 3\right) \\
& =(3 / 5) \cdot(3 / 5)=(3 / 5)^{2}
\end{aligned}
$$

c) Still in the same setting: rock concent with PP arrival times @rate 50 .
Now, instead of $50=\left\{\begin{array}{l}30 \text { female } \\ 20 \text { male, split as }\end{array}\right.$

$$
50=\left\{\begin{array}{cll}
25 & \text { boy } 1 \text { ticket } \\
20 & \text { boy } 2 \text { riches } \\
5 & \text { buy } 3 \text { riches }
\end{array}\right.
$$

(a different way of thinning the PPP)
$N_{i}:=$ PPP of buying i ticcuts
What is distribution of $\left(N_{1}, N_{2}, N_{3}\right)^{2}$?

Independence of $\left(N_{1}, N_{2}, N_{3}\right)$ implies that the joint distribution is simply three id ed. with expected values 25,20 and $5 \cdot\left(N_{1}, N_{2}, N_{3}\right) \sim\left(\operatorname{PPP}_{1}(25), \operatorname{PPP}_{2}(20)\right.$, $\mathbb{P}\left(N_{2}(30\right.$ min $\left.)=4\right)=\ldots$ $\mathrm{PPP}_{3}(\mathrm{j})$)

228
2 ways is while lightbonts can be replied:
failure $\sim \exp (200)\}$ arrival times, indequdectly preventive $\sim \exp (100)$, of eat other replacement $\sim \exp (100)$

$\left.N_{\text {failure }}\right\}$ as e both PPP,

with rates 200 and 100.

THINNing
\rightarrow prev. exercise

\rightarrow currant exercise

rates are added
4 careful with
terminology \rightarrow expectations of the PPP get adeblect
sanity check: does the expected number of events go up due to superposition (is-greater cumber of red clocks than green clocks?)
a) Nfainre has expectation $\frac{1}{200}$ (expected amivals per day y) Nreplacemat has expectation $\frac{1}{100}$ (expected animas pe day)

$$
\Rightarrow N_{\text {total }}=\frac{1}{200}+\frac{1}{100}=\frac{3}{200} \approx \frac{1}{67}
$$

expected arrivals per day
(depending on terminilayg \rightarrow new "rate" is 67 days)
b) in the long run, what fraction of replacement are due to failure?
\rightarrow compar exercise 2.27 a) $50= \begin{cases}30 & \text { ferine } \\ 20 & \mathrm{mile}\end{cases}$

$$
\frac{1}{67}=\left\{\begin{array}{l}
\frac{1}{200} \text { friml } \quad \text { rate } \frac{30}{50}=3 / 5 \\
\frac{1}{100} \Rightarrow \text { share } \frac{\frac{1}{200}}{\frac{1}{67}} \approx \frac{1}{3}
\end{array}\right.
$$

Another way to understand the question: What is the long term share of blue events out of all events.
2.30

Nis a
coith rap
$\lambda$$\Rightarrow N(t) \sim \operatorname{Poi}(\lambda t)$
Nmen calls @rak 3 (THINNING)介indeperdence

Calls

calls @rate 1
@rate 4
a)

$$
\begin{aligned}
& \left.\mathbb{P}\left(N_{\text {men }}(t=1 h)=2, \quad N_{\text {wonea }}(t=1 h)=3\right)\right) \\
& =\mathbb{P}\left(N_{\text {men }}^{\text {inden }_{\text {mes }}}(t=1 h)=2\right) \cdot \mathbb{P}\left(N_{\text {womer }}(t=1 h)=3\right)
\end{aligned}
$$

$$
=e^{-3 \cdot 1} \cdot \frac{(3 \cdot 1)^{2}}{2!} \cdot e^{-e^{-1} \cdot 1^{\text {ract howe }} \frac{(1 \cdot 1)^{\text {rakt } 1 / 3}}{3!}}
$$

b) What is the probability that 3 men will have made calls before 3 women have?

\mathbb{P} (three out out the first five clocks are green)
$=\mathbb{P}$ (five clocks out of five are green)

$$
\begin{aligned}
& +\mathbb{P}(\text { four }-1) \\
& +\mathbb{P}(\text { thane }-1) \\
& =\operatorname{Bin}_{5,3 / 4}(5)+\operatorname{Bin}_{5,3 / 4}(4)+8 n_{5,3 / 4} \\
& =\binom{5}{3} \cdot\left(\frac{3}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}+\binom{5}{4}\left(\frac{3}{4}\right)^{4}\left(\frac{3}{4}\right)+\binom{5}{5}\left(\frac{3}{5}\right)^{5} \\
& =
\end{aligned}
$$

RENEWAL PROCESS

PPP is characterised by espountal waiting times.
Drop (only) this assunptia
\rightarrow get some "genuatiud" form of PPP RENEWAL PROCESS

MOST IMPORTANT APPLICATION:
jumping between states

(chapter 3 of book)
Q: HOW much time on average spent IN STATE 1 OR $0 ? \rightarrow$ ANSWERS

